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Abstract. Combining datasets from different experiments and probes to constrain cosmological
models is an important challenge in observational cosmology. We summarize a framework for
measuring the constraining power and the consistency of separately or jointly analyzed data
within a given model that we proposed in earlier work (Seechars et al. 2014). Applying the
Kullback-Leibler divergence to posterior distributions, we can quantify the difference between
constraints and distinguish contributions from gains in precision and shifts in parameter space.
We show results from applying this technique to a combination of datasets and probes such as
the cosmic microwave background or baryon acoustic oscillations.
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1. Introduction

Observations of cosmological probes such as the cosmic microwave background (CMB)
or Type Ia supernovae have established a standard model of cosmology, resting on the
concepts of a cosmological constant A driving the observed accelerated expansion of
the universe at late times and a cold dark matter (CDM) component accounting for
about 80% of the matter content in the universe. To learn more about these mysterious
dark components, it is crucial to test the ACDM model with observations from different
astrophysical probes and independent experiments.

We summarize a technique for measuring the progress in constraining the parameters
of a cosmological model from different datasets by quantifying the variation between the
constraints using the Kullback-Leibler divergence that we proposed in earlier work (See-
hars et al. 2014). This technique measures both shifts in parameter space and improve-
ments in the precision of the constraints and is hence able to determine the constraining
power of a dataset and its consistency with other probes. After formally introducing the
method in section 2, we apply it to joint analyses of CMB data from the WMAP mission
and measurements of small scale CMB experiments, baryon acoustic oscillations (BAO),
and the expansion rate of the universe as published by the WMAP team in Hinshaw
et al. (2013) as well as to other large scale CMB experiments in section 3. We conclude
with a discussion of our findings in section 4.

2. Parameter Estimation and Kullback-Leibler Divergence

We wish to compare two posteriors on the same parameter space in order to measure
gains in precision and consistency of the constraints on a given cosmological model. For
simplicity, we consider the special case of two complementary datasets which can be
analyzed in a sequential manner, i.e. where constraints from one dataset can be used as
prior information for analyzing the second. In many applications of cosmology, however,
two datasets can be correlated due to cosmic variance, which is the fact that we can
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observe only a single realization of an inherently stochastic cosmological model. The
concepts presented next can also be applied to those scenarios and we refer the reader
to Seehars et al. (2014) for more details. Returning to the case of two uncorrelated
observables Dy and D,, we consider two posteriors p1 (0©) = p(0©|D;) and

p2(©) = p(0|D;,Dy) = fdg(z;(g?l)il)(p(?z@)' (2.1)

To measure the difference between p; and po, we use the Kullback-Leibler divergence
(KL-divergence, Kullback & Leibler (1951)):

p2(0)
1

o) (2.2)

D(palpr) = /d9p2(@)log

The KL-divergence is well suited for our purposes: It is a positive quantity which is zero
if and only if p; is equal to py almost everywhere and can be interpreted as a pseudo-
distance between probability densities (it is not a distance because of the asymmetry in
exchanging p; and ps). The KL-divergence is furthermore invariant under invertible pa-
rameter transformations and consequently measures differences between the constraints
on the model and not only a particular parametrization of the model.

We will distinguish two contributions to the KL-divergence between two posteriors: A
contribution from the improvements in precision that are expected even before the actual
data is gathered and a second contribution from the shifts in parameter space induced
by the observed data. The former can be defined by the expectation value of D(ps||p1)
when averaging over the prior knowledge on the data:

(D) = /dDQ p(D2)D(p2||p1), (2.3)

where p(Ds) = [dO L(O; Dy)p1(O). The latter is given by the difference between ob-
served and expected KL-divergence S = D(pq||p1) — (D) and called surprise in the
following. Similarly, we can consider the expected variations of D around (D)

(D) = / 4Dy p(D)(D(pal|p1) — (D))?. (2.4)

In general, we can think of the observed KL-divergence as a realization from the distri-
bution of KL-divergences induced by the prior distribution on Dy and our knowledge of
the likelihood.

Equation (2.2) could be estimated with a numerical Monte Carlo integrator such as
nested sampling (Skilling 2004). Equation (2.3), however, is much harder to evaluate
numerically. Yet, as the expected KL-divergence is a well-known quantity in Bayesian
experimental design (see e.g. Chaloner & Verdinelli (1995)), computational approaches
exist. For the applications to constraints on a flat ACDM cosmology in section 3 we will
take a different approach: As the ACDM parameters are tightly constrained by CMB data
alone, it is a reasonable approximation to assume a linear model and normal distributions
for prior and likelihood when updating these constraints. In this case, equations (2.2)
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Table 1. KL-divergence estimates in bits for considered combinations of datasets. In the data
combination column, WMAP refers to the full WMAP 9 data (Bennett et al. 2013). The BAO,
Hy, and small scale CMB (eCMB) data are described in Hinshaw et al. (2013). The other CMB
datasets are from the Boomerang (Jones et al. 2006) and Planck (Planck collaboration 2013)
teams. The updating column refers to add if complementary data is added, replace if the dataset
is completely replaced, and part if parts of the data are replaced. The p-value is an estimate for
the prior probability of observing a surprise that is greater or equal (less or equal) than S if S
is greater (smaller) than zero. It is an approximation when data is partially replaced.

