A NEIGHBOURHOOD CONDITION FOR GRAPHS TO BE FRACTIONAL (k, m)-DELETED GRAPHS*

SIZHONG ZHOU
School of Mathematics and Physics, Jiangsu University of Science and Technology, Mengxi Road 2, Zhenjiang, Jiangsu 212003, People's Republic of China e-mail: zsz_cumt@163.com

(Received 07 August 2008; accepted 17 April 2009)

Abstract

Let G be a connected graph of order n, and let $k \geq 2$ and $m \geq 0$ be two integers. In this paper, we show that G is a fractional (k, m)-deleted graph if $\delta(G) \geq k+m+\frac{(m+1)^{2}-1}{4 k}, n \geq 9 k-1-4 \sqrt{2(k-1)^{2}+2}+2(2 k+1) m$ and $\mid N_{G}(x) \cup$ $N_{G}(y) \left\lvert\, \geq \frac{1}{2}(n+k-2)\right.$ for each pair of non-adjacent vertices x, y of G. This result is an extension of the previous result of Zhou [11].

2000 Subject Classification. 05C70.

1. Introduction. The graphs considered here will be finite undirected simple graphs. We refer the readers to [1] for the terminologies not defined here. Let G be a graph. We use $V(G)$ and $E(G)$ to denote its vertex set and edge set, respectively. For any $x \in V(G)$, we denote the degree of x in G by $d_{G}(x)$. For $X \subseteq V(G)$, we define $d_{G}(X)=\sum_{x \in X} d_{G}(x)$. We write $N_{G}(x)$ for the set of vertices adjacent to x in G, and $N_{G}[x]$ for $N_{G}(x) \cup\{x\}$. For $X \subseteq V(G)$, we use $G[X]$ and $G-S$ to denote the subgraph of G induced by X and $V(G)-X$, respectively. Let X and Y be two disjoint vertex subsets of G, we denote the number of edges from X to Y by $e_{G}(X, Y)$. Instead of $e_{G}(\{x\}, Y)$, we just write $e_{G}(x, Y)$. We use $\delta(G)$ for the minimum degree of G.

Let $k \geq 1$ be an integer. Then a spanning subgraph F of G is called a k-factor, if $d_{F}(x)=k$ for each $x \in V(G)$. Let $h: E(G) \rightarrow[0,1]$ be a function. If $\sum_{e \ni x} h(e)=k$ holds for any $x \in V(G)$, we call $G\left[F_{h}\right]$ a fractional k-factor of G with indicator function h where $F_{h}=\{e \in E(G): h(e)>0\}$. A fractional 1-factor is also called a fractional perfect matching [6]. In this paper we introduce first the definition of a fractional (k, m)-deleted graph, that is, a graph G is called a fractional (k, m)-deleted graph, if there exists a fractional k-factor $G\left[F_{h}\right]$ of G with indicator function h such that $h(e)=0$ for any $e \in E(H)$, where H is any subgraph of G with m edges. A fractional (k, m)-deleted graph is simply called a fractional k-deleted graph, if $m=1$.

Iida and Nishimura gave a neighbourhood condition for a graph to have a k-factor [3]. Zhou obtained some sufficient conditions for graphs to have factors [8-10]. Correa and Matamala showed a necessary and sufficient condition for graphs to have factors [2]. Yu and the co-authors gave a degree condition for graphs to have fractional k factors [7]. Liu and Zhang showed a toughness condition for graphs to have fractional k-factors [5].

The following results on k-factors and fractional k-factors are known.

[^0]Theorem 1. (Iida and Nishimura [3]). Let k be an integer such that $k \geq 2$, and let G be a connected graph of order n such that $n \geq 9 k-1-4 \sqrt{2(k-1)^{2}+2}$, $k n$ is even and the minimum degree is at least k. If G satisfies

$$
\left|N_{G}(x) \cup N_{G}(y)\right| \geq \frac{1}{2}(n+k-2)
$$

for each pair of non-adjacent vertices $x, y \in V(G)$, then G has a k-factor.
Theorem 2. (Zhou and Liu [11]). Let k be an integer such that $k \geq 2$, and let G be a connected graph of order n such that $n \geq 9 k-1-4 \sqrt{2(k-1)^{2}+2}$, and the minimum degree $\delta(G) \geq k$. If

$$
\left|N_{G}(x) \cup N_{G}(y)\right| \geq \frac{1}{2}(n+k-2)
$$

for each pair of non-adjacent vertices $x, y \in V(G)$, then G has a fractional k-factor.
In this paper, we obtain a neighbourhood condition for a graph to be a fractional (k, m)-deleted graph. The result will be given in the following section.
2. Main theorems and proofs. Now, we give our main theorem which is an extension of Theorem 2.

