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TREE THEORY: INTERPRETABILITY BETWEEN WEAK
FIRST-ORDER THEORIES OF TREES

ZLATAN DAMNJANOVIC

Abstract. Elementary first-order theories of trees allowing at most, exactly m, and any finite
number of immediate descendants are introduced and proved mutually interpretable among
themselves and with Robinson arithmetic, Adjunctive Set Theory with Extensionality and
other well-known weak theories of numbers, sets, and strings.

§1. Introduction. In logic, trees are almost everywhere. Algorithmic
tests for basic syntactic and semantic properties such as well-formedness,
satisfiability, or validity typically involve construction of tree-like arrays.
Elementary model theory of first-order logic is often presented as revolving
around properties of a certain kind of tree—witness König’s Lemma—and
basic objects of proof theory, such as proofs, derivations, and sequents, are
most directly represented in tree-like form. One does get the feeling that trees
might be as fundamental to logical theory as are numbers and sets. Yet they
seem not have to been systematically and explicitly investigated as subject
of a specific theory in axiomatic form.

An important step in this direction was taken recently in the work of
Kristiansen and Murwanashyaka [4] who introduced an elementary theory
T of full binary trees, finite trees in which every non-terminal node has
exactly two immediate descendants. (We shall call such trees dyadic.) They
showed that the basic arithmetical operations of addition and multiplication
are definable in T, and more specifically, that Robinson arithmetic, Q, is
formally interpretable in T. In [3], we showed that T, on the other hand, is
also interpretable in Q, and hence mutually interpretable with several other
well-known theories of numbers, sets, and strings. The argument given in
[3] hinges on a formalized representation of dyadic trees by binary strings
in elementary concatenation theory QT+.
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466 ZLATAN DAMNJANOVIC

Here we extend and generalize this approach to finite trees in general.
We take a planar tree to be a connected and acyclical planar graph with
one node singled out as the “root” of the tree. We consider the vocabulary
LT∗ = {0, �1, �2, ... ,�} with a single individual constant 0 and infinitely
many function symbols �1, �2, ... where �n has arity n for each n ≥ 1, and
a 2-place relation symbol �, along with the (universal closures) of the
following formulae as axioms:

(T1n) ¬�n(x1, ... , xn) = 0 for each n ≥ 1.
(T2m,n) ¬�m(x1, ... , xm) = �n(y1, ... , yn) for each m, n where m �= n.
(T3n) �n(x1, ... , xn) = �n(y1, ... , yn) → ∧1≤i≤nxi = yi for each n ≥ 1.
(T4n) x � �n(y1, ... , yn) ↔ x = �n(y1, ... , yn) v∨1≤i≤nx � yi for each n ≥ 1.
(T5) x � x.
(T6) 0 � x.

(T7) x � y & y � x → x = y.
(T8) x � y & y � z → x � z.

We call the resulting first-order theory with identity T∗. The domain of
the intended interpretation consists of finite planar trees whose nodes may
have any number, including single, immediate descendants. (Alternatively,
we may think of the domain as consisting of all variable-free LT∗-terms.)
Here we are thinking of finite trees as constructed from 0 by finitely many
applications of any combination of tree building operations associated with
�1, �2, ... . The individual constant 0 refers to a trivial, single node tree,
and, for each n ≥ 1, the n-ary operation associated with �n applied to trees
T1, ... , Tn yields the tree �n(T1, ... , Tn) whose root node has as its immediate
descendants the root nodes ofT1, ... , Tn, respectively. We think of these trees
as linearly ordered in that the immediate subtreesT1, ... , Tn of �n(T1, ... , Tn)
are ordered, say, from left to right. However, when considering nodes with
a single immediate descendant (singleton), we do not distinguish between
“branching to the right” and “branching to the left.” (This we will do in
Section 9 with appropriate modifications to the corresponding theories.)
The relational symbol � is meant to express the subtree relation between
trees, where subtrees are defined so that for a given tree T , any of its nodes
x determines a subtree Tx consisting of all and only the descendants of x in
T including itself.

By including only the appropriate instances of each of the schemas (T1n),
(T2m,n), (T3n), and (T4n) along with (T5)–(T8) we obtain theories Tm of
trees of fixed arity or theories T≤m of ≤ m-trees with at most m branchings,
for fixed m. The theory T of dyadic trees formulated by Kristiansen and
Murwanashyaka and further investigated in [3] is a subtheory of T2, with
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x � 0 ↔ x = 0 in place of (T5)–(T8). The latter formula is easily seen to be
implied by (T5)–(T7).

In Section 2 we identify characteristic traces of tree structure in binary
strings. On that basis in Section 3 we set up a formal coding apparatus for
finite trees, which we call Catalan coding. In Section 4 we establish that, for
m ≥ 2, theories T≤m (and Tm) are each formally interpretable in T≤2, and
in Section 5 that, in turn, T≤2 is interpretable in the concatenation theory
QT+. We use this in Section 6 to establish mutual interpretability of all of
the finitely axiomatized theories T≤m and Tm. In Section 7 we interpret the
theory of all finite trees T∗ in QT+. In Section 8 we consider some theories
of dyadic trees that extend T and establish their mutual interpretability,
showing, among other things, that T2 is also interpretable in T. In Section
9 we introduce theories Te, T≤n,e, and T∗

e that distinguish between left and
right single branchings and prove their mutual interpretability with T, T≤n,
and T∗, respectively. Finally, in Section 10 we prove that all these theories
are mutually interpretable among themselves and with Q, Adjunctive Set
Theory with or without Extensionality, various concatenation theories, etc.

§2. Almost even strings. We first turn to concatenation theory. The lan-
guage LC = {a, b, ∗} of concatenation theory has two individual constants
a and b, and a single binary operation symbol ∗. Its intended interpretation
�∗ has as its domain the set of all non-empty finite strings of a’s and b’s, the
constants “a” and “b,” respectively, stand for the digits a and b (or 0 and 1,
resp.), and, for given strings x and y from the domain of�∗, we let x∗y be the
string obtained by concatenation (i.e., juxtaposition) of the successive digits
of y to the right of the end digit of x. For the moment we reason informally
in the first-order theory Th(�∗) consisting of all true sentences of LC in �∗.
(Later, in Section 5, we introduce a finitely axiomatized subtheory QT+ of
Th(�∗) that will play a key role in our formal argument.)

We shall pay particular attention to the number of occurrences of a’s and
b’s in a given string. The functions α(x) and �(x) that count the number
of a’s and b’s, respectively, in a string x are defined by a straightforward
recursion on strings:

α(a) = 1 �(a) = 0.
α(b) = 0 �(b) = 1.
α(x∗a) = α(x) + 1 �(x∗a) = �(x).
α(x∗b) = α(x) �(x∗b) = �(x) + 1.

