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Introduction. Let K be a field of characteristic different from 2, and a, b
quadratically independent elements of K. Put J = K(\/a,Vb). In [4], Jensen and Yui
discuss the question of quaternionic (<28) extensions of J, and give a survey of known
results. In [8], Ware discusses (among other things) some general conditions for, and
relations between, the existence of Q8 and D4 (dihedral) extensions of K. A general
theorem of Witt [9] says that J will have a quaternionic extension J(\/u) if and only if
there exists a 3 x 3 matrix P over K such that PP' = diag(a, b, I lab), and an appropriate
value for u is given in terms of the entries of P. The problem of actually finding P in a
particular case is not trivial.

Jensen and Yui give an explicit construction for a suitable P in case - 1 is a sum of
two squares in K, and in [3], Conn gives a suitable P for the case when / = Q(V2, Vq)
with q a prime, q = 1 or 3 (mod 8). There are other characterizations of the problem also.
The conditions given by Reichardt [5] consist of the solvability of a set of three
simultaneous quadratic equations; Bucht [2] gives conditions which amount to the
solution of three simultaneous quartic equations.

The original motivation for this paper, was the construction of quaternionic fields
over Q. To this end, we study in some detail the properties which the field J and the
defining element u must have in order that J(Vu) shall be a Qs extension of K. In Section
1, we give some preliminaries, and characterize non-cyclic normal (over K) extensions of
the form J(Vu), according to which, and how many of the products uo(u) are square in a
quadratic subfield (where a is a /C-automorphism of J).

In Section 2, we define a Qs extension L of / to be of Type I if J also admits a
dihedral (D4) extension (and equivalently, a Z2x Z4 extension), and of Type II
otherwise. We show that L is of Type I if and only if there exist certain elements x and y
in two of the quadratic subfields of / , such that /(Vu) =J(Vxy). In order to construct a
Type I extension, it suffices to construct the matching D4 extension and Z2 x Z4

extension.
In Section 3, we give a characterization of Q8 extensions of J = Q(Vn, Vm) in terms

of the norms of algebraic integers in the quadratic subfields of J. In Section 4, we
construct several types of quaternionic extensions of Q, and also give a set of sufficient
conditions for a Q8 extension which yields a straightforward construction.

I would like to thank the referees for Corollary 2.6, for the reference [8], and for
very helpful suggestions in general.

1. Notation and preliminaries. The notation established in this section will be used
throughout this paper.

Let K be a field of characteristic different from 2, and let K2 denote the set of squares
in K. Suppose that K contains elements ax and a2 such that none of a1; a2, axa2 is a square
in K. Put a3 = fl1a2- Then / = K{\fc^x, yfa~2) has three quadratic subfields, K(Va~,),
l < t ' < 3 , and the Galois group Gal(J/K) is Z2x Z2. The three non-trivial K-
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automorphisms are determined by

a,-(VS;) = Vaj, o,C\fc,) = -y/a, for j#y ( l < i , y < 3 ) .

Let u eJ —J2, and L = J(Vu). Then L is normal over /C if and only if «<J,(H) is in J2 for all
1 = 1,2,3, and then Gal(L/AT) must be a non-cyclic group of order 8, that is, one of
Z2x Z2x Zz, Z4 x Z2, D4, or Q8. In what follows, we assume that K has the properties
described above, and L = /(Vu) is normal over K. (In particular, K is not finite, and K
has non-cyclic normal extensions of degree 8 over K.)

We will use without comment the well-known fact that if F is any field, and x and y
are in F, then F(Vx) = F(Vy) if and only if xy e F2. Also, the following formal identities
will be useful.

LEMMA 1.1. (a) Suppose that x2 — ny2 = t2. Then

2(x - t)(x + yVn) = (x - 1 + yVn)2. (ID1)

(b) Suppose that x2 — ny2 = kt2. Then

+ yJx-yVn}2 = 2x + 2t\fk (ID2)

Proof. Verify.

COROLLARY 1.2. If a = x + yVa e /C(Va), and if NK(a) = x2- ay2 = t2 for some t e K,
then K(\/a, Va") = K(Va, \[b) for some b e K.

Since «a,(w) e / 2 (i = 1, 2, 3), and also UOJ{U) e K(\fa,), then for each i = 1,2, 3, one
of the following statements must be true:

ua,(u) e (K(V^))2 (•)

Ma,(M)efl;(/C(V^))2 for i#y ( I < ; s 3 ) . (••)

The next result follows almost immediately from this observation.

LEMMA 1.3. / / L = J(Vu) is normal over K, then there exist x, = /C(Vfl/) (i = 1, 2, 3)
such that L = J(y/x1x2x3).

