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Abstract

The three-dimensional characterization of distributed particle properties in the micro- and nanometer range is essential to describe and
understand highly specific separation processes in terms of selectivity and yield. Both performance measures play a decisive role in the
development and improvement of modern functional materials. In this study, we mixed spherical glass particles (0.4–5.8 μm diameter)
with glass fibers (diameter 10 μm, length 18–660 μm) to investigate a borderline case of maximum difference in the aspect ratio and a sig-
nificant difference in the characteristic length to characterize the system over several size scales. We immobilized the particles within a wax
matrix and created sample volumes suitable for computed tomographic (CT) measurements at two different magnification scales (X-ray
micro- and nano-CT). Fiber diameter and length could be described well on the basis of the low-resolution micro-CT measurements
on the entire sample volume. In contrast, the spherical particle system could only be described with sufficient accuracy by combining
micro-CT with high-resolution nano-CT measurements on subvolumes of reduced sample size. We modeled the joint (bivariate) distribu-
tion of fiber length and diameter with a parametric copula as a basic example, which is equally suitable for more complex distributions
of irregularly shaped particles. This enables us to capture the multidimensional correlation structure of particle systems with statistically
representative quantities.
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Introduction

The characterization of distributed particle properties is a key
challenge in chemical engineering to understand the relation
between microscopic features and macroscopic effects.
Two-dimensional (2D) imaging methods are used to reveal mul-
tiple properties at once. Static methods, such as light microscopy,
were supplemented by dynamic methods, which represent a sig-
nificant development, especially with regard to the statistical rep-
resentativeness of the samples (Brown et al., 2005). Image tracking
algorithms were used to compensate for stereological errors from
the 2D image description, but only down to particle sizes of
around 100 μm (Macho et al., 2019). A complete three-
dimensional (3D) description of a collective of particles smaller
than 10 μm is not possible with these methods.

Computed tomography (CT) measuring methods, on the other
hand, are well-established over length scales from centimeter to

the submicrometer range. Depending on the physical measure-
ment principles and the experimental setup, every measuring
method has its limitations, both in analysis volume and spatial
resolution. X-ray CT is one of the most common 3D imaging
techniques used in the engineering sciences to visualize internal
structures of solid-state phases nondestructively (Stock, 1999).
The X-rays used are capable of penetrating solid matter, their
absorption coefficient being a function of the material density
of the sample, the length penetrated, the photon energy, and
the atomic number of the compound elements. The measurement
parameters are therefore strongly related to the material and its
dimensions (Pavlinsky, 2008). Compared to 2D radiological imag-
ing, the tomography setup offers a chance to analyze the 3D struc-
ture of objects in the field of view (FOV) without stereological
error. By rotating the sample, a series of projections can be cap-
tured—each image with the attenuated sum signal along the
beam path. The transformation of the series of 2D images into
a 3D volume is based on Fourier, algebraic, or statistical algo-
rithms (Buzug, 2008).

Initially only available at monochromatic synchrotron facili-
ties, state-of-the-art systems are now also available in laboratories,
for micrometer (X-ray micro-computed tomography, micro-CT)
and submicrometer range imaging (X-ray nano-computed
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tomography, nano-CT) (Maire & Withers, 2014). This has opened
up the possibility to work on extensive questions from particle
measurement technology even without access to measurement
time at synchrotron beamlines.

Particles with sizes below the voxel resolution are often used
for contrast enhancement of complete phases or as markers of
specific regions (Shilo et al., 2012). Alternatively, particles with
sizes larger than the voxel resolution can be used directly as align-
ment markers in 3D imaging (Hagen et al., 2014). Studies on par-
ticle properties can be found for single particles (Liu et al., 2016),
a limited number (10–100) of free particles (Bagheri et al., 2015),
as crystals in mineralogical phases (Kahl et al., 2017) or as mac-
roscopic units with properties like layer thickness (Zhong et al.,
2019) or bulk properties (Sjödahl et al., 2012). In contrast, the
tomographic analysis of particulate samples of a statistically rele-
vant quantity (more than 1000 particles) with distributed multidi-
mensional properties is rarely mentioned in the literature
(Cepuritis et al., 2017).

Since particle systems are, in many cases, composed of parti-
cles with size distributions covering more than one size scale, a
multiscale approach is a fundamental requirement in order to
be able to describe them precisely with respect to their multidi-
mensional properties. Studies often focus on solids to determine
material properties like layer composition (Moroni et al., 2016)
or micro-processes like crack formation (Burnett et al., 2014).
In this study, we investigated a mixture of two particle systems
of very different particle sizes. We created a 50/50 (by weight)
mixture of spherical glass particles (diameter min 0.4 μm, median
1.2 μm, max 5.8 μm) and glass fibers (diameter 10 μm, median
length 82 μm, longest fiber 660 μm) to investigate a borderline
case of maximum difference in the aspect ratio and a significant
difference in size. Thus, the geometrical properties of spheres
and fibers can only be analyzed simultaneously by a combination
of tomographic analysis methods on two magnification levels
(X-ray micro- and nano-CT).