An equally straightforward induction on strings shows that the functions α
and � are additive with respect to concatenation operation ∗ on strings:
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468 ZLATAN DAMNJANOVIC

α(x∗y) = α(x) + α(y) and �(x∗y) = �(x) + �(y),

and that for each string x, α(x) + �(x) > 0.
On account of associativity of the binary concatenation operation we

sometimes omit writing the symbol ∗ and parentheses, simply juxtaposing
concatenated strings one next to another. We let

xBy ≡ ∃z x∗z = y and xEy ≡ ∃z z∗x = y and also
x⊆py ≡ x = y v xBy v xEy v ∃y1∃y2y = y∗1(x∗y2).

We define Tallyb(x) ≡ ∀y⊆px(Digit(y) → y = b) where Digit(x) ≡ x =
a v x = b. In LC, the b-tallies b, bb, bbb, ... may be identified with the
formal numerals 0, 1, 2, ..., so we sometimes write n for the string bn+1 of
n + 1 consecutive b’s.

One of the principal results of [3] is that (the graphs of) the functions α(x)
and �(x) are expressible by LC formulae A#(x, y) and B#(x, y), respectively,
along with (the graph of) the binary operation AddTally on strings that sim-
ulates addition of non-negative integers by concatenation of b-tallies. With
that in mind, we shall write, e.g., “α(x) = �(y) + 1” and “α(x) + �(x) = n”
with the understanding that these expressions abbreviate appropriately
chosen LC formulas such as “∃x1, y1(A#(x, x1) & B#(y, y1) & x1 = by1)”
and “∃x1y1

(
A#(x, x1) & B#(x, y1) & AddTally(x1, y1, bn+1),” respectively.

We then have:

2.1 For each n ≥ 1,

�∗ |= ∀x [α(x) + �(x) = n ↔ ∃x1 ... xn(∧1≤i≤nDigit(xi) & x = x1 ... xn)].

We omit the proof.
We call a string x almost even, writing Æ(x), if (ci) α(x) = �(x) + 1, (“the

+1 property”) and (cii) for each proper initial segment u of x, α(u) ≤ �(u).
In other words, the almost even strings are the shortest initial segments

of themselves in which the number of a’s strictly exceeds the number of b’s.
We let Æ(x) abbreviate the LC formula

∃y, z (A#(x, y) & B#(x, z) & y = z∗b) &
& ∀u, v,w (uBx & A#(u, v) & B#(u,w) → v ≤ w).

(See [3] for details.)
We note the following:

2.2 �∗ |= Æ(x) → x = a v (bBx & aaEx).
For the proof see [3, 2.1(a)].

2.3 (a) �∗ |= Æ(x) & Æ(y) → ¬xBy & ¬yBx.
(b) �∗ |= Æ(x) & x2Ex → α(x2) ≥ �(x2) + 1.
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(c) �∗ |= Æ(x) & Æ(y) → ¬∃z(zEx & zBy).
(d) �∗ |= Æ(x) → ¬∃z(zEx & zBx).

Proof. (a) is immediate from (ci) and (cii). For (b), see the proof in [3,
2.1(b)]; (c) and (d) follow from (b). �

2.4 For any n ≥ 1,

�∗ |= Tallyb(s) & Tallyb(t) & x = sax1 ... xn & y = tay1 ... yn &
& ∧1≤i≤n Æ(xi) & ∧1≤i≤n Æ(yi) → (x = y → s = t & ∧1≤i≤n xi = yi).

Proof. Assume that �∗ |= x = sax1 ... xn & y = tay1 ... yn, where �∗ |=
Tallyb(s) & Tallyb(t) and �∗|= ∧1≤i≤n Æ(xi) & ∧1≤i≤n Æ(yi). Suppose
�∗ |= x = y. Then�∗ |= sax1 ... xn = tay1 ... yn, whence�∗ |= sBx & tBx. In
that case, we have that �∗ |= sBt v s = t v tBs. Suppose, for a reductio, that
�∗ |= sBt. Then �∗ |= ∃u (Tallyb(u) & t = su), whence �∗ |= sax1 ... xn =
suay1 ... yn. But then �∗ |= ax1 ... xn = uay1 ... yn, which is a contradiction
because �∗ |= Tallyb(u). Hence �∗ |= ¬sBt. Exactly analogously, �∗ |=
¬tBs. It follows that �∗ |= s = t.

Thus we obtain that�∗ |= sax1 ... xn = say1 ... yn, whence�∗ |= x1 ... xn =
z = y1 ... yn. So�∗ |= x1Bz & y1Bz. Then�∗ |= x1By1v x1 = y1 v y1Bx1. But
from �∗ |= Æ(x1) & Æ(y1), by 2.3(a), we have �∗ |= ¬x1By1 & ¬y1Bx1.
Therefore, �∗ |= x1 = y1. Assume now that �∗|= ∧1≤i≤k xi = yi for k <
n. Then from �∗ |= s = t and hypothesis �∗ |= sax1 ... xn = tay1 ... yn we
obtain

�∗ |= sax1 ... xk(xk+1 ... xn) = sax1 ... xk(yk+1 ... yn),

whence �∗ |= xk+1 ... xn = yk+1 ... yn. Then the same argument as above
shows that �∗ |= xk+1 = yk+1. Hence for all j, 1 ≤ j ≤ n, �∗ |= xj = yj. �

2.5 (a) �∗ |= Æ(x) → x = a v ∃t(Tallyb(t) & taBx).
(b) �∗ |= Æ(x) & x = bay → Æ(y).

Proof. For (a), assume �∗ |= Æ(x) & x �= a. By 2.2, �∗ |= bBx & aaEx.
Hence �∗ |= ∃x1x = x1aa. So x has at least one proper initial segment
(= x1a) that ends with a. Let s0 be the shortest such initial segment. Then
�∗ |= aEs0, so �∗ |= ∃t s0 = ta. But then �∗ |= s0Bx & bBs0, so we must
have �∗ |= Tallyb(t) by the choice of s0.

For (b), assume �∗ |= x = bay where �∗ |= Æ(x). Then

�∗ |= α(y) = α(bay)–1 = (�(bay) + 1)–1 = �(bay) = �(y) + 1.

Suppose �∗ |= zBy. Then �∗ |= (baz)B(bay). Hence from hypothesis
�∗ |= Æ(x) we have �∗ |= α(z) = α(baz)–1 ≤ �(baz)–1 = (�(z) + 1)–1
= �(z). Hence also �∗ |= ∀z (zBy → α(z) ≤ �(z)). Therefore,
�∗ |= Æ(y). �
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2.6 Let u be any closed LC term. If �∗ |= Æ(u) & u �= a, then for some
n ≥ 1, �∗ |= ∃u1 ... unu = bnau1 ... un.

Proof. Assume �∗ |= Æ(u) & u �= a. Then, by 2.5(a), �∗ |= ∃y u = tay
where �∗ |= Tallyb(t). Let t = bn. If n = 1, we are done, for we can let
�∗ |= u1 = y.