Proof. Since for each i = 1,2,3 either (*) or (**) must be true, then 7VK(«) must be a
square in K. Write MCT,(M) = w,y2, where m, e {1, aua2, a3} and y( e K(\fa,), (i = 1,2,3).
Then we have u2NK(u) = Anim2m3(>'1 y2y3)

2. The quantity mim2m3, must be square in at
least one of the fields K(\ai); suppose for example that mxm2rn3 = b2 for some
b e K(\/a[). Then u = ±(by1)y2y3, and we can take xx = ±byu x2 = y2, and x3 = y3.

We shall see that the truth-values of the statements (*) and (**) determine the field
lattice of L over K. First we need a definition.

DEFINITION 1.4. Let ueJ-J2, and assume the notation given above. The ordered
triple S(u) = (sus2,s3) is defined by: s,=0 if UCT,(M) e (K(y/ai))2, and s, = 1 if MO,(U) e
aj(K(y/ai))2 for some i =£/, 1 ^ j; ^ 3. If a fuller notation is needed, we will write st = s,(u).

THEOREM 1.5. Assume all the notation given above. For each i, 1 ^ / ̂  3, s,, = 0 i/
on/y i/ fftere ejcwte an element t e K(y/a,) such that tueJ2, that is, if and only if
j(Vu)=J(yJi).
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Proof. Fix i, 1 < / < 3 , and put s,,= s, o, = a, and a, = a. Choose j^i, and put b = af.
Since w e / , we can write w = x + yVfe, where x,y e AT(Va). Suppose first that s = 0; then
there is some z e K(\fa) such that

uo(u) =x2 - by2 = z2

and then, from the identity (ID1), we have

2(x -z)u = (x-z+ yVb)2 e J2.

Then /(Vw) = / (V2(JC-Z) ) , and 2(x -z)e K(y/a).( ) ( ( ) ) ) ( )
On the other hand, suppose that for some t e K(Va), we have tu eJ2. Then o(t) = t,

(tu)o(tu) = t2ua{u) e (/C(Va)2, and so uo(u) e (K(y/a)2. Then s = 0, and this completes
the proof.

COROLLARY 1.6. Assume the notation above, and fix i, l < / < 3 . Then the Galois
group Gal(L//C(V^)) is Z2 X Z2 «/and on/y «/*, = 0.

Proo/. Suppose first that s, = 0. Then L = J(Vt) for some teK(y/aj), such that
tueJ2. Since ueJ-J2, then also teJ-J2. Hence L must contain the quartic subfield
F = K(y/ah V0, and F #7. Then Ga\(L/K(Va,)) cannot be Z4, and must be Z2 X Z2.

On the other hand, suppose that Gal(L//C(Va^)) is Z2 x Z2. Then L contains a
quartic subfield of the form F = K{\fah V7), with t e /C(V^), where F^J. Then for j # i,
we have

and it follows that fu e 72. Then s, = 0.

COROLLARY 1.7. Using the notation above, the fields L for which Ga\(L/K) is one of
Z2y- Z2y- Z2, Z4 x Z2, or D4, are classified and described as follows.
(A) The following are equivalent:

(a) Gal(L//0 = Z2 x Z2 x Z2

(b) S(u) = (0,0,0).
(c) L = J(Vb) for some beK-J2.

(B) The following are equivalent:
(a) Gal(L//Q = D4 and Gal(UK(y/a[) is cyclic
(b) 5,(a) = 1 and 5fc(M) = 0 for A: = 2, 3,
(c) T/iere ej:iste x = r + sVa^ e K{*\fa~2) - J2 such that r2 - a2s

2 = a3t
2 for some t e K,

and L=J(Vx).
(C) The following are equivalent:

(a) Gal(L//0 = ZAxZ2 and Gal(L/K(Va[) is Z2 x Z2,
(b) 5,(u) = 0 and sk(u) = 1 for & = 2, 3,
(c) 7/iere exists x = r + s^/al e K(y/a[) - J2 such that r2 - axs

2 = axt
2 for some t e K,

andL=J{\Tx).
(d) There existy,zeKsuch that at=y2 + z2.

(D) The following are equivalent:
(a) Gal(L/K) = Q8

(b) Si(u) = 1 for i = 1,2,3
(c) lfx=yz where y e K(Vat) and z e K{\fa}, then L
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Proof. Put N = Si(u) +s2(u) + s3(u). Then by Corollary 1.6, the number of quartic
subfields of L is 2(3 - N) + 1, which is the number of subgroups of order 2 of Ga\(L/K).
This number determines a group of order 8, and so we have: N = 0 if and only if
Ga\(L/K) is Z2xZ2xZ2; N = l if and only if Gal(L//C) is D4, N = 2 if and only if
Ga\(L/K) is Z4 x Z2; and N = 3 if and only if Ga\(L/K) is g8. (Since L contains J, we
need not consider Z8.)