The basis of a quantitative evaluation of the reconstructed
tomography image data is a sequence of individual image pro-
cessing algorithms that is precisely adapted to the properties of
the individual particles in the image (image processing work-
flow). In our case, we start to identify the fibers and the spheres
by segmentation. This is a fundamental step, since the statistical
analysis of the particle system strongly depends on the shape and
size of the particles and thus on the quality of segmentation.
Therefore, we apply the so-called marker-controlled watershed
transform, one of the most widely used segmentation algo-
rithms, which has proved to be robust and efficient (Meyer &
Beucher, 1990; Soille, 2013). The geometry of a segmented
fiber is characterized by its length, specific surface area, and
cross-section diameter. A parametric representation of the
bivariate distribution of the fiber’s length and the specific surface
area is obtained using copula theory (Durante & Sempi, 2015).
The fitted copula model enables to capture the correlation struc-
ture between the length and the specific surface area (the
so-called marginal distributions), hence, leading to a more infor-
mative description of the fiber system. For the spheres, the
volume-equivalent diameter and the specific surface area are
used as geometrical criteria, and a copula model is also fitted
to this bivariate distribution. Therefore, it is possible to get a
full parametric description of the entire particle system by
combining the two individual copula models, either using a
number- or volume-weighted version of the bivariate probability
density functions.

This paper is organized as follows. In the section Materials and
Methods, we introduce our sample preparation method, focusing
on representativeness and sample size. A summary of the mea-
surement parameters and the description of the image processing
procedure then presented. In the section Results and Discussion,
we propose a reasonable multidimensional characterization
approach, using a copula model and correcting edge effects, to
characterize the particulate material composed of fibers and
spheres.

Materials and Methods

Preparation of Particulate Samples

A conclusive tomographic analysis of a particulate sample has to
meet the following requirements:

1. Enough particles to describe statistically relevant distributed
properties.

2. FOV-adjusted sample size to avoid large scanning times and
artifacts.

3. Spatially separated particles to avoid segmentation errors.
4. An appropriate voxel size to distinguish interesting features.

These four requirements have to be balanced with respect to
the number and the size ranges of particles. The last two require-
ments are related to the partial volume effect (see Supplementary
Appendix B).

Statistical Representativeness
Analyzing particles as a collective with distributed properties
requires a representative sample within a scanned volume.
Practical approaches to calculate a minimum number of particles
based on statistical models are given in the literature (Koglin et al.,
1974; Vigneau et al., 2000). We determined the optimal volume
concentration of spherical particles, immobilized and embedded
in a matrix, in prestudies with 10 vol% (Ditscherlein et al.,
2019). The minimum concentration cmin is given by the ratio of
the total particle volume VParticle and the volume of the sample
cylinder VCylinder, i.e.,

cmin = VParticle

VCylinder
= nParticle · 43p · x3

nStitch · p dC
2

( )2·hC , (1)

with the number of particles nParticle, equivalent spherical
particle diameter x, the number of vertical stitches nStitch (in
this study, equal to 1), diameter dC, and height hC of the sample
cylinder. In Figure 1, the determined minimum number of
particles is shown as a set of ISO-lines going from low particle
volume concentrations to a limit concentration for a monodis-
perse particle fraction (hexagonal close packing, c ≈ 0.74, see
case (b) in Fig. 1). Due to limited machining capabilities for
sample preparation, there is also a practical lower limit of the
sample size (c). The shift from a large FOV (a-1) to a smaller
one (a-2) with constant particle size (equivalent spherical
diameter) means that the resulting operating point is near the
first ISO-line (10,000 particles) for cmin = 0.01. The estimation
of the minimum concentration using equation (1) is exact
solely in the case of sphere-like particles. The generation of a
sufficient fiber statistic is much more challenging when
combined with spheres which are two to three scales smaller
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than the longest fiber. In such a situation, the measurement of a
suitable sample volume over two different length scales is
required.

Sample Size Adjustment
If the required FOV at a chosen magnification is smaller than
the biggest lateral dimension of the sample, regions that are
only illuminated by penetrating X-rays in certain angle ranges
create artifacts in the reconstructed sample volume (Kyrieleis
et al., 2010) (especially for highly X-ray absorbing materials).
A well-known rule of thumb to determine the needed number
of tomographic projections is nProjection = π/2 · nPixel,Detector.
For scans inside the sample (Region of interest tomography,
see Supplementary Appendix D), the detector does not cover
the entire area of the actual projection image that can lead to
artifacts in the final reconstruction. To avoid that, the number
of detector pixels nPixel,Detector has to be increased to reach the
largest lateral dimension of the sample (nPixel,Sample). This
requires a much longer scan time, not only by increasing the
number of projection angles but also by the longer X-ray radi-
ation per projection angle. In the case of monochromatic X-rays
(nano-CT), the integral energy flux is very low compared with
the polychromatic radiation of the micro-CT (for details
regarding the CT scanners, see Section Multiscale tomographic
measurement or Supplementary Appendix C). Thus, these
effects are getting even worse. Reducing sample size (Fig. 2a)
is the best way to minimize scan time and to avoid artifacts.
Nevertheless, a system of particles with very high aspect ratio
(fibers) is a natural limitation. This can only be overcome by
measuring on two different scales with two different sample
sizes: Large samples for low-resolution (low-res) scans and
smaller samples for medium-resolution (med-res) and high-
resolution (high-res) scans.