Theorem 3. Let $k \geq 2$ and $m \geq 0$ be two integers. Let G be a connected graph of order n with $n \geq 9 k-1-4 \sqrt{2(k-1)^{2}+2}+2(2 k+1) m, \delta(G) \geq k+m+\frac{(m+1)^{2}-1}{4 k}$. If

$$
\left|N_{G}(x) \cup N_{G}(y)\right| \geq \frac{1}{2}(n+k-2)
$$

for each pair of non-adjacent vertices x, y of G, then G is a fractional (k, m)-deleted graph.

From Theorem 3, we get immediately Theorem 2 if $m=0$. If $m=1$ in Theorem 3, we get the following corollary.

Corollary 1. Let $k \geq 2$ be an integer. Let G be a connected graph of order n with $n \geq 13 k+1-4 \sqrt{2(k-1)^{2}+2}, \delta(G) \geq k+2$. If

$$
\left|N_{G}(x) \cup N_{G}(y)\right| \geq \frac{1}{2}(n+k-2)
$$

for each pair of non-adjacent vertices x, y of G, then G is a fractional k-deleted graph.
In order to prove Theorem 3, we depend on the following lemmas.
FACT 2.1. [3] Let k be an integer such that $k \geq 1$. Then

$$
9 k-1-4 \sqrt{2(k-1)^{2}+2} \begin{cases}>3 k+5, & \text { for } k \geq 4 \\ >3 k+4, & \text { for } k=3 \\ =3 k+3, & \text { for } k=2 \\ >2, & \text { for } k=1\end{cases}
$$

Lemma 2.1. (Liu and Zhang [4]). Let G be a graph, then G has a fractional k-factor if and only if for every subset S of $V(G)$,

$$
\delta_{G}(S, T)=k|S|+d_{G-S}(T)-k|T| \geq 0
$$

where $T=\left\{x: x \in V(G) \backslash S, d_{G-S}(x) \leq k-1\right\}$.
Lemma 2.2. Let $k \geq 1$ and $m \geq 0$ be two integers, and let G be a graph and H a subgraph of G with m edges. Then G is a fractional (k, m)-deleted graph if and only if for any subset S of $V(G)$,

$$
\delta_{G}(S, T)=k|S|+\sum_{x \in T} d_{G-S}(x)-k|T| \geq \sum_{x \in T} d_{H}(x)-e_{H}(S, T),
$$

where $T=\left\{x: x \in V(G) \backslash S, d_{G-S}(x)-d_{H}(x)+e_{H}(x, S) \leq k-1\right\}$.
Proof. Let $G^{\prime}=G-E(H)$. Then G is a fractional (k, m)-deleted graph if and only if G^{\prime} has a fractional k-factor. According to Lemma 2.1, this is true if and only if for any subset S of $V(G)$,

$$
\delta_{G^{\prime}}\left(S, T^{\prime}\right)=k|S|+d_{G^{\prime}-S}\left(T^{\prime}\right)-k\left|T^{\prime}\right| \geq 0
$$

where $T^{\prime}=\left\{x: x \in V(G) \backslash S, d_{G^{\prime}-S}(x) \leq k-1\right\}$.
It is easy to see that $d_{G^{\prime}-S}(x)=d_{G-S}(x)-d_{H}(x)+e_{H}(x, S)$ for any $x \in T^{\prime}$. By the definitions of T^{\prime} and T, we have $T^{\prime}=T$. Hence, we obtain $\delta_{G^{\prime}}\left(S, T^{\prime}\right)=\delta_{G}(S, T)-$ $\sum_{x \in T} d_{H}(x)+e_{H}(S, T)$. Thus, $\delta_{G^{\prime}}\left(S, T^{\prime}\right) \geq 0$ if and only if $\delta_{G}(S, T) \geq \sum_{x \in T} d_{H}(x)-$ $e_{H}(S, T)$. It follows that G is a fractional (k, m)-deleted graph, if and only if $\delta_{G}(S, T)=$ $k|S|+\sum_{x \in T} d_{G-S}(x)-k|T| \geq \sum_{x \in T} d_{H}(x)-e_{H}(S, T)$.