If Gal(L/K) is Z2x Z2x Z2, then L contains quadratic subfields (over K) other than
[)', if one of these is K(\/b), then L = J(Vb), and conversely. This proves (A).

If Ga\(L/K) is D4 and s,(u) = l, s2(w) = S3(U) = 0, and by Corollary 1.6,
Ga\(L/K(a{)) is Z4 and Ga\(LlK{\fai)) is Z2xZ2 for / = 2,3. Then L contains a
quadratic extension M of K(\ia2), say, M = K{\[a~2, vGc) for some x in K(Va~2), and M is
not normal over K (since Gal(L/AT) is D4). Write * = r + s\fa~2. Then NK(x) = r2 - a2s

2 is
not in M2; it is in / 2 however, so we must have that NK(x) = at2, where a is either at or
a3. From the identity (ID2), K(^fa) will have a quadratic extension other than J, and so
a must be a3. The converse is clear, and this_proves (B).

If Gal(L//C) = ZAx Z2 and Gal(L/K(Vfli) is Z2 x Z2, then L must contain a normal
(over /Q quartic field M = K^VcTuVx) with x = r + sy/a[. Since NK(x) e M2, we must
have NK(x) = of2, where a is either 1 or a,, and t e K. By Corollary 1.2 and (A), if or = 1,
then Gal(L//f) is Z2x Z2x Z2, a contradiction. So a- = a, as required. The converse is
clear. Finally, if we have x = r + sVa[ where r2 — axs

2 = a^t2, then none of r, s, t is 0, and
r2 = ax{s2 +12). Take y = rs/(s2 + t2) and z = rt/(s2 + t2); then a, = y2 + z2, so (d) holds.
On the other hand, if we have a, = y2 + z2, then a2 - a,y2 = fliZ2, and (c) is satisfied. This
proves (C).

Now (D) follows from (A), (B), and (C).

2. Quaternionic fields. In this section we discuss some of the relations among
statements of the following type (where G and H are non-cyclic groups of order 8):

(a) J can be embedded both in a G-extension and an //-extension
(b) J can be embedded in a G-extension and not in an //-extension
(c) / can be embedded in neither a G-extension nor an //-extension.
We shall see that the fields L with Ga\(L/Q) = Qs, fall naturally into two distinct

classes, or types: A field L with Ga\(L/K) = Q8 is of Type I if and only if it has any of the
following (equivalent) properties: / has a D4-extension; / has a Z2 x Z4-extension;
L = J(\u) where u = xy with x and y elements of two different quadratic subfields of J.
Otherwise, L is of Type II.

We use all the notation of Section 1.

LEMMA 2.1. Let u,v,uv eJ— J2, and assume as always that Lx=J(}fu), L2 =
and L3 = J(\/uv) are normal over K. Then we have 5(L3) = S(/>i) + 5(L2) (mod 2).

Proof. For each i, 1 < j < 3, we can write

uOj(u) = ar2, vo,{v) = /3s2, {uv)Oj(uv) = (a/i)(rsf

for some r,s e K(Va,), where a and /? are either 1 or ay (j^i). Clearly, Sj(uv) = 0 if
a = ]8, and is 1 otherwise. Since a = j3 if and only if s,(w) = s,(i»), the result follows.
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COROLLARY 2.2. FixJ, and let G(J) = G be the set of all possible (distinct) ordered
triples S(u) for ueJ —J2. Then G, equipped with pointwise addition modulo two, is a
group.

Proof. It was assumed at the beginning that K does have a normal non-cyclic
extension of degree 8 (which contains a non-trivial / ) and char(K) is not 2. Then K — J2 is
not empty, for if x e J and x2 e K, then x = r^a,) for some i = 1, 2, or 3. Take b e K - J2;
then by Lemma 1.7A(c), J(Vb) has S(b) = (0,0, 0) and so (0,0,0) is in G. By Lemma 2.1
G is closed under its operation, and every element is its own inverse. So G is a group.

It is not difficult to come up with examples (e.g. with K = Q) to show that all
possibilities for G are in fact attained. We give a few examples at the end of this section.

DEFINITION 2.3. If L, =7(V") and L2 = J(y/v) are normal extensions of K such that
S(u) + S(v) = (1,1,1) (mod 2), then we say that L, and L2 are complementary extensions.
If S(u) = S(v), then Lx and L2 are matching extensions.