Immobilization by Wax Embedding
The particle system considered in this study was a mixture (50/50
by weight) of two types of glass particle fractions, one being
spheres and the other fibers. Spherical soda-lime glass particles
were purchased from VELOX, Germany (SG7010, Q0.10 0.62
μm, Q0.50 2.67 μm, Q0.90 4.99 μm), borosilicate-glass fibers from
Schwarzwälder Textil-Werke, Germany (FG160/060) with median
fiber length of 82 μm, largest fiber length of 660 μm, and narrowly
distributed average fiber diameter of 10 μm. Some statistical mea-
sures were performed using images acquired from light micros-
copy and scanning electron microscopy (SEM) and are
summarized in Supplementary Appendix A.

To avoid motion artifacts and to ensure the spatial homogene-
ity of the particles in a sample volume for optimal image segmen-
tation results, the particles must be immobilized. Conventional
methods of particle embedding in epoxy-based resins, as used
in the preparation of polished sections, e.g., multidimensional
particle analysis using Mineral Liberation Analysis (MLA) (an
example given by Buchmann et al., 2018), are not suitable here
due to the long curing times. Therefore, we have embedded the
particles in a histological wax that is normally used for biological
sample preparation. We used a target volume concentration of
10%, which we controlled in image segmentation afterwards.
Subsequent to drawing of the molten wax particle suspension
into a polymer tube, the volume was shock-frozen within the
small polymeric tube, resulting in a sample cylinder of approxi-
mately 1.6 mm diameter after forming (Ditscherlein et al.,
2020). Figure 2a shows the sample preparation procedure begin-
ning with a cylindrical shape (2 mm diameter, a-1) for low-
resolution scans, that is manually sliced down (a-3 and a-4) to
a bar for medium- and high-resolution scans (≈0.5 mm diameter,
a-5). In previous studies (Ditscherlein et al., 2019), we showed
that the particles are homogeneously distributed over the sample
height. Thus, considering two of these different positions from the
cylindrical sample was sufficient for the current study.

Fig. 1. Possible working area for preparation of particulate samples for a target particle number of 10,000 going from large FOV (a-1) to a smaller FOV (a-2), with
concentration limit for spherical monodisperse hexagonal close packing (b) and a minimum FOV due to sample processing (c).
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Multiscale Tomographic Measurements

When handling voxel-based data, it is important to distinguish
between voxel and spatial resolution. The voxel resolution only
describes the 3D equivalent to the detector pixel resolution (con-
sidering the binning to virtual pixels), which is given by the
mechanical and optical magnification of the system. This infor-
mation is insufficient with respect to the effective spatial (struc-
tural) resolution, which is a function of the measurement
parameters and the properties of the sample itself. Taking this
into account, objects smaller than 100 voxels were removed
from the data set. In all three resolution modes, the tomograms
were exported as a stack of tiff images of approximately 1024 ×
1024 pixels. A comparison of both experimental setups is
shown in Supplementary Appendix C. Measurement parameters
are summarized in Table 1.

Micro-CT Measurements
Low-resolution and medium-resolution measurements were per-
formed using a micro-CT (Zeiss Xradia VERSA 510) with a poly-
chromatic X-ray source, a rotating tungsten anode, a maximum
acceleration voltage of 160 keV, and a maximum power of 10
W. Compared to conventional X-ray micro-CT systems, an addi-
tional optical system increases magnification by a factor of 10.
This two-step magnification gives a minimum voxel size of 0.3
μm. Reconstruction was done using the software Zeiss
XMReconstructor (Version 11.1.8043) with the aim of minimiz-
ing manipulations in preprocessing (smoothing, beam-hardening
correction). No beam hardening was visible in the reconstructed
slices. Due to the cone beam artifact, 50 slices were removed

from the top and bottom of the data set before image postprocess-
ing. A summary of relevant artifacts related to micro-CT mea-
surements is given by Boas & Fleischmann (2012) and Davis &
Elliott (2006).

Nano-CT Measurements
High-resolution imaging was performed using a nano-CT (Zeiss
Xradia Ultra 810), which operates at a constant X-ray photon
energy of 5.4 keV (monochromatic, no beam-hardening artifacts)
with parallel beam geometry (no cone-beam artifacts) and a rotat-
ing chromium anode. The minimum voxel size in high-resolution
mode is 16 nm. For the experiments, absorption contrast imaging
in large field of view mode (minimum voxel size 64 nm) was used.
Image reconstruction was performed by means of the software
Zeiss XMReconstructor (Version 10.0.3878.16108).