Suppose n > 1. We claim that if �∗ |= u = bnay, then �∗ |= α(y) +
�(y) ≥ n.

We have that

�∗ |= α(u) = α(bnay) = 1 + α(y) and �∗ |= �(u) = �(bnay) = n + �(y).

From �∗ |= Æ(u), we have �∗ |= α(u) = �(u) + 1.
Then�∗ |= 1 + α(y) = n + �(y) + 1. So�∗ |= α(y) = �(y) + n ≥ n. But

then �∗ |= α(y) + �(y) ≥ n + �(y) ≥ n, which proves the claim.
Now let �∗ |= α(y) + �(y) = k ≥ n. By 2.1 we have that

�∗ |= ∃y1 ... yk(∧1≤i≤kDigit(yi) & y = y1 ... yk).

If k = n, we are done. If k > n, then �∗ |= ∃z y = y1 ... ynz =
y1 ... yn–1(ynz).

But then�∗ |= u = bnay = bnau1 ... un where�∗|= ∧1≤i<n ui = yi & un =
ynz. �

2.7 For any n ≥ 1, �∗|= ∧1≤i≤n Æ(xi) & y = bnax1 ... xn → Æ(y).

Proof. Assume �∗|= ∧1≤i≤n Æ(xi), and let �∗ |= y = bnax1 ... xn. Then

�∗ |= α(y) = α(bnax1 ... xn) = 1 +
∑

1≤i≤nα(xi) = 1 +
∑

1≤i≤n(�(xi) + 1) =
= 1 + n +

∑
1≤i≤n�(xi) = �(bnax1 ... xn) + 1 = �(y) + 1.

Hence (ci) holds. Suppose now that �∗ |= wBy. We have that

�∗ |= y = bnax1 ... xn & wBy → wBbn v w = bn v w = bna v
v (∃z1(z1Bx1 & w = bnaz1) v w = bnax1) v

v ∨1<i<n(∃zi(ziBxi & w = bnax1 ... xi–1zi) v w = bnax1 ... xi) v
v ∃zn(znBxn & w = bnax1 ... xn–1zn).

We consider one of the cases as an illustration of the proof. Suppose

�∗ |= ∃zi(ziBxi & w = bnax1 ... xi–1zi) where 1 < i < n.

From �∗|= ∧1≤j<i Æ(xj) we have �∗|= ∧1≤j<i α(xj) = �(xj) + 1. On the
other hand, from �∗ |= zBxi & Æ(xi), we have �∗ |= α(zi) ≤ �(zi). Then

�∗ |= α(w) = α(bnax1 ... xi–1zi) = 1 +
∑

1≤j<iα(xj) + α(zi) =
= 1 +

∑
1≤j<i(�(xj) + 1) + α(zi) ≤

∑
1≤j<i�(xj) + i + �(zi) ≤

≤ n +
∑

1≤j<i�(xj) + �(zi) = �(bnax1 ... xi–1zi) = �(w),
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as required. Detailed consideration of the cases shows that �∗ |=
∀w (wBy → α(w) ≤ �(w)). This establishes (cii), and so �∗ |= Æ(y). �

It will be useful to have a sharpened form of this result. For m ≥ 1, let

Æ≤m(x) ≡ Æ(x) & ∀u (u⊆px & Tallyb(u) → ∨1≤i≤mu = bi),

that is, the almost even string x contains no b-tallies of length > m. Clearly,
we have:

2.8 (a) For any m ≥ 1, �∗ |= Æ≤m(x) & Æ(y) & y⊆px → Æ≤m(y).
(b) For each m ≥ 1, �∗ |= Æ≤m(a).
(c) If m ≤ n, then �∗ |= Æ≤m(x) → Æ≤n(x).

We can then restate 2.7 as follows:

2.9 For any m(1), ... ,m(n) ≥ 1, �∗|= ∧1≤i≤n Æ≤m(i)(xi) & y =
bnax1 ... xn → Æ≤k(y), where k = max(n,m(1), ... ,m(n)).

We omit the proof, which is straightforward.

2.10 For each n ≥ 1, �∗ |= bnay1 ... yn = x1aa → x1 = bn v bnBx1.

Proof. We have from �∗ |= bnay1 ... yn = z = x1aa that �∗ |= bnBz &
x1Bz. Then �∗ |= bnBx1v bn = x1 v x1Bbn. Suppose, for a reductio, that
�∗ |= x1Bbn. Then �∗ |= ∃z1bn = x1z1 where �∗ |= Tallyb(z1). But then
�∗ |= (x1z1)ay1 ... yn = x1aa, that is, �∗ |= x1(z1ay1 ... yn) = x1aa, whence
�∗ |= z1ay1 ... yn = aa, which is a contradiction because �∗ |= Tallyb(z1).
Therefore, �∗ |= bnBx1v bn = x1. �

Now, 2.7 tells us that Æ strings are closed under the operation of prefixing
a juxtaposition of n such strings with a b-tally of length n followed by a single
occurrence of digit a. On the other hand, 2.4 tells us that the juxtaposed Æ
strings are uniquely recoverable from the resulting string. Along with 2.6,
all this suggests that the Æ strings may be inductively characterized as the
smallest set of strings that contains the single digit a and is closed under the
n-ary juxtaposition operations of the type just described, and that each Æ
string has a unique Æ decomposition. That is exactly what we’ll do now.

Theorem 2.11 (Unique decomposition of Æ strings). Let u be any closed
LC-term. If �∗ |= Æ(u) & u �= a, then for some n ≥ 1,

�∗ |= ∃! u1 ... ∃! un(∧1≤i≤nÆ(ui) & u = bnau1 ... un).

Proof. Assume �∗ |= Æ(u) & u �= a. By 2.6 we have that �∗ |=
∃y1 ... ynu = bnay1 ... yn. We need to show that there are unique Æ strings
u1, ... , un such that �∗ |= u1 ... un = y1 ... yn.

If n = 1, then �∗ |= u = bay. From hypothesis �∗ |= Æ(u) we have by
2.5(b) that �∗ |= Æ(y). So we may let u1 = y. Uniqueness is immediate.

So we may assume that n ≥ 2. By 2.2, from �∗ |= Æ(u) & u �= a we
have that �∗ |= aaEu. Hence �∗ |= ∃x1u = x1aa. By 2.10, we have that
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�∗ |= x1 = bn v bnBx1. Now, we cannot have �∗ |= x1 = bn, for then �∗ |=
bnay1 ... yn = bnaa, whence�∗ |= y1 ... yn = a, which is impossible given that
n ≥ 2. Therefore, �∗ |= bnBx1. Then �∗ |= ∃x2x1 = bnx2, whence

�∗ |= bnay1 ... yn = u = x1aa = (bnx2)aa = bn(x2aa).