The next Corollary gives some easy consequences of the fact that G(J) is a group.

COROLLARY 2.4. Suppose that J has normal (over K) extensions Li=J(Vu) and
2 J(^)

(a) L| and L2 are matching extensions if and only if there exists some element b e K
such that buv eJ, that is, L2 = J(Vbu).

(b) J has a Q8 extension if and only if J has at least one pair of complementary
extensions.

(c) / / J has a Qs extension, then J has a D4 extension if and only if J has a Z2 x Z4

extension.
(d) If J has three D4 extensions which are pairwise not matching, then G(J) has order

8, and J has extensions of every kind.

The next result characterizes Q8 extensions of Type I according to the properties of
the defining element u.

THEOREM 2.5. Suppose that L = J(Vu) with Ga\(L/Q) = Qs. Then the following are
equivalent:

(a) / has a D4 extension
(b) / has a Z2 X Z4 extension
(c) For some i # / , l s i ' , / < 3 , there exist elements x e K(\faj) - K and y e K(\faj) —

K such that L=J(\fxy).

Proof. The equivalence of (a) and (b) isgiven in Corollary 2.4. Assume (a); suppose
that J has a D4 extension M cyclic over /C(Va7). By Corollary 1.7, L has a quartic subfield
M =J(Vx) where x e K(\fa~2) - K. We have S(uj= (1,1,1) by assumption, and S(x) =
(1,0,0). Then 5(«JC) = (0,1,1), so that N = J(Vux) has Ga\(N/K) = Z2 x Z4. Again by
Corollary 1.7, there is an element v e K(\fa~t) - K so that N = J(Vy). Now it follows that
uxy e J2, that is, L = J(Vu) = J{Vxy).

Now assume (c); suppose that xeK(^/a~l)-K and y e K(\[a~2) - K. Since L is
normal and Ga\(L/K) = QH, then neither x nor y is in J2, and we have (xy)ax(xy) =
x2yo\(y) e a2(K(\fa~x))

2. Since yo\(y) e K, we must have either yax(y) e a2K
2 or yax(y) e
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a,a2K
2. Then J(Vy) is a normal field, and its Galois group is either D4 (and (a) holds) or

Z2 X Z4 (and (b) holds). This completes the proof.

The argument of Theorem 2.5 indicates a method of construction for a Qs extension
of Type I, that is, one need only find appropriate x and y in quadratic subfields of J,
satisfying (respectively) conditions B(c) and C(c) of Corollary 1.7.

If K has a D4 extension Lx and a Z2 x Z4 extension L2, which are complementary,
then the composite field M = LXL2 is normal over K and has degree 16 over K. Thus we
have the following corollary.

COROLLARY 2.6. J has a Q8 extension of Type I if and only if J can be embedded into
a normal extension M of K where Gal(M/K) is the group of order 16 generated by two
elements p and x satisfying the relations

p4 = T4 = pxpx~x = 1.

Proof. In [6], Thomas and Wood give the subgroup lattices for all groups of order
16. Since M is a composite field, M = LlL2, it is easy to count up the subfields of M
according to their degree over K: there are three of degree 2, seven of degree 4, and
three of degree 8. Since Gal(M/K) is not abelian, there is only one possibility; it has
generators as described.

We now give some examples to illustrate the possibilities. We use some of the work
of the next section, on quaternionic extensions of Q.

EXAMPLE 2.7. A Q8 extension of Type I. Let K = Q, J = Q(V2, V3). Take
u = 2 + V2, and v = 3 + V3. Then L, = /(Vu) has Gal(L,) = Z2 x Z4, and L2 = J(y/v) has
Gal(L2) = D4; furthermore, L, and L2 are complementary. Then J(Vuv) is quaternionic,
and of Type I.

EXAMPLE 2.8. A Q8 extension of Type II. Let K = Q, J = £>(V3, Vl4). Take
x = 5 + 3V3, y = 7 + 2Vl4, andz = 6 + V41 Then put u=xyz, and L = J(Vu). We have
MCTi(u) = 42x2, UO2(U) = I2y2 and uo3(u) = Uz2, so that Gal(L) = Q8. Since none of 3,
14, 42 is a sum of two integer squares, J has no Z2 X Z4 extensions, and hence no D4

extensions.

EXAMPLE 2.9. A field with a D4 extension, but no Qs extension. Let K = Q, and
J = Q(V2, V7). Then if x = 3 + V2, L, = J(y/x) is dihedral. By a result of Reichardt [4],
since 7 = 7 (mod 8), J has no Q8 extension.