Data combination Updating D (D) S |S/o(D)|p-value
BOOMERANG — WMAP replace 22.518.4 4.1 1.6 0.07
WMAP — WMAP + eCMB add 21 1.7 04 05 0.2
WMAP + eCMB — WMAP + eCMB + BAO add 1.3 1.0 03 08 0.2
WMAP + eCMB — WMAP + eCMB + H add 04 03 01 01 0.3
WMAP + eCMB — WMAP + eCMB + BAO + Hy add 09 1.1-02 02 06
WMAP — Planck + WP part 29.8 7.9 21.9 6.5 0.0002

and (2.3) are analytic and given by (Seehars et al. 2014):

1 det X
D(pzupl):(<91—@z>Tz;1<@1—62>+tr<222;1>—d—1og ¢ ) (2.5)

2 det 21
1 detEQ
D) =—-1 2.
(D) 5198 Get s, (2.6)
1
o?(D) = St (2718, —1)?), (2.7)

with ©; and ¥; being mean and covariance of distribution p;, d being the dimensionality
of the parameter space, and 1 being the d-dimensional identity matrix. Equation 2.5
shows that the KL-divergence depends on the ratio of covariance matrices as well as the
significance of the shifts in the means ©; and ©,. While the former also governs the
expected relative entropy (2.6), the latter is driving the surprise contribution. In order
to estimate equations (2.5) to (2.7), it is left to estimate mean and covariance matrix
of the posteriors from Monte Carlo Markov chains, for example. Note furthermore that
the distribution of the KL-divergence induced by prior knowledge on D, is a generalized
x?-distribution (Seehars et al. 2014).

3. Application to Data

We apply the results from section 2 to two scenarios: The parameter constraints on
a flat ACDM cosmology from the joint analyses of the final CMB data release by the
WMAP team with other cosmological probes as published by Hinshaw et al. (2013) and
the constraints from a historical series of CMB experiments. While we use the official
Monte Carlo Markov chains from the WMAP team to estimate the information gains
in the former application, we use the CosmoHammer framework (Akeret et al. 2013)
to generate samples for the comparison between CMB datasets. When estimating the
p-values of the observed KL-divergences on its generalized x? distribution, we use the
R-package CompQuadForm by Duchesne & De Micheaux (2010). The results in bits, i.e.
when taking the logarithm in equation (2.2) to base two, are shown in Table 1.

Adding external data from small scale CMB experiments, BAO, and H; measurements
to the WMAP constraints results in an information gain between 0.4 bits for the H prior
and 2.1 bits for small scale CMB data. We generally find small surprise compared to the
expected variations in D. Hence, a flat ACDM model is consistent with all datasets and
changes in the constraints are coming from the expected statistical variations in the data.
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When analyzing the differences between the constraints from different CMB experi-
ments, we must consider the effects of cosmic variance. This changes the form of equa-
tions 2.6 and 2.7, but similar results can be derived when considering the case of replacing
correlated data. Results when comparing different CMB experiments are extensively dis-
cussed in Seehars et al. (2014). Here we focus on replacing CMB data from Boomerang
data with WMAP 9 data and replacing the WMAP temperature power spectrum with
the results of the Planck team. Both data updates generate large information gains in
parameter space as measured by KL-divergences of 22.5 and 29.8 bits, respectively. In
these cases, however, it is important to look at the decomposition of D into the expected
KL-divergence and the surprise: Comparing the Boomerang constraints with the WMAP
9 results, we find that the KL-divergence is dominated by the increased precision in the
constraints as measured by (D) = 18.4 bits. The Planck update also improves the preci-
sion of the constraints ((D) = 7.9) but furthermore introduces shifts in parameter space
that are significantly larger than expected a priori with a surprise of 21.9 (p = 0.0002).
This significant surprise implies that the model is not able to consistently fit WMAP
and Planck temperature data within the errors and hints towards either systematics in
the data or physics beyond a flat ACDM cosmology.

4. Conclusions

We described a technique for measuring variations in the constraints on cosmological
parameters coming from different cosmological probes and datasets that we proposed in
earlier work (Seehars et al. 2014). It is based on applying the Kullback-Leibler divergence
to the posteriors of two separately or jointly analyzed measurements. With this technique,
we are able to separate contributions from gains in precision and shifts in parameter space
by comparing the observed KL-divergence to a-priori expectations.

By applying these concepts to the constraints on a flat ACDM cosmology from CMB,
BAO, and H; measurements, we show that this technique is able to quantify inconsisten-
cies between the full posteriors that are not immediately apparent from the distributions
of the individual parameters. In particular, we find no inconsistencies between the con-
straints on ACDM parameters from joint analyses of WMAP data with small scale CMB,
BAO, and H, data as published by Hinshaw et al. (2013). Comparing the constraints
from a joint analysis of Planck temperature and WMAP polarization data with prior
expectations from the constraints of WMAP data alone, however, we find significant sur-
prise contributions hinting towards tensions between the datasets. The described method
may thus be a valuable tool for quantifying inconsistencies between data from different
experiments in order to detect systematics or even signs of new physics.
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