Then �∗ |= ay1 ... yn = x2aa, and further, �∗ |= x2 = a v aBx2.
If �∗ |= x2 = a, then �∗ |= ay1 ... yn = aaa, so �∗ |= y1 ... yn = aa. But

then n = 2 and �∗ |= y1 = y2 = a. If we let u1 = u2 = a we have that �∗ |=
Æ(u1) & Æ(u2) and uniqueness is immediate. In this case we are done.
So we may assume that �∗ |= aBx2. Then �∗ |= ∃x3x2 = ax3, that is, �∗ |=
bnay1 ... yn = u = bnax3aa. Thus �∗ |= x3aaEu, and from �∗ |= Æ(u), by
2.3(b), we have that �∗ |= α(x3aa) ≥ �(x3aa) + 1. Then x3aa has at least
one initial segment v, namely itself, such that�∗ |= α(v) ≥ �(v) + 1. Let u1

be the shortest such initial segment of x3aa.

Claim 1. �∗ |= Æ(u1).

By choice of u1 we have that �∗ |= α(u1) ≥ �(u1) + 1. We may assume
that �∗ |= u1 �= a; otherwise, we are done. Suppose, for a reductio, that
�∗ |= α(u1) > �(u1) + 1. Then �∗ |= u1 �= b.

Suppose that �∗ |= aEu1. Then �∗ |= ∃z u1 = za. Then from hypothesis
�∗ |= α(u1) > �(u1) + 1, we obtain�∗ |= α(z) = α(u1)–1 > �(u1) = �(z),
so �∗ |= α(z) ≥ �(z) + 1. Since �∗ |= zBu1 & (u1Bx3aa v u1 = x3aa), we
have that �∗ |= zBx3aa. But this contradicts the choice of u1. Hence �∗ |=
¬aEu1.

Suppose that �∗ |= bEu1. Then �∗ |= ∃z u1 = zb; hence

�∗ |= α(z) = α(zb) = α(u1) ≥ �(u1) + 1 = �(zb) + 1 > �(z) + 1,

where�∗ |= zBu1 & (u1Bx3aa v u1 = x3aa). So�∗ |= zBx3aa, again contra-
dicting the choice of u1. Hence also �∗ |= ¬bEu1.

But then we have that �∗ |= u1 �= a & u1 �= b & ¬aEu1 & ¬bEu1, which
is impossible. Therefore �∗ |= α(u1) = �(u1) + 1. By choice of u1 it follows
also that �∗ |= ∀w (wBu1 → α(w) ≤ �(w)). This completes the proof of
Claim 1.

We have that �∗ |= u1Bx3aa v u1 = x3aa.
If �∗ |= u1 = x3aa, then �∗ |= bnau1 = bnax3aa = u. Since �∗ |=

Æ(u1), we then have �∗ |= α(u) = α(bnau1) = 1 + α(u1) = 1 + (�(u1) +
1) = �(u1) + 2, whereas �∗ |= �(u) = �(bnau1) = n + �(u1). But from
hypothesis �∗ |= Æ(u) we have �∗ |= α(u) = �(u) + 1. Hence �∗ |=
�(u1) + 2 = �(u1) + n + 1, contradicting hypothesis n ≥ 2. Therefore�∗ |=
u1 �= x3aa. But then it follows that�∗ |= u1Bx3aa. So�∗ |= ∃v1x3aa = u1v1,
whence �∗ |= bnau1v1 = bnax3aa = u, which means that �∗ |= bnau1Bu.
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Claim 2. For each i, 1 ≤ i < n,

�∗ |= ∀v1 ... vi(∧1≤j≤iÆ(vj) & (bnav1 ... vi)Bu → ∃vi+1(Æ(vi+1) &
& ((i + 1 < n & (bnav1 ... vivi+1)Bu) v (i + 1 = n & u = bnav1 ... vivi+1)))).

Assume that v1, ... , vi have been picked such that

�∗|= ∧1≤j≤i Æ(vj) & (bnav1 ... vi)Bu.

Then �∗ |= ∃wi u = bnav1 ... viwi; hence �∗ |= wiEu. From hypothesis
�∗ |= Æ(u) by 2.3(b) we then have that �∗ |= α(wi) ≥ �(wi) + 1. Then
we have

�∗ |= α(u) = α(bnav1 ... viwi) = 1 + α(v1 ... vi) + α(wi) =
= 1 +

∑
1≤j≤iα(vj) + α(wi) = 1 +

∑
1≤j≤i(�(vj) + 1) + α(wi) =

= 1 + i +
∑

1≤j≤i�(vj) + α(wi),

whereas
�∗ |= �(u) = �(bnav1 ... viwi) = n + �(v1 ... vi) + �(wi) =

= n +
∑

1≤j≤i�(vj) + �(wi).

But from hypothesis �∗ |= Æ(u) we have �∗ |= α(u) = �(u) + 1.
Then �∗ |= 1 + i +

∑
1≤j≤i�(vj) + α(wi) = n +

∑
1≤j≤i�(vj) + �(wi) + 1,

whence

�∗ |= i + α(wi) = n + �(wi). (#)

We pick vi+1 as follows: if�∗ |= wi = a, we let vi+1 = a; if�∗ |= wi �= a, let
vi+1 be the shortest initial segment v of wi such that �∗ |= α(v) ≥ �(v) + 1.

If �∗ |= wi = a, then �∗ |= u = bnav1 ... viwi = bnav1 ... via, and we of
course have that�∗ |= Æ(vi+1). Since �∗ |= wi = a, we have�∗ |= α(wi) =
1 & �(wi) = 0, so from (#) we obtain �∗ |= i + 1 = n.

If�∗ |= wi �= a, then the same argument as in Claim 1 with vi+1 in place of
u1 and wi in place of x3aa shows that �∗ |= α(vi+1) = �(vi+1) + 1, and that
�∗ |= Æ(vi+1). By choice of vi+1 we have that �∗ |= vi+1 = wi v vi+1Bwi.

If �∗ |= vi+1 = wi, then �∗ |= u = bnav1 ... viwi = bnav1 ... vivi+1. Then
�∗ |= α(wi) = �(wi) + 1, so from (#) we obtain
�∗ |= i + �(wi) + 1 = n + �(wi), whence �∗ |= i + 1 = n.
If �∗ |= vi+1Bwi, then �∗ |= ∃wi+1wi = vi+1wi+1. So

�∗ |= u = bnav1 ... viwi = bnav1 ... vi(vi+1wi+1).