3. Type II extensions. In this section, K is the rational field Q. The results hold for
Q8 extensions of both types, but the primary interest is in their application as a method
for constructing Q8 extensions of Type II. We assume that ax = m, a2 = n, and
a3 — k = mn/gcd(m, n)2 are positive squarefree integers, with mn not square. (Recall that
a Q8 extension of Q is a real field.) Otherwise, we use the notation of Section 1.

LEMMA 3.1. Suppose that u=XiX2x3, where Jt,e/C(Vaj), for i = 1,2,3, and that
L = J(Vu) is normal over Q. Assume that each JC, is an algebraic integer, and put
rx = N(x2)N(x3), r2 = N(xi)N(x3), and r3 = N(xi)N(x2). Then each r, is a rational integer,
and we write r, = m,/2, where m, and tt are integers and m, is squarefree. (a) For i = 1, 2, 3,
m, e {1, m, n, k}. (b) If any two of mum2, m3 are equal, then Gal(L/Q) is not Q8.
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Proof. Since L is normal over Q, then Ma,(«) = r,*? is square in / for each / = 1,2, 3,
so that r, is square in J. Then there is some a e {1, m, n, k), such that art is a rational
square. Since a is squarefree and r, is an integer, (a) follows. To see (b), suppose e.g. that
ml = m2. Then r,r2 = r3N(x3)

2 is a rational square, and then r3 is a rational square, and
uo3(u) = r3xj is square in /. This proves (b).

COROLLARY 3.2. / / Ga\(L/Q) = Qs, then (mx,m2,m3) is either (a2,a3,ax) or
{a3,aua2).

REMARK. At this point, it is easy to see that if K has a <28 extension L as in Lemma
3.1, then K also has a D4 extension: one of the fields K(\/ah^/x~,) must have D4 as its
normal closure. Stronger results of this nature are proved in [8].

We are interested in constructing Q8 extensions of J = Q(Vm, Vn) using properties
of the integers in the quadratic subfields of J. Obviously, some of our results could be
generalized directly to any field K with a sufficiently well-behaved ring of integers.

THEOREM 3.3. Let K = Q, and suppose ax=m, a2 = n are squarefree integers such
that mn is not square. Define D = gcd(m,n), and write m = MD, n = ND. Put
a3 = k = MN, and J = Q(Vm, Vn). Then J has a Qs extension L if and only if there exist
rational integers j , m b m2, nu n2, dx, d2, and integers x e Q(Vrn), y e Q{\fn), z e Q(Vk),
such that

(1) M = mlm2, N = ntn2, D = dxd2

(2) 2

(3)
(4)

for some r,s,t eQ.

Proof. Suppose first that all the conditions above are satisfied, and put u =xyz.
Then uol(u) = x2N(y)N(z) = NM(xd2jrs)2 = ka2 with aeQ(Vm); similarly uo2(u) =
mfi2 for some /3 e Q(\n) and uo3(u) = ny2 for some y € Q(\fk). Then S(w) = (1,1,1) and
Gal(/(\^)) is Q8.

Conversely, suppose that S(u) = (1,1, 1). By Lemma 1.3, and multiplying b y a
rational integer square if necessary, we may assume that u=xyz, where x e Q{\m),
y e Q(Vn), and z e Q(Vk), are algebraic integers. Then the norms N(x), N(y), N(z) are
rational integers, and by Corollary 3.2, the integers kN(y)N(z), mN(x)N(z), and
nN(x)N(y) are rational squares. The argument is based on the fact that M, N, and D are
squarefree, positive, and pairwise relatively prime.

If kN(y)N(z) is square, then (since k = MN) there are integers so that N(y) = n2mxa
and N{z) = nxm2b with nxn2 = N and m]m2- M. Then if mN(x)N(z) is square, there
must be integers so that N(x) = mxdxc and N{z) = m2d2d, where dxd2 = D. It follows that
N(z) = nxm2d2a for some rational integer a-. Similarly, N(y) = n2mxd2{5 and N(x) =
nxmxdxy, for rational integers /3 and y. Now kN{y)N{z) = kNMd\afi = (kd2)

2(xfi is a
rational square, and so a and /3 must have the same squarefree part. The same is true for
a and y, and for /3 and y. Put ;' equal to this common squarefree part, and conditions
(l)-(4) are satisfied.

NOTATION. If p is an odd prime and a is an integer, then we use the notation (a | p)
for the Legendre symbol: if (a,p) = l, then (a \p) = l is a square modp, and is - 1
otherwise.
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General residuacity conditions for the existence of a Q8 extension of J are known;
see e.g. [2] or [4]. The next theorem gives detailed conditions involving the integers nit

nii, d, of Theorem 3.3.