Image Segmentation

Marker-Controlled Watershed Transform
The segmentation procedure for each CT image is based on the
marker-controlled watershed transform. One of the first papers
where the watershed transform was considered is presented by
Meyer & Beucher (1990). It takes advantage of the topographic
representation of a grayscale image: the parts of the image with
low intensities are represented as “valleys,” while the regions
with high intensities are assimilated as high altitude reliefs.
First, a set of regional minima M of the image has to be deter-
mined. Then, the construction of the watershed lines can be
seen as the result of a flooding process: water starts to rise at a

Fig. 2. Large sample mounted on rotating sample stage (a-1), unmounted (a-2) for slicing in small disks (a-3) and sectioning into a small bar (a-4), and remounted
for medium- and high-resolution measurements (a-5). Relation between sample size, voxel size, and characteristic particle size—corresponding range marked with
a box: extended FOV of nano-CT by ROI measurement (b-1), minimum sample size limited by machining (b-2), fixed correlation between sample and voxel size
determined by binning factor (b-3), overlapping measurement field for determining fine particle fraction (b-4), and micro-CT measurement to determine fiber
length (b-5).

Microscopy and Microanalysis 679

https://doi.org/10.1017/S1431927620001737 Published online by Cambridge University Press

https://doi.org/10.1017/S1431927620001737


constant speed from the minima and a dam is constructed if two
or more floods from different minima may touch. The resulting
dams are the watershed lines and delimit the segmented regions
(called catchment basins) of the images. For further details on
the watershed transform, see Soille (2013), Vincent & Soille
(1991), and Gonzalez et al. (2002).

The marker-controlled watershed transform is an adaptation
of the classical watershed transform for which the set of minima
M is considered as a set of markers. Each marker locates an indi-
vidual object to be segmented. The ridge lines will then be the
contours of the objects. In general, the set M of markers may
be difficult to construct. The construction of the markers depends
usually on the type of the image and the object properties (shape,
size, gradient intensity, etc.).

Segmentation of Low- and Medium-Resolution CT Images
For the low spatial resolution (low-res) CT image, only the fibers
are clearly visible. Thus, the segmentation procedure consists of
the following main steps:

1. Global thresholding and morphological opening operation to
remove small objects.

2. Computation of Euclidean distance transform of the comple-
mented binary image of the fibers.

3. Marker computation: extended-maxima transform of the dis-
tance transformation computed in step 2.

4. Application of the marker-controlled watershed transform.

In steps 1 and 2, rather basic image processing operations are
performed (Serra, 1983; Gonzalez et al., 2002). Step 3 is a well-
known technique (Soille, 2013) to construct a set of markers
from the Euclidean distance transform, and step 4 is the applica-
tion of the marker-controlled watershed transform using these

markers (Soille, 2013). The flowchart in Figure 3 illustrates the
application of these steps for a specific slice. Further segmentation
results are visualized in Figure 4. The fibers (in blue) are generally
well segmented. However, some under segmentation is observed.
It is addressed with a postprocessing procedure (described below).

The segmentation of spherical particles for the medium spatial
resolution (med-res) CT image is a challenging task as the parti-
cles are too small to be clearly visible. After having removed the
fibers from the image, the proposed segmentation procedure is
the same as for the low-res CT image. The spheres (in blue) are
generally highly under-segmented. Indeed, noise and artifacts espe-
cially affect the binarization of small objects (for details regarding
the partial volume effect, see Supplementary Appendix B).

Segmentation of High-Resolution CT Image
The segmentation procedure for the high spatial resolution (high-
res) CT image consists of the following main steps:

1. Intensity adjustment and smoothing with a nonlocal mean fil-
ter (using a Gaussian kernel).

2. Performing a morphological ultimate opening operation.
3. Global thresholding. The binary image is further cleaned up

with a morphological opening operation: small objects of less
than 100 voxels are removed.

4. Computation of Euclidean distance transform of the comple-
mented binary image.

5. Marker computation using the extended-maxima transform.
6. Application of the marker-controlled watershed transform.

Figure 3 illustrates the application of these steps for a specific
slice. Steps 1 and 3–6 have already been detailed for the segmen-
tation of the low-res CT image. The ultimate morphological open-
ing (Beucher, 2005, 2007) (step 2) is a less-known technique for

Table 1. Measurement and Reconstruction Parameters of All Three Resolution Modes—Low-Resolution (low-res), Medium-Resolution (med-res), and High-Resolution
(high-res).