Proof of Theorem 3. According to Theorem 2, the theorem is trivial for $m=0$. In the following, we consider $m \geq 1$.

Suppose that G satisfies the conditions of Theorem 3, but is not a fractional (k, m)-deleted graph. From Lemma 2.2 there exists a subset S of $V(G)$ such that

$$
\begin{equation*}
k|S|+\sum_{x \in T}\left(d_{G-S}(x)-d_{H}(x)+e_{H}(x, S)-k\right) \leq-1, \tag{1}
\end{equation*}
$$

where $T=\left\{x: x \in V(G) \backslash S, d_{G-S}(x)-d_{H}(x)+e_{H}(x, S) \leq k-1\right\}$ and H is any subgraph of G with m edges.

At first, we prove the following claims.
Claim 1. $|S| \geq 1$.
Proof. If $S=\emptyset$, then according to equation (1), $d_{H}(x) \leq m$ and $\delta(G) \geq k+m+$ $\frac{(m+1)^{2}-1}{4 k}$, we get

$$
-1 \geq \sum_{x \in T}\left(d_{G}(x)-d_{H}(x)-k\right) \geq \sum_{x \in T}(\delta(G)-m-k) \geq \sum_{x \in T} \frac{(m+1)^{2}-1}{4 k} \geq 0
$$

this is a contradiction.
Claim 2. $|T| \geq k+1$.

Proof. If $|T| \leq k$, then by equation (1), Claim 1, $d_{H}(x) \leq m$ and $\delta(G) \geq k+m+$ $\frac{(m+1)^{2}-1}{4 k}$, we obtain

$$
\begin{aligned}
-1 & \geq k|S|+\sum_{x \in T}\left(d_{G-S}(x)-d_{H}(x)+e_{H}(x, S)-k\right) \\
& \geq|T||S|+\sum_{x \in T}\left(d_{G-S}(x)-d_{H}(x)+e_{H}(x, S)-k\right) \\
& =\sum_{x \in T}\left(|S|+d_{G-S}(x)-d_{H}(x)+e_{H}(x, S)-k\right) \\
& \geq \sum_{x \in T}\left(d_{G}(x)-d_{H}(x)+e_{H}(x, S)-k\right) \\
& \geq \sum_{x \in T}(\delta(G)-m-k) \\
& \geq \sum_{x \in T} \frac{(m+1)^{2}-1}{4 k} \\
& \geq 0
\end{aligned}
$$

a contradiction.
From Claim 2, $T \neq \varnothing$. Let

$$
h_{1}=\min \left\{d_{G-S}(x)-d_{H}(x)+e_{H}(x, S) \mid x \in T\right\}
$$

and choose $x_{1} \in T$ with $d_{G-S}\left(x_{1}\right)-d_{H}\left(x_{1}\right)+e_{H}\left(x_{1}, S\right)=h_{1}$ and $d_{H}\left(x_{1}\right)-e_{H}\left(x_{1}, S\right)$ is minimum. Further, if $T \backslash N_{T}\left[x_{1}\right] \neq \varnothing$, we define

$$
h_{2}=\min \left\{d_{G-S}(x)-d_{H}(x)+e_{H}(x, S) \mid x \in T \backslash N_{T}\left[x_{1}\right]\right\},
$$

and choose $x_{2} \in T \backslash N_{T}\left[x_{1}\right]$ with $d_{G-S}\left(x_{2}\right)-d_{H}\left(x_{2}\right)+e_{H}\left(x_{2}, S\right)=h_{2}$ and $d_{H}\left(x_{2}\right)-$ $e_{H}\left(x_{2}, S\right)$ is minimum. Then we obtain $0 \leq h_{1} \leq h_{2} \leq k-1$ by the definition of T.