THEOREM 3.4. We use the notation of Theorem 3.3. Let J(Vxyz) be a Q8 extension of
J, such that conditions (l)-(4) of Theorem 3.3 are satsified. Let p be an odd prime.

(a) If p | mlnld2, then p = 1 (mod 4).
(b) Ifp j N, then {-m \p) = \.
(c) Ifp\M, then (-n|p) = l.
(d) Ifp\Dthen{-k\p) = \.

Proof. Let p be an odd prime, and write x = a + by/m, y = c + dyfn, z=e + fVk,
where a, b, c, d, e, / a r e rational numbers with denominator 1 or 2. Since p is an odd
prime, we may as well assume that they are all integers; we can also assume that each of
gcd(a, b), gcd(c, d), and gcd(e,/) is 1 or 2. Then

(i) N(x) = a2 - mb2 = nxmxd,jt2

(ii) N{y) = c2-nd2 = n2mxd2jr
2

(Hi) N(z) = e2-kf2 = nlm2d2js
2.

(a) Suppose first that p(mx). Then p \m, and from (i), p \a, so equation (i) is
divisible by p . We also have p \ k, and so equations (i) and (iii) yield the congruences

2 t2 (modp),

(modp).

Since m = mxm2dxd2, then multiplying these together gives

-(mlp)b2e2 = nj(m/p)j2t2s2 (mod /?).

Since gcd(a, b) and gcd(e,/) can only be 1 or 2, and p is odd, then gcd(6,p) = 1 and
gcd(e,p) = l. Of course gcd((m/p),p) = 1, and so ( - l | p ) = l, and p = 1 (mod 4). The
proof is similar ifp | nx or p \d2.

The statements (b), (c), (d) are all proved in the same way; we give the argument for
(c). Up | m b then (n \p) = 1 from equation (ii). Since ( - 1 \p) = l also, then (-n \p) =
1. Suppose now that p \ m2. Since k = MN, then m2 \ k, and then p \ e, so equation (iii) is
divisible by p . Then equations (i) and (iii) give the congruences

js2 (mod/?),

(modp).

Multiplying these together gives

-{klp)f2a2 = n\{Mlp)Dj2s2t2 (modp) .

and since {kip) = N(M/P) and n = ND, it follows that (-n \p) = l.
The next Corollary is helpful in finding solutions to the equations (l)-(4) of Theorem

3.3.

COROLLARY 3.5. Suppose that J has a Q8 extension, and assume the notation of
Theorem 3.3. Suppose that p is an odd prime divisor of mn. Then p is inert in one of the
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quadratic subfields of J if and only if p=2> (mod 4), and p splits in one of the quadratic
subfields of J if and only if p = \ (mod 4).

Proof. It is well known that a prime p splits (resp. is inert) in a quadratic field Q(VJ)
if and only if gcd(j,p) = l, and (j\p) = l (resp. (y|p) = - l ) - The result follows
immediately from Theorem 3.4.

4. Applications. We work out some specific constructions for n, m such that
J = Q(Vm, Vn) has a <28 extension. As before, m and n are positive squarefree integers
such that mn is not square. We use, without much comment, various special properties of
quadratic fields; for instance if x e Q(VJ) and y<0, then N(x)^0; the multiplicative
properties of norms, and so on.

The residuacity conditions for odd primes are easily computed from Theorem 3.4 or
otherwise. Congruence conditions on (m,n,k) modulo 8 are given by Reichardt in [4]:
we must have either (a) m = « = 1 (mod4), or else (b) m = n = 2mod4), and
{mil, nil, k) congruent to one of (1, 1,1), (3, 7, 5), (5, 5,1), (1, 3, 3), (5, 7, 3) (mod 8).

In the examples below, one of n,m is a prime. The following lemma gives some
useful consequences of Lemma 1.1 for rational integers.

LEMMA 4.1. Let p be an odd prime, and let n = ±p. Suppose that x,y are integers
such thatgcd(x,y) = l. (a) If t is odd and x2 — ny2 = t2, then one of the quantities
±(x+yVn) is a square in Q(Vn). (b) / / t is odd and x2-ny2 = 4t2, then there exist
integers a, j8 such that a2 ±p/32 = ±4t.