Then we have that

�∗ |= α(wi) = α(vi+1wi+1) = α(vi+1) + α(wi+1) = �(vi+1) + 1 + α(wi+1)

and �(wi) = �(vi+1wi+1) = �(vi+1) + �(wi+1). Hence from (#) we
obtain �∗ |= i + �(vi+1) + 1 + α(wi+1) = n + �(vi+1) + �(wi+1). But
�∗ |= wi+1Eu, so from �∗ |= Æ(u) by 2.3(b), we have �∗ |= α(wi+1) ≥
�(wi+1) + 1 > �(wi+1). But then �∗ |= i + 1 < n & (bnav1 ... vivi+1)Bu.

This completes the proof of Claim 2.

https://doi.org/10.1017/bsl.2023.5 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2023.5


474 ZLATAN DAMNJANOVIC

From Claim 1 and n–1 applications of Claim 2 we obtain strings u1, ... , un

such that �∗|= ∧1≤i≤n Æ(ui) & bnay1 ... yn = u = bnau1 ... un. Hence �∗ |=
y1 ... yn = u1 ... un. Then uniqueness follows from 2.4. �

Theorem 2.12. Let u be any closed LC-term.

For each m ≥ 1, if �∗ |= Æ≤m(u) & u �= a, then for some n, 1 ≤ n ≤ m,

�∗ |= ∃! u1 ... ∃! un(∧1≤i≤nÆ≤m(ui) & u = bnau1 ... un).

Proof. Assume�∗ |= Æ≤m(u). Then�∗ |= Æ(u). We proceed exactly as
in the proof of Theorem 2.11. If�∗ |= u = bnay1 ... yn we have that n ≤ m. If
n = 1 and �∗ |= u1 = a, then �∗ |= Æ≤1(u1), and if n = 2 and �∗ |= u1 =
u2 = a, then�∗ |= Æ≤1(u1) & Æ≤1(u2) and so�∗ |= Æ≤m(u1) & Æ≤m(u2).
In the general case, once we reach the end of the proof of Theorem 2.11, since
�∗ |= y1 ... yn = u1 ... un we have that�∗|= ∧1≤i≤n ui⊆pu. But then from the
principal hypothesis�∗ |= Æ≤m(u) it follows that�∗|= ∧1≤i≤n Æ≤m(ui) as
claimed. �

Remark. If we let

Æm(x) ≡ Æ(x) & ∀t (Tallyb(t) & (taBx v ata⊆px) → t = bm),

we have:

2.13 (a) �∗ |= ∀x, y (Æm(x) & Æ(y) & y⊆px → Æm(x)).
(b) For each m ≥ 1, �∗ |= Æm(a).
(c) If m �= n, then �∗ |= ∀x (x �= a & Æm(x) → ¬Æn(x)).

We omit the proof.

2.14 Let u be any closed LC-term. For each m ≥ 1, if�∗ |= Æm(u) & u �=
a, then �∗ |= ∃x1 ... xmu = bmax1 ... xm.

Proof. Assume �∗ |= Æm(u) & u �= a. Then �∗ |= Æ(u), and by 2.6
we have that, for some n ≥ 1, �∗ |= ∃u1 ... unu = bnau1 ... un. Then �∗ |=
Tallyb(bn) & bnaBu, so from �∗ |= Æm(u) we have �∗ |= bn = bm, whence
n = m. But then we may take x1, ... , xm to be u1, ... , un. �

2.15 (a) For each m ≥ 1,

�∗ |= ∀x1 ... xm∀y (∧1≤i≤mÆm(xi) & y = bmax1 ... xm → Æm(y)).

(b) Let u be any closedLC-term. For each m ≥ 1, if�∗ |= Æm(u) & u �= a,
then �∗ |= ∃! u1 ... ∃! um(u = bmau1 ... um & ∧1≤i≤mÆm(ui))

)
.

These are proved analogously to 2.9 and Theorem 2.12 with appropriate
modifications.

The inductive characterization of Æ≤n strings given in 2.9 and Theorem
2.12 opens up the possibility of defining operations by recursion with respect
to the corresponding generating relations for Æ≤n strings. In Section 4 we
will need to employ operations f of that type, satisfying, e.g., the schema

f(a) = p f(bkax1 ... xk) = gk(f(x1), ... , f(xk)) for any k, 1 ≤ k ≤ n,
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where p is a fixed string and gk some given k-ary operations on strings taking
values from Æ≤m for some fixed m.

Theorem 2.16 (Recursion on Æ≤n strings). Let n ≥ 1, let p be a closed
LC-term, and let Gk(y1, ... , yk, y) be LC-formulae for 1 ≤ k ≤ n. Let m ≥ 1.
Suppose that (a) �∗ |= Æ≤m(p), and
(b) �∗ |= ∀y1 ... yk(∧1≤i≤kÆ≤m(yi) → ∃! y (Æ≤m(y) & Gk(y1, ... , yk, y))).

Then there is an LC-formula F(x, y) such that:

(i) �∗ |= ∀x
(
Æ≤n(x) → ∃! y (Æ≤m(y) & F(x, y)).

(ii) �∗ |= ∀y (F(a, y) ↔ y = p).
(iii) For each k, 1 ≤ k ≤ n,

�∗ |= ∀x1 ... xk∀y1 ... yk
(
∧1≤i≤kF(xi, yi) →

→ ∀x, z (x = bkax1 ... xk → (F(x, z) ↔ Gk(y1, ... , yk, z)))
)
.

Proof. We rely on the coding scheme for sequences of strings explained in
[3, Section 4], and follow the notation used there. In particular, we have that
�∗ |= Pair[x, y, z] iff string z codes the pair of strings x and y, �∗ |= Set(x)
iff x is a set code, and �∗ |= x ε y just in case string x is a member of the set
coded by string y. Let Rk(u, x) abbreviate the LC-formula

∀z1⊆px ... ∀zk⊆px∀y1 ... yk∀u1 ... uk∀y,w
(
∧1≤i≤kÆ≤k(zi) & ∧1≤i≤kPair[zi, yi, ui] &

& Gk(y1, ... , yk, y) & w = bkaz1 ... zk → ∃u′⊆pu (Pair[w, y, u′] & u′ε u)
)
.

Let Comp≤n(u, x) abbreviate

Set(u) & Æ≤n(x) & ∃w (Pair[a, p,w] & w ε u) & ∧1≤k≤nRk(u, x) &
& ∀z∀v1, v2,w1,w2

(
Pair[z, v1,w1] & Pair[z, v2,w2] & w1 ε u & w2 ε u →

→ v1 = v2 & w1 = w2
)
.

Let MinComp≤n(u, x) abbreviate

Comp≤n(u, x) & ∀u′(Comp≤n(u′, x) → ∀y (y ε u → y ε u′)) &
& ∀z, y,w (Pair[z, y,w] & w ε u → z⊆px & Æ≤n(z)).

We then let F(x, y) ≡ ∃u,w(MinComp≤n(u, x) & Pair[x, y,w] & w ε u).
Now, suppose (a) and (b) hold. For (i), assume that �∗ |= Æ≤n(x).