In view of the choice of x_{1}, x_{2}, we have $x_{1} x_{2} \notin E(G)$. Thus, by the condition of Theorem 3, the following inequalities hold:

$$
\begin{aligned}
\frac{n+k-2}{2} & \leq\left|N_{G}\left(x_{1}\right) \cup N_{G}\left(x_{2}\right)\right| \\
& \leq d_{G-S}\left(x_{1}\right)+d_{G-S}\left(x_{2}\right)+|S| \\
& =|S|+h_{1}+d_{H}\left(x_{1}\right)-e_{H}\left(x_{1}, S\right)+h_{2}+d_{H}\left(x_{2}\right)-e_{H}\left(x_{2}, S\right)
\end{aligned}
$$

which implies

$$
\begin{equation*}
|S| \geq \frac{n+k-2}{2}-\left(h_{1}+h_{2}+d_{H}\left(x_{1}\right)+d_{H}\left(x_{2}\right)-e_{H}\left(x_{1}, S\right)-e_{H}\left(x_{2}, S\right)\right) \tag{2}
\end{equation*}
$$

Now in order to prove the theorem, we shall deduce some contradictions according to the following two cases.

Case 1: $T=N_{T}\left[x_{1}\right]$.

Clearly, the following inequalities hold by $d_{H}\left(x_{1}\right) \leq m$:

$$
\begin{equation*}
|T|=\left|N_{T}\left[x_{1}\right]\right| \leq d_{G-S}\left(x_{1}\right)+1=h_{1}+d_{H}\left(x_{1}\right)-e_{H}\left(x_{1}, S\right)+1 \leq h_{1}+m+1 \tag{3}
\end{equation*}
$$

In view of $\delta(G) \leq d_{G}\left(x_{1}\right) \leq|S|+d_{G-S}\left(x_{1}\right)=|S|+h_{1}+d_{H}\left(x_{1}\right)-e_{H}\left(x_{1}, S\right)$ and $d_{H}\left(x_{1}\right) \leq m$, then we have

$$
\begin{equation*}
|S| \geq \delta(G)-h_{1}-d_{H}\left(x_{1}\right)+e_{H}\left(x_{1}, S\right) \geq \delta(G)-h_{1}-m \tag{4}
\end{equation*}
$$

By equations (1), (3), (4) and $0 \leq h_{1} \leq k-1$, we get

$$
\begin{aligned}
-1 & \geq k|S|+\sum_{x \in T}\left(d_{G-S}(x)-d_{H}(x)+e_{H}(x, S)-k\right) \\
& \geq k|S|+\left(h_{1}-k\right)|T| \\
& \geq k\left(\delta(G)-h_{1}-m\right)+\left(h_{1}-k\right)\left(h_{1}+m+1\right) \\
& \geq k\left(k+m+\frac{(m+1)^{2}-1}{4 k}-h_{1}-m\right)+\left(h_{1}-k\right)\left(h_{1}+m+1\right) \\
& =h_{1}^{2}-(2 k-m-1) h_{1}+k^{2}-(m+1) k+\frac{(m+1)^{2}-1}{4} \\
& =\left(h_{1}-k+\frac{m+1}{2}\right)^{2}-\frac{1}{4} \\
& \geq-\frac{1}{4}>-1 .
\end{aligned}
$$

This is a contradiction.
Case 2. $T \backslash N_{T}\left[x_{1}\right] \neq \varnothing$.
From $|E(H)|=m$ and $x_{1} x_{2} \notin E(G)$, we get

$$
\begin{equation*}
d_{H}\left(x_{1}\right)+d_{H}\left(x_{2}\right) \leq m \tag{5}
\end{equation*}
$$

Subcase 2.1. $h_{2}=0$.
Clearly, $h_{1}=0$. By (1), (2) and $|S|+|T| \leq n$, we obtain

$$
\begin{aligned}
-1 & \geq k|S|+\sum_{x \in T}\left(d_{G-S}(x)-d_{H}(x)+e_{H}(x, S)-k\right) \\
& \geq k|S|-k|T| \geq k|S|-k(n-|S|)=2 k|S|-k n \\
& \geq 2 k\left(\frac{n+k-2}{2}-\left(d_{H}\left(x_{1}\right)+d_{H}\left(x_{2}\right)-e_{H}\left(x_{1}, S\right)-e_{H}\left(x_{2}, S\right)\right)\right)-k n \\
& =k^{2}-2 k-2 k\left(d_{H}\left(x_{1}\right)+d_{H}\left(x_{2}\right)-e_{H}\left(x_{1}, S\right)-e_{H}\left(x_{2}, S\right)\right),
\end{aligned}
$$

that is,

$$
d_{H}\left(x_{1}\right)+d_{H}\left(x_{2}\right)-e_{H}\left(x_{1}, S\right)-e_{H}\left(x_{2}, S\right) \geq \frac{k^{2}-2 k+1}{2 k}>0 .
$$