Proof, (a) From the assumptions, (x —1)/2 and (x +1)/2 are relatively prime
integers, and their product is ±p(y/2)2. Then since p is prime, we have, say,
(x - r)/2 = ±pa2 and (x +1)/2 = ±/32, for integers a- and /S. Then by the identity (ID1) of
Lemma 1.1, one of ±(x +yVn) is square. Similarly, for (b), one of the quantities
±(x-2t) is square in Q(Vn). That is, one of ±2{x+y\fn) is equal to a square, say,
(a- + PVn)2. Then a2 - nfi2 = ±4t.

EXAMPLE 4.2. J = Q(\/2,\/n) has a Q8 extension if and only if every odd prime
factor p of n satisfies p = 1 or 3 (mod 8).

Since 2 = I2 + I2, a Q8 extension of J must be of Type I. Suppose that n is odd. Let
y = 2 + V2; then y satisfies condition C(c) of Corollary 1.7. It remains to find an
x e <2(V2«) satisfying condition B(c) of Corollary 1.7, that is,

x = a + bV2n and N(x) = a2 - 2nb2 = nt2 (1)

(where we may assume a, b and t are rational integers). If a2 — 2nb2 = nt2, then (since n is
squarefree) n \ a, say a = nc. Then n2c2 — 2nb2 = nt2, and nc2 — 2b2 = t2, from which we
have nc2 = t2 + 2b2. Since <2(V^2) is a PID, this equation is solvable if and only if n = 1
or 3 (mod 8); in this case, there is a solution x for (1), and then /(Vxy) is a Qs extension.

EXAMPLE 4.3. Let p = <7 = l(mod4) be primes. Then J = Q(\fp,\[q) has a Qs

extension if and only if (p \ q) = 1.
Any Qs extension must be of Type I. We need a solution to x2 — py2 = qt2. Since

Q(Vp) has odd class number (see e.g. [1]), say h = 2r + 1, we can always solve either
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x2—py2 = qh or x2-py2 = Aqh (in integers x,y). Then we can take t = qr or 2qr,
accordingly, and let X =x + yVp- Next, there are integers u, v so that pq = u2 + v2. Put
Y = pq + uVpq- Then J(VXY) is a <28 extension.

EXAMPLE 4.4. Let p = 1 (mod 4) and <? = 3 (mod 4). Then J = Q(Vp, V2g) has a Q8 if
and only if p = 5 (mod 8) and (p | g) = - 1 .

Any Qg extension must be of Type I. We need a solution to the equation
x2 - 2qy2 = 2pqt2, or equivalently, a solution to a2 + pb2 = 2qc2.

In Q(V~p), the class group has even order, and we have the prime ideal
factorizations: (2) = P2 and (q) = Q\Q2. Suppose that Qi were of odd order t in the class
group. Then there exist integers x, y such that x2 + py2 = q'\ x and y must be of opposite
parity since q' is odd. But then x2 + py2= 1 (mod 4), while q' = 3 (mod 4), a contradiction.
Thus Qi has even order, say 2j, in the class group.

Now there must be integers x, y so that x2 + py2 = q2'. From Lemma 4.1, if x is odd,
then one of ±(x +yV~p) is square, and 2/ is not minimal. So x must be even. We next
show that / is odd. Since (x — q')(x + q') = — py2, we may suppose that x — q' = ±s2 and
x + q' = ±pr2, with rs = y. Then (with appropriate choice of sign)

±2(x + yV^) = [s + (y/s)^]2 = Y2

where N(Y) = 2q'. Since /j = 5(mod8), the equation u2+pv2 = 2z2 has no integral
solutions, so N(Y) = 2qJ implies that / must be odd, say ; = 2i + 1. Now we can write
N(Y} = 2q(q')2, as required. Write Y = a + bV^p and N(Y) = 2qc2, and let Z = 2qc-
aV2q. Then N{Z) = 2pqb2. Finally, write p = r2 + s2, and let X =p + ry/p. Then J(yXZ)
is a Qs extension.

The construction of a Type I extension is probably most easily accomplished by the
method of the examples above. We do not have anything this simple for Type II
extensions, but the next theorem gives a construction for a large class of Type II
extensions. This theorem can also be used for Type I extensions.

THEOREM 4.5. Let gcd(m, n) = 1, and J = Q(Vm, Vn). Suppose that there are integers
such that

(i) n = ak
(ii) a = A2 + B2

(iii) {Arf + ms2 = kt2

(iv) u2 + av2 = mw2.
Then define algebraic integers X, Y, and Z by

X = (Br + sVm)(u + w^/m) = (Bru + msw) + (us + Brw)y/m

Z = ams + tB^/nrn

Then J(VXYZ) is a Q8 extension ofJ.