Parameter Micro-CT Micro-CT Nano-CT

Low Resolution Medium Resolution High Resolution

Sample size diameter (mm) 1.6 0.5 0.5

Field of view (FOV) (mm) 1.5 0.3 0.065

Acceleration voltage (keV) 80 80 5.4

Electrical power (W) 7 7 900

Target material (–) Tungsten Tungsten Chromium

Source filter (Zeiss standard) LE4 LE4 *

Exposure time (s) 2 25 60

Optical magnification 4 40 *

Number of projections 3201 3201 901

Angle range (°) 360 360 180

Voxel size (μm) 1.5 0.3 0.064

Binning 2 2 1

Reconstruction algorithm FBP FBP FBP

Smoothing (Gauß) 0.1 0.1 –

Beam hardening correction 0.05 0.05 *

*denotes not applicable for monochromatic measurements.
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image segmentation. Note that the ultimate opening operator θ(v)
is defined as follows:

u(v) = sup
i[{1,...,N}

(ci(v)− ci+1(v)) for each v [ V , (2)

where V is the set of voxels, N is some integer, and ψi, respectively
ψi+1, is the morphological opening operator for a closed ball of
radius i, respectively i + 1. Then, the voxel intensity values of
the resulting image are the largest differences between the voxel
intensity values of successive openings. An important conse-
quence is that spherical objects, having the same textural informa-
tion, are emphasized. Therefore, the binarization of a union of
sphere-like particles is easier to undertake after preprocessing
the image with the ultimate opening operation. Note that the
value of N should be larger than the radius of the biggest sphere
within the image. Hence, the main drawback of the ultimate
opening is the computation time required to perform openings
for balls of important radii. Other applications of the

morphological ultimate opening were considered for text detec-
tion (Retornaz & Marcotegui, 2007), for facade segmentation
(Hernandez & Marcotegui, 2008), and for detection of microa-
neurysms on eye fundus images (Zhang et al., 2011).

Postprocessing of Segmented Images
A postprocessing procedure is applied to remove bias due to
under or over segmentation. Regarding the segmentation of fibers
in the low-res CT image, the following convexity constraint for a
segmented object S should be satisfied:

#S
#Conv(S)

≥ 0.5, (3)

where #S is the number of voxels of S and #Conv(S ) is the number
of voxels of its convex hull. The topological constraint in equation
(3) allows the reduction of the bias due to under segmentation,
resulting in nonconvex objects (see Fig. 4b).

Fig. 3. Segmentation procedure for the CT images. The red arrows correspond to the input and output of the segmentation procedure. The green arrows provide
the intermediate results for each of the transformations.
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For the spherical particles, a constraint on the shape of the seg-
mented objects is used. The sphericity coefficient Ψ, defined as the
ratio of the surface area of the volume-equivalent sphere divided
by the surface area of the corresponding segmented object, quan-
tifies the deviation from the spherical shape (Wadell, 1932; Bailey
et al., 2005; Lau et al., 2013). Note that for a segmented object S,
its sphericity ΨS is given by

CS = p1/3(6VS)
2/3

SS
, (4)

where VS and SS are the volume and the surface area of S, respec-
tively. The closer ΨS is to 1, the closer the shape of the segmented
object S is to that of a sphere. A standard estimator of VS is the
number of voxels of the segmented object S. The estimator used
for the surface area SS of S is based on the Crofton formula of inte-
gral geometry (Schneider & Weil, 2008). A formal definition of
the estimator can be found in Schladitz et al. (2006). Thus, all par-
ticles whose sphericity coefficient is smaller than the threshold of
0.8 and 0.45 for the high-res and med-res CT image, respectively,
are removed. The values of these thresholds were fixed empirically
by visual inspection.

Fig. 4. Examples of segmentation results for each resolution on different slices (a). The boundary of each segmented particles is highlighted in blue. Examples of
removed objects (in green) after the postprocessing procedure (b).
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Results and Discussion

Correction of Edge Effects

A common problem encountered in spatial statistics is that of edge
effects. They occur when the estimation of a certain geometrical
characteristic requires information from outside of the sampling
window. For instance, when determining the lengths of a popula-
tion of fibers within an image, all fibers that cut the boundary of
the sampling window are only partially observed. Taking into
consideration only the fully observed fibers leads to a length dis-
tribution which is biased because the probability that a long fiber
intersects the boundary of the sampling window is higher than
the one of a short fiber. In our case, the minus-sampling method
(Ohser & Schladitz, 2009; Chiu et al., 2013) is used, which con-
sists of taking a sub-window contained in the sampling window
such that all particles with nonempty intersection with the sub-
window are completely observed in the entire sampling window.
Then, considering all particles such that their center of mass is
inside the sub-window leads to an unbiased sample of the popu-
lation of particles.

An illustration how the minus-sampling method is applied in
the case of fibers is provided in Figure 5. The gray area visualizes a
cross section through the cylindrical sampling window. The sub-
window is the cylinder, whose cross section is delimited by the red

circle. All fibers in the sub-window do not intersect the boundary
of the entire sampling window. Then, only the fibers (in blue in
Fig. 5) whose center of mass is inside the sub-window are consid-
ered for the statistical analysis. The fibers highlighted in red are
removed by the minus-sampling technique. Note that the minus-
sampling technique cannot be used if the sub-window does not
include a sufficiently high number of fibers. Analogously, the
minus-sampling technique is applied to image data from which
the spherical particles are extracted. After applying the minus-
sampling method, the remaining segmented particles are the
basis for an efficient characterization of the particulate sample,
using parametric bivariate distributions of particle properties.
First, we fit such distributions to particle properties of spherical
particles and fibers individually. Then, the distributions for the
individual fractions have been combined to obtain a distribution
characterizing the entire sample.