We argue by induction on the generating relation of Æ≤n strings. If
�∗ |= x = a, let w0 be the string such that �∗ |= Pair[a, p,w0], and let u0

be the string that codes the singleton sequence of w0. Then the desired
claim follows immediately from (a) and the definition of F(x, y). Assume
�∗ |= x = bkax1 ... xk where the claim holds for x1, ... , xk with k ≤ n. Then

�∗ |= ∃! y1 ... ∃! yk(∧1≤i≤kÆ≤m(yi) & ∧1≤i≤kF(xi, yi)).

Let w1, ... ,wk be the strings such that �∗|= ∧1≤i≤k Pair[xi, yi,wi], and let
u be the string that codes the sequence w1, ... ,wk. From (b) we have
that �∗ |= ∃! y (Æ≤m(y) & Gk(y1, ... , yk, y)). Pick the string w such that
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�∗ |= Pair[bkax1 ... xk, y,w], and let u′ be the string that codes the sequence
w1, ... ,wk,w. Then the claim follows immediately from the definition of
F(x, y). (ii) and (iii) follow straightforwardly from the definition of F(x, y)
and (i). �

We say that the function whose graph is expressed by the formula
F(x, y) is defined by Æ≤n → Æ≤m recursion. If in the proof of Theorem
2.16 the formulae Æ≤k(x) and Gk(y1, ... , yk, y) for 1 ≤ k ≤ n and Æ≤n(x),
respectively, are replaced by Æn(x) and G(y1, ... , yk, y) for 1 ≤ k ≤ n and
Æn(x), respectively, we obtain:

Theorem 2.17 (Recursion on Æn strings). Let n ≥ 1, let p be a closed
LC-term, and let G(y1, ... , yk, y) be an LC-formula. Let m ≥ 1. Suppose that
(a) �∗ |= Æ≤m(p), and
(b) �∗ |= ∀y1 ... yn

(
∧1≤i≤nÆn(yi) → ∃! y (Æ≤m(y) & G(y1, ... , yk, y)).

Then there is an LC-formula F(x, y) such that:

(i) �∗ |= ∀x (Æn(x) → ∃! y (Æ≤m(y) & F(x, y)).
(ii) �∗ |= ∀y (F(a, y) ↔ y = p).

(iii)
�∗ |= ∀x1 ... xn∀y1 ... yn

(
∧1≤i≤nF(xi, yi) →

→ ∀x, z (x = bnax1 ... xn → (F(x, z) ↔ G(y1, ... , yk, z)))
)
.

§3. Catalan coding of trees. Theorem 2.11 yields an algorithm—“peel off
the prefix bna and search for the shortest initial segment of the remainder
having the +1 property”—which, when applied to a given Æ string x and
then repeatedly to the resulting component Æ strings, eventually terminates
in a unique tree-like arrangementTx of substrings of x in which every node is
an Æ string and all of the endnodes = a. And, conversely, given any finite tree
T , by labelling each endnode with a, we can obtain, by repeatedly applying
2.7, a unique Æ string cT that we may think of as a code for T , providing an
explicit formal representation in linear form of the characteristic structure
of the tree T .

There are other ways to directly display the structure of planar trees in
linear form, e.g., via symmetric bracketing. Because in concatenation theory
parentheses are used associatively, and the symmetric bracketing notation
is not associative—x(xx) does not represent the same tree as (xx)x—for our
purposes we need to be able to rely exclusively on juxtaposition along with
some indicators of arity as the sole means of expressing the tree structure by
concatenation of binary strings. A simplified variant of this approach was
used in [3] (see [3, 2.2]) to obtain a result analogous to Theorem 2.12, which
served there as a basis for a coding of full binary, or dyadic, finite trees, where
every non-terminal node has exactly two immediate descendants. Even
though here we are allowing, in principle, any finite number of immediate
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descendants, remarkably, the very same strings, the Æ strings, function as
codes for trees in both cases.

We call the coding of finite trees given here the Catalan coding. Eugene
Charles Catalan (1814–1894) identified the numbers, now named after him,
that count different ways to fully (symmetrically) parenthesize a string of
given lengths. As we defined them, Æ strings are finite words in the alphabet
{a, b} of the form wa where w is either empty or has exactly as many a’s
as b’s and has no initial segment in which a’s strictly outnumber b’s. Words
with this property have been extensively studied in combinatorics where they
are called Catalan words (see, e.g., [5]).

The dyadic coding given in [3] and the Catalan coding parse Æ strings
differently. For example, bbbbaaaaa (= b4a5) produces, via the dyadic
coding, the full binary tree on the left,

and via the Catalan coding the 4-ary tree on the right. Both coding schemes
group codes of immediate subtrees analogously to the way in which argument
terms of a given binary, and, respectively, m-ary operation are successively
listed when written in the so-called Polish notation. But the tree branchings
are recorded in different ways: in the dyadic code, each b stands for a
dyadic branching node, in the Catalan coding each block of consecutive
b’s followed by a single a signals a branching node, with the number of
consecutive b’s in the same block indicating the number of that node’s
immediate descendants. Consequently, in the Catalan coding, the a’s in a
given tree code count the nodes and the b’s the edges of the tree. Nonetheless,
some basic information about the tree coded by the string—the number of
branching nodes (= the number of blocks of consecutive b’s) and the number
of terminal nodes (= the number of a’s in the dyadic case, and = the number
of a’s minus the number of blocks of consecutive b’s in the present scheme)—
and, consequently, the total number of nodes in the tree (= the total number
of digits and = the total number of a’s, resp.) are read off the encoding Æ
string essentially in the same way in both codings.

The Catalan coding offers a practical and easy way to communicate
descriptions of the immense variety of finite planar trees, allowing any
number, including single, immediate descendants: for example,
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are coded by b3a2b2a4, b2ab2a3b2a3
, and babab2a3, respectively. (Always

ignore the first a after a block of consecutive b’s.) Restricting attention
to Æ≤m and Æm strings allows us to consider in particular ≤m- and m-,
respectively, trees with branchings allowing no more than m and exactly m,
respectively, immediate descendants, m ≥ 1.

The fact that the Æ strings work as codes just as well for the more general
class of trees of arbitrary arity as they do for dyadic trees suggests that in the
specific setting of concatenation theory there may be a way to systematically
interpret statements about the former in a domain that consists exclusively
of binary trees or their formal simulacra. We now proceed to develop this
idea.