Proof. We will show that conditions (l)-(4) of Theorem 3.3 are satisfied. We have
M = m, N — n, D = l, and we take m, = 1, m2

 = m, ni = a and n2 = k. Since D = l,
di = d2 = l can be ignored. Define the integer / = kt2 - ar2. Then —j = (Br)2 - ms2, and
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from (iv), we have u2 — mw2 = —av2. Then since n = ak,

N{X) = ((fir)2 - ms2){u2 - mw2) = ajv2 = nxm,jv2

N(Y) = {kt2f - nt2r2 = kt\kt2 - ar2) = kjt2 = n2mxjt
2

N(Z) = {amsf - nm{tB)2 = am{ams2 - kt2B2) = amjA2 = nlm2jA
2

and the conditions of Theorem 3.3 are satisfied. Then J{\/XYZ) is a Qs extension.

EXAMPLE 4.6. J = Q(\/3,Vn) has a Q8 extension if and only if n = 2(mod4) and
every odd prime divisor p of n satisfies p = 1 or 7 (mod 12). The necessity of these
conditions follows from the general residuacity conditions given by Reichardt. To see the
sufficiency, write n = 2k. Since <2(V—3) is a PID, and every prime divisor of k splits in
<2(V-3), then there exist integers r,s so that r2 + 3s2 = k. Then in the notation of
Theorem 4.5, we take: m = 3, n = 2k, a =2, A = B = 1, t = 1, u = v = w = l, and r,s so
that r2 + 3s2 = k. The corresponding X, Y, Z produce the desired Qs extension.

Similar results are possible for J = Q(Vp, V2fc), where p is a prime, p = 3 (mod 8), as
in the next example.

EXAMPLE 4.7. Let p = 3 (mod 8) and q = 3 (mod 4). Then J = Q(Vp, V2q) has a Qs

extension if and only if (p \ q) = - 1 . Again we need only establish sufficiency. We use
Theorem 4.5 with m =p, n = 2q, m, = 1, m2 = p, nx=2, n2

 = q, D = dx = d2 = 1. Take
a = 2, A = B = 1, and k = q. Since (2(V~~2) ' s a PID, and since p = 3 (mod 8), there are
integers u,v so that u2 + 2v2 = p. We need only show that r2 + ps2 = qt2 has a solution.
Since (p \q) = -l and q = 3 (mod 4), then (-/? \q) = l, and q splits in Q(V~p)- Then
there is some minimal integer; so that, for some x,y eZ, either

(a) x2 + py2 = q' or (b) x2 + py2 = Aq'.

If (a) holds, then x and y have opposite parity. Suppose that / is even, j = 2i. Then
q' = 1 (mod 4), and since p = 3(mod 8), we must have x odd and y = 0 (mod 4). Then by
Lemma 4.1, one of ±(x + y^/—p) is square, and its square roots has norm q'; then j is not
minimal. Thus in case (a), / must be odd.

If (b) holds, then x and y are odd. If / is even, j = 2i, then by Lemma 4.1, there
would be an element of norm 4q' and j would not be minimal. So in case (b) also, / must
be odd.

It follows that the equation r2 + ps2 = qt2 has an integral solution. Then the
conditions of Theorem 4.5 are satisfied, and the corresponding X, Y, and Z give a QH

extension J(y/XYZ).

4.8. Let m = 3 (mod 8), n =2 (mod 4), with gcd(/n,n) = l, and suppose that both
Q(Vrn) and Q(V~-rn) are PID's. If all the residuacity conditions are satisfied, then
J = Q{Vrn, Vn) has a Qs extension.

Proof. We use Theorem 4.5. Write n = ak, where k is the product of all the prime
factors of n which are congruent to 3 (mod 4), and a is the product of the remaining
factors. Then a=^42 + fi2 for some integers A, B, and a = 2(mod8). If p \ k, then
(-m | p) - 1, and so since Q(y/-m) is a PID, the equation x2 + my2 = k has an integral
solution. Multiplying through by A2, we have a solution to the equation (Ar)2 + ms2 = kt2.
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If p | a and p is odd, then p = 1 (mod 4), so (—m \p) = 1 implies (m \p) = 1. Since
m = 3 ( m o d 8 ) , 2 ramifies in <2(Vw). Now since Q(^jm) is a PID, there must be a
solution to either x2 — my2 = a, or to x2-my2 = —a. Since m = 3 (mod 8) and
a = 2 (mod 8), the equation x2 — my2 = a is not possible. Then there is a solution to
x2 - my2 = -a, and then x2 + a = my2. Now take m, = 1, m2 = w , n, = a, and n2 = k, and
we have the solution given in Theorem 4.5.
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