Multidimensional Characterization of Spherical Particles

Univariate Distributions of Particle Size and Specific Surface
Area
For each spherical particle, the size d and the specific surface area
SVp are computed as geometrical characteristics. In the case of
spherical particles, the size d equals the volume-equivalent

Fig. 5. Minus-sampling technique to remove bias due to edge effects. The red circle is a cross section of the minus-sampling window, i.e., only particles whose
centroid is inside this reduced sampling window are sampled. Furthermore, the particles highlighted in red are removed. The particles in green are removed
due to the postprocessing technique. Only blue particles are taken into account for the statistical analysis.
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diameter deq,Vp which is given by

deq,Vp =
6Vp

p

( )1/3

, (5)

where Vp is the volume of the segmented sphere. The volume Vp

is computed by counting the voxels belonging to the particle fol-
lowed by scaling with a single voxel’s volume. Since the spherical
particles are not perfect spheres their surface area S cannot be
directly computed from their size deq,Vp . Therefore, we compute
the surface area directly from image data using the Crofton for-
mula (Lehmann & Legland, 2012). Then, the specific surface
area SVp is given by

SVp =
S
Vp

. (6)

Supplementary Figure S2 provides histograms of the particle size
d for two resolutions. The significant differences between the dis-
tributions in the med-res and high-res CT images are not surpris-
ing. For the med-res CT images, important under segmentation,
due to blurred small spheres or noise/artifacts, was observed.
Hence, the distribution is biased toward larger sphere sizes.
Moreover, very small spheres, whose volume-equivalent diameters
are less than 1.5 μm, are not detected due to the insufficient res-
olution of the med-res CT images. In contrast to this, a large frac-
tion of spheres in the nanometer range is correctly segmented and
analyzed in the high-res CT images. The high resolution also
enables us to overcome the under segmentation problem encoun-
tered for the med-res CT images. Consequently, the particle size
distribution is right-skewed (see Fig. 6a). Thus, for the analysis
of the spherical particles, from hereon, we will solely use two
high-res images depicting the spherical particles at spatially differ-
ent locations. Histograms of the spherical particle’s size and spe-
cific surface area computed from these images are visualized in
Figure 6a.

For validation purposes, we compared the particle size distri-
butions computed from high-res image data and the SEM images
(see Fig. 7). The method to derive the particle size distribution
from the SEM images is explained in Supplementary Appendix
A. We observe an underestimation of the relative frequency for
particles with a diameter smaller than 0.6 μm in the case of the
high-res CT images. This is mainly due to the higher resolution
of the SEM images, which allows one to distinguish smaller
spheres more clearly. For the high-res CT images, with a resolu-
tion that is two times lower, it is hardly possible to segment such
small-sized spheres due to noise and artifacts. For bigger particles,
the two distributions are consistent, which demonstrates the pos-
sibility of using the nano-CT imaging technique in this size range.
Note that some overlapping effects appear in the SEM images (see
Supplementary Appendix A), which may complicate the segmen-
tation process and bias the volume-equivalent diameter distribu-
tion. Besides, the volume fraction of the segmented spheres in one
of the high-res images is about 4.4% (sample 1), which is slightly
smaller than the expected volume fraction of 5% (see Section
Material and Methods). In the other high-res image, the volume
fraction of 2.6% deviates significantly more from the target
value. The reason for this is the extremely small FOV of the high-
res measurement and the nonhomogeneous distribution of the
population of spheres within the sample volume. Since this effect
is independent of the particle size, the particle size distribution
remains unaffected.

Copula Approach
Since univariate histograms of one-dimensional particle charac-
teristics do not provide information about the correlation between
the considered characteristics, a more informative description of
the particulate system of spheres can be achieved by investigating
bivariate distributions. For this purpose, a parametric model can
be used to characterize the joint distribution of size d and specific
surface area SVp of the spherical particles. Note that the distribu-
tion of d (see Fig. 6a) is clearly not Gaussian, yet the values of d
and SVp are strongly correlated with a correlation coefficient of −
0.89. Thus, standard methods, which approximate the joint distri-
bution of size d and specific surface area SVp with a product dis-
tribution or a bivariate Gaussian distribution, are not applicable
in our case. Therefore, the joint distribution will be modeled
using copula theory (Durante & Sempi, 2015).