According to the integrity of $d_{H}\left(x_{1}\right)+d_{H}\left(x_{2}\right)-e_{H}\left(x_{1}, S\right)-e_{H}\left(x_{2}, S\right)$, we have

$$
d_{H}\left(x_{1}\right)+d_{H}\left(x_{2}\right)-e_{H}\left(x_{1}, S\right)-e_{H}\left(x_{2}, S\right) \geq 1
$$

In view of the choice of x_{1} and x_{2}, one of (a) and (b) holds for any $u \in T \backslash$ $\left(\left\{x_{1}, x_{2}\right\} \cup N_{H}\left(\left\{x_{1}, x_{2}\right\}\right)\right)$:
(a) $d_{G-S}(u)-d_{H}(u)+e_{H}(u, S) \geq 1$, or
(b) $d_{G-S}(u)-d_{H}(u)+e_{H}(u, S)=0$ and $d_{H}(u)-e_{H}(u, S) \geq 1$.

Since $\left\{x_{1}, x_{2}\right\} \cap V(H) \neq \varnothing$ and any vertex $v \in T \backslash\left(\left\{x_{1}, x_{2}\right\} \cup V(H)\right)$ satisfies (a), we have

$$
\begin{equation*}
\sum_{x \in T}\left(d_{G-S}(x)-d_{H}(x)+e_{H}(x, S)\right) \geq|T|-2-2 m+1=|T|-2 m-1 . \tag{6}
\end{equation*}
$$

Using equations (1), (2), (5), (6), $|S|+|T| \leq n, n \geq 9 k-1-4 \sqrt{2(k-1)^{2}+2}+$ $2(2 k+1) m$ and Fact 2.1, we obtain

$$
\begin{aligned}
-1 \geq & k|S|+\sum_{x \in T}\left(d_{G-S}(x)-d_{H}(x)+e_{H}(x, S)-k\right) \\
\geq & k|S|+|T|-2 m-1-k|T| \\
= & k|S|-(k-1)|T|-2 m-1 \\
\geq & k|S|-(k-1)(n-|S|)-2 m-1 \\
= & (2 k-1)|S|-(k-1) n-2 m-1 \\
\geq & (2 k-1)\left(\frac{n+k-2}{2}-\left(d_{H}\left(x_{1}\right)+d_{H}\left(x_{2}\right)-e_{H}\left(x_{1}, S\right)-e_{H}\left(x_{2}, S\right)\right)\right) \\
& -(k-1) n-2 m-1 \\
\geq & (2 k-1)\left(\frac{n+k-2}{2}-m\right)-(k-1) n-2 m-1 \\
= & \frac{n}{2}+\frac{(2 k-1)(k-2)}{2}-(2 k+1) m-1 \\
\geq & \frac{n}{2}-(2 k+1) m-1 \\
\geq & \frac{9 k-1-4 \sqrt{2(k-1)^{2}+2}+2(2 k+1) m}{2}-(2 k+1) m-1 \\
= & \frac{9 k-1-4 \sqrt{2(k-1)^{2}+2}}{2}-1 \\
> & 0,
\end{aligned}
$$

this is a contradiction.
Subcase 2.2. $1 \leq h_{2} \leq k-1$.
According to $d_{H}\left(x_{1}\right) \leq m$, we get $\left|N_{T}\left[x_{1}\right]\right| \leq d_{G-S}\left(x_{1}\right)+1=h_{1}+d_{H}\left(x_{1}\right)-$ $e_{H}\left(x_{1}, S\right)+1 \leq h_{1}+m+1$. Complying this with equations (1), (2), (5), $m \geq 1,0 \leq$ $h_{1} \leq h_{2} \leq k-1, n \geq 9 k-1-4 \sqrt{2(k-1)^{2}+2}+2(2 k+1) m$ and $|S|+|T| \leq n$, we
have