§4. Interpreting T≤m in T≤2. In contrast to T2, the theory T≤2 explicitly
allows for trees having nodes with single immediate descendants. We exploit
this feature to show that such ≤2-trees can encode information about
multiple branchings. Consider, for example, the simple triple-branching tree
b3a4 on the left, and the tree

bab2a(ba2)b2a(ba2)b2a(ba2)a on the right. The latter has three binary
branchings, and in each of these the left branch has a single node ba2 which
in turn has a single terminal node as its sole immediate descendant. This
is meant to capture the ternary connections of the root node of b3a4. The
right branchings of the ≤2-tree serve as the supporting “spine” to express
this structure. So we are replacing an m-branching by m binary branchings
with singletons branching to the left. Here is a slightly more complicated
example:
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b2a2b3a4 ⇒ bab2a((ba2)b2a(b3a4))a ⇒
⇒ bab2a(ba2)b2a(bab2a(ba2)b2a(ba2)b2a(ba2)a)a.

(The parentheses serve to highlight the replacements—they are not essential
to reading the tree code.). For this to work generally, the replacement
procedure has to operate inductively, starting with the root of the ≤ m-tree
systematically transforming it step-by-step by working down its branches
until all of its branchings—single, binary, or multiple—are appropriately
converted. The ultimate result will be a ≤2-tree resembling a funhouse
chandelier heavily tilting to the left, with single drop crystals at all (and
only) the left terminal nodes.

More formally, for fixed m, we define a map �(x) on Æ≤m strings such
that �(a) = baa and �(bkax1 ... xk) = bab2a�(x1)b2a�(x2) ... b2a�(xk)a for
k ≤ m. The operation � is defined by Æ≤m → Æ≤2 recursion, by letting
p = baa and Gk(y1, ... , yk, y) be the LC-formulae

∃z1 ... zk(z1 = b2ayk & ∧1≤j<kzj+1 = b2ayk–jzj & y = bazka).

Hence by Theorem 2.16 its graph is expressible in LC. Then

�∗ |= ∀x (Æ≤m(x) → Æ≤2(�(x))).

We say that the ≤ 2-tree �(x) is an SLS-code (singleton/left singleton)
code of the ≤m-tree x.

To show that T≤m is formally interpretable in T≤2 we need to reformulate
T≤m in relational vocabulary { 0,T1, ... ,Tm,�} where Tk for 1 ≤ k ≤ m
are (k + 1)-place relational symbols. As axioms we take the universal
closures of:

(T1n) ¬Tn(x1, ... , xn, 0) for each n, 1 ≤ n ≤ m,

(T2k,n) Tk(x1, ... , xk, x) & Tn(y1, ... , yn, y) → x �= y for each k, n, 1 ≤ k < n ≤ m,

(T3n) Tn(x1, ... , xn, x) & Tn(y1, ... , yn, y) & x = y → ∧1≤i≤n xi = yi for each n, 1 ≤ n ≤ m.

(T4n) Tn(y1, ... , yn, y) → (x � y ↔ x = y v ∨1≤i≤n x � yi) for each n, 1 ≤ n ≤ m,

(T5) – (T8),

(T9n) ∃xTn(x1, ... , xn, x) for each n, 1 ≤ n ≤ m,

(T10n) Tn(x1, ... , xn, x) & Tn(x1, ... , xn, y) → x = y for each n, 1 ≤ n ≤ m.
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We define the domain of the formal interpretation so that the SSL codes
of ≤ m-trees are guaranteed to be included in it:

I(x) ≡ ∃y x = �1(y).

Let 0� =: �1(0).
For each n, 1 ≤ n ≤ m, let (Tn(y1, ... , yn, y))� be the formula

∃u1 ... un(u1 = �2(yn, 0) & ∧1≤i<nui+1 = �2(yn–i, ui) & y = �1(un)),

and let (x � y)� ≡ x � y. Throughout the rest of this section, we let M be
an arbitrary model of T≤2.

4.1 (a) For each n, 1 ≤ n ≤ m, T≤2 � (T1n)� .
(b) For each k and n, 1 ≤ k < n ≤ m, T≤2 � (T2k,n)�.
(c) For each n, 1 ≤ n ≤ m, T≤2 � (T3n)�.
(d) For each n, 1 ≤ n ≤ m, T≤2 � (T4n)�.
(e) For each n, 1 ≤ n ≤ m, T≤2 � (T9n)�.
(f) For each n, 1 ≤ n ≤ m, T≤2 � (T10n)�.

Proof. (a) Assume M |= (Tn(y1, ... , yn, 0))� where M|= ∧1≤i≤n I(yi).
Then

M |= ∃u1 ... un(u1 = �2(yn, 0) & ∧1≤i<nui+1 = �2(yn–i, ui) & �1(0) = �1(un)).

Suppose n > 1. Then M |= �1(0) = �1(un) & un = �2(y1, un–1). But then,
by (T31), we have M |= 0 = �2(y1, un–1), contradicting (T12). If n = 1,
then M |= ∃u1(u1 = �2(y1, 0) & �1(0) = �1(u1)). Then, by (T31), M |= 0 =
�2(y1, 0), contradicting (T12). Hence M |= ¬(Tn(y1, ... , yn, 0))� .

(b) Assume M |= (Tk(x1, ... , xk, x))� & (Tn(y1, ... , yn, y))� & x = y where
M|= ∧1≤i≤k I(xi) & ∧1≤j≤nI(yj) & I(x) & I(y). Then M |= ∃u1 ... uk(u1 =
�2(xk, 0) & ∧1≤i<kui+1 = �2(xk–i, ui) & x = �1(uk)) and M |= ∃v1 ... vn(v1 =
�2(yn, 0) & ∧1≤j<nvj+1 = �2(yn–j, vj) & y = �1(vn)), whence M |= �1(uk) =
x = y = �1(vn), and further, by (T31), M |= uk = vn.

Let x0 = x and y0 = y. By hypothesis, we have that

M |= x0 = y0. (1)

Assume now that M |= xj = yj & uk–j = vn–j, where 0 ≤ j < k. Then
M |= �2(xj+1, uk–(j+1)) = uk–j = vn–j = �2(yj+1, vn–(j+1)), whence, by (T32),
M |= xj+1 = yj+1 & uk–(j+1) = vn–(j+1). Thus, we have

M |= xj = yj & uk–j = vn–j → xj+1 = yj+1 & uk–(j+1) = vn–(j+1). (2)

From (1) after k applications of (2) we obtain

M |= xk = yk & u1 = uk–(k–1) = vn–(k–1) = vn–k+1.

But M |= u1 = �2(xk, 0) and M |= vn–k+1 = �2(yk, vn–k) where n–k �= 0.
Hence M |= �2(xk, 0) = �2(yk, vn–k). But then, by (T32), M |= 0 = vn–k =

https://doi.org/10.1017/bsl.2023.5 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2023.5


TREE THEORY: INTERPRETABILITY BETWEEN WEAK FIRST-ORDER THEORIES OF TREES 481

�2(yk+1, vn–(k+1)), contradicting (T12). Hence M |= x �= y, and we obtain
M |= (T2k,n)� .