Note that a 2D copula C : [0,1] 2→ [0,1] is a cumulative distri-
bution function whose marginal distributions are uniform on the
unit interval [0,1]. It enables us to characterize the dependency
between correlated non-normally distributed random variables.
Specifically, in the 2D case, Sklar’s theorem (Durante & Sempi,
2015) states that, given two real-valued random variables X1

and X2 with cumulative distribution functions F1 and F2, there
exists a copula C such that the joint cumulative distribution func-
tion F of X1 and X2 is given by

F(x1,x2) = C(F1(x1),F2(x2)), for each (x1,x2) [ R2, (7)

where F(x1,x2) = P(X1 ≤ x1,X2 ≤ x2). From an easy computa-
tion, provided that C, F1, and F2 are differentiable, we find that
the joint density f of X1 and X2 is given by

f (x1,x2) = c(F1(x1),Fn(x2))f1(x1)f2(x2),

for each (x1,x2) [ R2,
(8)

where f1 and f2 are the marginal densities, and the function c is the
probability density function of the copula, i.e.,

c(u1,u2) = ∂2

∂u1∂u2
C(u1,,u2), for each (u1,u2) [ [0,1]2. (9)

Model Fitting
In order to fit a bivariate probability density f to the observed
pairs of size and specific surface area, we first fit the univariate
marginal densities f1 and f2. We considered eight possible choices
of parametric unimodal distributions, namely the gamma, nor-
mal, log-normal, Weibull, generalized extreme value, Rayleigh,
Nakagami, and Rician distributions. For each marginal, the best
fit is the one with the lowest value resulting from the Akaike infor-
mation criterion (Akaike, 1998) (AIC). Note that the AIC is a
measure of goodness-of-fit which is defined by

AIC = 2k− 2 log (L), (10)

where k is the number of model parameters and L the maximum
value of the likelihood function. The best fits were obtained for
the inverse Gaussian distribution and the gamma distribution
for the size and specific surface area of spherical particles, respec-
tively (see Fig. 6a).
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Now, in view of equation (8), the bivariate density f can
be fitted by determining a suitable copula density c. Similarly
to the univariate case, there are various parametric families
of copulas whose parameters can be determined using the
maximum likelihood method. More precisely, the bivariate
density f was fitted by determining the optimal copula density c
from a family of commonly used Archimedean copulas
(Durante & Sempi, 2015), where the considered Archimedean
copulas were the Ali-Mikhail-Haq, Clayton, Frank, Gumbel, Joe,
BB1, BB3, BB5, and BB8 copulas (Durante & Sempi, 2015). The
best fit, denoted by fsphere, which is the one with the highest
maximum likelihood, was obtained for the BB1 copula (see
Fig. 6b (right)).

Multidimensional Characterization of Fibers

For each fiber, the size d and the specific surface area SVp are com-
puted. While the latter is determined in the same manner as for
the spherical particles using equation (6), the size d of a fiber is
estimated in a different manner. Namely, the size d is the number
of voxels along the main directions of the segmented fibers, where
a principal component analysis (Pearson, 1901) is used to deter-
mine the main direction of a given segmented fiber. Furthermore,
for a fiber F, the diameter dcross of its cross section is estimated as
the diameter deq,AF of the area-equivalent disk which is given by

deq,AF =
�����
4AF

p

√
, (11)

Fig. 6. Statistical analysis of the segmentation results. Fitted parametric (marginal) distributions to size (left) and specific surface area (right) of the spherical par-
ticles (a); bivariate histogram (left) and its copula model (right) (b); number-weighted (left) and volume-weighted (right) bivariate probability density of size and
specific surface area of the entire particle system (c). Note that the number-weighted visualization has a logarithmically scaled colorbar.
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where AF is the area of the cross-section orthogonal to the main
axis of the fiber and located at half of the fibers length.
Histograms of the size, the specific surface area, and the diameter
are provided in Supplementary Figure S7a. We observe that the
fiber diameter distribution is concentrated around 10 μm with a
low standard deviation of 1.1 μm, which is consistent with the
provider specifications (see Section Materials and Methods).
Moreover, we compared the size distributions obtained from the
CT image and the light microscopy images (see Fig. 7). The
two distributions are consistent, which validates the proposed seg-
mentation procedure for the CT image. Besides, we obtained the
following quantiles for the size distribution using the CT image:
Q0.10 = 35 μm, Q0.50 = 69 μm, and Q0.90 = 197 μm. These values
are slightly lower than the ones derived using light microscopy
in the pre-characterization procedure (see Supplementary
Appendix A). This deviation is mainly due to some small fibers
which were missed during the manual segmentation of the light
microscopy images, which then leads to a shift of the size distri-
bution toward longer fibers. Regardless of this manual segmenta-
tion incorrectness, the overall size distribution derived from the
low-res CT image is consistent with that one of the pre-
characterization. Besides, the determined volume fraction of fibers
of 4.7% is only slightly smaller than the expected 5% (see Section
Materials and Methods).

Similarly, to the approach described in the section Model
Fitting, the joint distribution of fiber size and specific surface
area can be fitted using parametric copulas. In this manner, we
determine the bivariate probability density ffiber, depicted in
Supplementary Figure S7b.