$$
\begin{aligned}
-1 & \geq k|S|+\sum_{x \in T}\left(d_{G-S}(x)-d_{H}(x)+e_{H}(x, S)-k\right) \\
& \geq k|S|+h_{1}\left|N_{T}\left[x_{1}\right]\right|+h_{2}\left(|T|-\left|N_{T}\left[x_{1}\right]\right|\right)-k|T| \\
& =k|S|+\left(h_{1}-h_{2}\right)\left|N_{T}\left[x_{1}\right]\right|+\left(h_{2}-k\right)|T| \\
& \geq k|S|+\left(h_{1}-h_{2}\right)\left(h_{1}+m+1\right)+\left(h_{2}-k\right)(n-|S|) \\
& =\left(2 k-h_{2}\right)|S|+\left(h_{1}-h_{2}\right)\left(h_{1}+m+1\right)-\left(k-h_{2}\right) n \\
& \geq\left(2 k-h_{2}\right)\left(\frac{n+k-2}{2}-h_{1}-h_{2}-m\right)+\left(h_{1}-h_{2}\right)\left(h_{1}+m+1\right)-\left(k-h_{2}\right) n \\
& =h_{2}^{2}+\frac{n-5 k}{2} h_{2}+h_{1}^{2}+(m+1-2 k) h_{1}+k(k-2)-2 k m \\
& \geq h_{2}^{2}+\frac{n-5 k}{2} h_{2}+h_{1}^{2}+(2-2 k) h_{1}+k(k-2)-2 k m \\
& \geq h_{2}^{2}+\frac{n-5 k}{2} h_{2}+h_{2}^{2}+(2-2 k) h_{2}+k(k-2)-2 k m \\
& =2 h_{2}^{2}+\frac{n-9 k+4}{2} h_{2}+k(k-2)-2 k m \\
& \geq 2 h_{2}^{2}-2 \sqrt{2(k-1)^{2}+2 h_{2}}+(2 k+1) m h_{2}+\frac{3}{2} h_{2}+k(k-2)-2 k m \\
& \geq 2 h_{2}^{2}-2 \sqrt{2(k-1)^{2}+2} h_{2}+(2 k+1) m+\frac{3}{2} h_{2}+k(k-2)-2 k m \\
& \geq 2 h_{2}^{2}-2 \sqrt{2(k-1)^{2}+2 h_{2}}+\frac{3}{2} h_{2}+k(k-2)+1 \\
& =\frac{1}{2}\left(2 h_{2}-\sqrt{2(k-1)^{2}+2}\right)^{2}+\frac{3}{2} h_{2}-1 \\
& \geq \frac{3}{2} h_{2}-1 \geq \frac{1}{2} \\
& >0 .
\end{aligned}
$$

It is a contradiction.
This completes the proof of Theorem 3.
Acknowledgements. I would like to thank the anonymous referees who read my original manuscript carefully and gave me many valuable comments.

REFERENCES

1. J. A. Bondy and U. S. R. Murty, Graph theory with applications (The Macmillan Press, London, 1976).
2. J. R. Correa and M. Matamala, Some remarks about factors of graphs, J. Graph Theory 57 (2008), 265-274.
3. T. Iida and T. Nishimura, Neighborhood conditions and k-factors, Tokyo J. Math. 20(2) (1997), 411-418.
4. G. Liu and L. Zhang, Fractional (g, f)-factors of graphs, Acta Math. Sci. 21B(4) (2001), 541-545.
5. G. Liu and L. Zhang, Toughness and the existence of fractional k-factors of graphs, Discrete Math. 308 (2008), 1741-1748.
6. E. R. Scheinerman and D. H. Ullman, Fractional graph theory (Wiley, New York, 1997).
7. J. Yu, G. Liu, M. Ma and B. Cao, A degree condition for graphs to have fractional factors, Adv. Math. (China) 35(5) (2006), 621-628.
8. S. Zhou, Some sufficient conditions for graphs to have (g, f)-factors, Bull. Aust. Math. Soc. 75 (2007), 447-452.
9. S. Zhou, A new sufficient condition for graphs to be (g, f, n)-critical graphs, Can. Math. Bull. (to appear).
10. S. Zhou, Remarks on (a, b, k)-critical graphs, J. Comb. Math. Comb. Comput. (to appear).
11. S. Zhou and H. Liu, Neighborhood conditions and fractional k-factors, Bull. Malaysian Math. Sci. Soc. 32(1) (2009), 37-45.

[^0]: *This research was supported by Jiangsu Provincial Educational Department (07KJD110048) and was sponsored by Qing Lan Project of Jiangsu Province.