Characterization of the Entire Particle System

In the previous sections, we have modeled the bivariate probabil-
ity densities fsphere and ffiber of particle size and specific surface
area for spherical particles and fibers, respectively. While the
probability density ffiber was derived using the low-res CT image
data, for the density fsphere characterizing the spheres the high-res
image data of the same particle system was utilized. Now, we com-
bine these probability densities to obtain a multidimensional,
multiscale characterization of the entire particle system. More pre-
cisely, the bivariate probability density fsystem of size and specific

surface area of the entire particle system is given by

fsystem = lfsphere + (1− l)ffiber, (12)

where λ∈ [0,1] is the (number-based) mixing ratio λ. Since we
know that the considered particle mixture is a 50/50 mixture
(by weight) of spherical particles and fibers, we can determine
the mixing ratio. More precisely, the volume-equality of the frac-
tions is described by

l

∫1
0

∫1
0
fsphere(d,s)Vsphere(d)dd ds

= (1− l)
∫1
0

∫1
0
ffiber(d,s)Vfiber(d,s)dd ds, (13)

where Vsphere(d) = p
6 d

3 is the volume of a sphere with diameter d
and Vfiber(d,s) is the volume of a fiber with size d and specific sur-
face area s (see Supplementary Appendix E). By solving equation
(13) for λ, we obtain the theoretical mixing ratio λ = 0.9995. The
resulting bivariate and bimodal density fsystem is depicted in
Figure 6c (left). If no prior information is available, the mixing
ratio λ can be estimated from image data by

l =
nsphere

Vsphere,Cyl

nsphere
Vsphere,Cyl

+ nfiber
Vfiber,Cyl

, (14)

where nsphere is the number of spherical particles observed in the
volume Vsphere,Cyl and nfiber is the number of fibers observed in
the volume Vfiber,Cyl.

Note that the visualization of the number-weighted probability
density fsystem in Figure 6c (left) utilizes, due to the different
length scales of the particles, logarithmic axes. Furthermore,
due to the relatively large mixing ratio λ, a logarithmically scaled
colorbar is required to visualize the second mode corresponding
to the fibers. A different representation using the so-called
volume-weighted version fsystem,3 of the number-weighted density

Fig. 7. Comparison of the size distributions computed from the CT images (in blue) and the SEM and light microscopy (in red) images.
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fsystem is given by

fsystem,3(d,s) = 1
c

(
lfsphere(d,s)Vsphere(d)+ (1

− l)ffiber(d,s)Vfiber(d,s)
)
, (15)

where c is a normalization constant. The volume-weighted prob-
ability density fsystem,3 depicted in Figure 6c (right) no longer
requires a logarithmically scaled colorbar for visualization
purposes.

Both the bivariate number- and volume-weighted probability
densities of particle size and specific surface area are important
for the characterization and analysis of particle systems. In partic-
ular, the first one is of interest when small particles have a signifi-
cant influence on the distribution of properties of the overall
system, e.g., when considering the active surface of a catalyzer
material. On the other hand, the volume-weighted probability
densities can be of interest when the characterization focuses on
the mass of particles, e.g., when investigating the mass of a valu-
able material after some separation process has been completed.

Conclusions

The combination of micro- and nanotomographic X-ray imaging
is a powerful tool for the determination of multidimensional par-
ticle properties in the micro- and submicrometer range, capable of
bridging several orders of magnitude of particle size. We have
shown how to create a sample with a statistically representative
number of immobilized particles consisting of two very different
particle populations by embedding them into a wax matrix.
Furthermore, we emphasized the importance of adapting the
sample size to the field of view in order to link X-ray tomography
across different scales.

In contrast to the fibers, the size of the spherical particles is at
the lower resolution limit of micro-CT. Thus, smaller spherical
particles below the micrometer range are not detectable in the
reconstructed CT images, hence, leading to a bias in the
volume-equivalent diameter distribution. To minimize this well-
known phenomenon of voxel size-dependent description of 3D
objects, we first minimized the sample size, switched to a better
resolution (nano-CT) and, finally, applied suitable image process-
ing algorithms and statistical analysis to characterize the popula-
tion of spheres. The distributions of the volume-equivalent
diameter estimated from the nano-CT and micro-CT images
were significantly different, thus, confirming the need to adapt
the experiment and the statistical analysis to the size and shape
of the particles contained in the same particle system.

The sample volume must be large enough compared to the
typical particle size in order to contain a statistically relevant
number of particles and to remove edge effects when determining
the distributions of their geometrical properties. First, the correla-
tion structure of particle size and specific surface area has been
modeled separately for spheres and fibers, using copulas. The fit-
ted copula models provide a complete parametric description of
the population of spheres and fibers and are methodologically
easily adaptable to more irregularly shaped particles. Finally, by
combining these two parametric distributions, we obtained a mul-
tidimensional characterization of the entire particle system.

Our proposed workflow (including sample preparation, mea-
surement, image processing, and image analysis) for multidimen-
sional characterization of micro- and nanoscale particle systems is

the starting point for the analyses of products from multidimen-
sional separation processes and will be further discussed in forth-
coming studies.

Data availability

Reconstructed TIFF-stacks for high-resolution, medium-
resolution, and low-resolution measurements are stored within
the scientific data repository of the universities TU Dresden and
TU Bergakademie Freiberg with all relevant metadata
(Ditscherlein & Martins de Souza e Silva, 2019).

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S1431927620001737.
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