(c) Assume M |= (Tn(x1, ... , xn, x))� & (Tn(y1, ... , yn, y))� & x = y where
M|= ∧1≤i≤n I(xi) & ∧1≤j≤nI(yj) & I(x) & I(y). Then M |= ∃u1 ... uk(u1 =
�2(xn, 0) & ∧1≤i<nui+1 = �2(xn–i, ui) & x = �1(un)) and M |= ∃v1 ... vn(v1 =
�2(yn, 0) & ∧1≤j<nvj+1 = �2(yn–j, vj) & y = �1(vn)), whence M |= �1(un) =
x = y = �1(vn), and further, by (T31), M |= un = vn. We now show, for
0 ≤ j < n, that

M |= xj = yj & un–j = vn–j → xj+1 = yj+1 & un–(j+1) = vn–(j+1). (∗)

Assume M |= xj = yj & un–j = vn–j. Then M |= �2(xj+1, un–(j+1)) = un–j =
vn–j = �2(yj+1, vn–(j+1)), whence, by (T32), M |= xj+1 = yj+1 & un–(j+1) =
vn–(j+1) , as claimed.

Letting x0 = x and y0 = y, after n applications of (∗) we obtain M |= xn =
yn. Hence M|= ∧1≤i≤n xi = yi as needed.

(d) Assume M |= (Tn(y1, ... , yn, y))� where M|= ∧1≤i≤n I(yi). Then

M |= ∃u1 ... un(u1 = �2(yn, 0) & ∧1≤i<nui+1 = �2(yn–i, ui) & y = �1(un)).

Suppose further that M |= x � y where M |= I(x). Then M |= x � �1(un),
whence, by (T41), M |= x = �1(un) v x � un, and further, M |= x = y v x �
un. We now show, for 0 ≤ j < n, that

M |= x � un–j → x � yj+1 v x � un–(j+1). (∗∗)

Assume that M |= x � un–j. Then M |= x � �2(yj+1, un–(j+1)), whence, by
(T42), M |= x = un–j v x � yj+1 v x � un–(j+1). Suppose, for a reductio, that
M |= x = un–j. Then M |= x = �2(yj+1, un–(j+1)). But from M |= I(x) we have
that M |= ∃z x = �1(z), whence M |= �2(yj+1, un–(j+1)) = �1(z), contradict-
ing (T21,2). Hence M |= x �= un–j. Therefore M |= x � yj+1 v x � un–(j+1), as
claimed. After n–1 applications of (∗∗) we obtain from M |= x = y v x � un

that M |= x = y v ∨1≤i≤n–1x � yi v x � u1. If M |= x � u1, then M |= x �
�2(yn, 0), whence by (T42), we have M |= x = �2(yn, 0) v x � yn v x � 0. But
M |= x = �2(yn, 0) contradicts M |= I(x) by (T21,2). And from M |= x � 0
by (T6) and (T7) we obtain M |= x = 0. But then from M |= I(x) we have
M |= ∃z �1(z) = x = 0, contradicting (T11). Hence both M |= x = �2(yn, 0)
and M |= x � 0 are ruled out, and we obtain M |= x = y v ∨1≤i≤nx � yi.
But then

M |= x � y → x = y v ∨1≤i≤nx � yi.

Conversely, assume that M |= x = y v ∨1≤i≤nx � yi. Letting y0 = y, we
now show that the principal hypothesis M |= (Tn(y1, ... , yn, y))� implies that

M |= ∧1≤i≤nyi � y. (†)
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By (T5) we have that M |= y � y. Hence M |= y0 � y. By (T41) we have
that M |= un � �1(un) = y. Next, we show, for 0 ≤ j < n, that

M |= yj � y & un–j � y → yj+1 � y & un–(j+1) � y. (∗ ∗ ∗)

Assume that M |= yj � y & un–j � y. Then, by (T42), we have that
M |= yj+1 � �2(yj+1, un–(j+1)) = un–j � y and M |= un–(j+1) � �2(yj,

un–(j+1)) = un–j � y.
This proves (∗∗∗).
After n applications of (∗∗∗) we then obtain from M |= y0 � y & un � y

that

M |= ∧1≤i<nyi � y & u1 � y.

But then, by (T42), M |= yn � �2(yn, 0) = u1 � y. Hence by (T8) it follows
that

M |= ∧1≤i≤nyi � y.

This establishes (†). But then from hypothesis M |= x = y v ∨ 1≤i≤nx � yi

and y0 = y, we obtain, by (T8), that M |= x � y. Therefore also

M |= x = y v ∨1≤i≤nx � yi → x � y,

as required.
(e) Assume M |= ∧1≤i≤nI(xi). We have that M |= ∃u1 u1 = �2(xn, 0).
Let u0 = 0. We now argue that, for 0 ≤ j – 1 < n,

M |= uj+1 = �2(xn–j, uj) → ∃uj+2uj+2 = �2(xn–(j+1), uj+1). (††)

Assume that M |= uj+1 = �2(xn–j, uj). Then, trivially in T≤2,

M |= ∃uj+2uj+2 = �2(xn–(j+1), uj+1).

Hence (††) holds. After n–1 applications of (††) we obtain from M |=
∃u1u1 = �2(xn, 0) that

M |= ∃u1 ... un(u1 = �2(xn, 0) & ∧1≤i<nui+1 = �2(xn–i, ui)).

Now, we also have that M |= ∃x x = �1(un). From the definition of I we
have that M |= ∃x (x = �1(un) & I(x)). Hence we have proved that M |=
∃x (I(x) & (Tn(x1, ... , xn, x))�), as required.

(f) Assume M |= (Tn(x1, ... , xn, x))� & (Tn(x1, ... , xn, y))� where
M |= ∧1≤i≤nI(xi) & I(x) & I(y). Then M |= ∃u1 ... un(u1 = �2(xn, 0) &
∧1≤i<n ui+1 = �2(xn–i, ui) & x = �1(un)) and M |= ∃v1 ... vn(v1 = �2(xn, 0) &
∧1≤i<n vi+1 = �2(xn–i, vi) & y = �1(vn)). Hence M |= u1 = v1. Now, for
1 ≤ j < n, we have that

M |= uj = vj → uj+1 = vj+1. (†††)
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After n–1 applications of († † †) we obtain from M |= u1 = v1 that
M |= un = vn. But then M |= x = �1(un) = �1(vn) = y. So M |= x = y, as
required. �

From 4.1(a)–(f) we conclude:

Theorem 4.2. For each m ≥ 1, T≤m is interpretable in T≤2.

Now, for fixed n ≥ 1, the (relational form of) theory Tn of full n-trees is
formulated in the reduced vocabulary {0,Tn,�} with (T1n), (T3n), (T4n),
(T5) – (T8), (T9n), and (T10n) as axioms. So the argument for Theorem 4.2
also establishes:

Theorem 4.3. For each n ≥ 1, Tn is interpretable in T≤2.

§5. Interpreting T≤2 in QT+. In [3] we have shown that the theory T2

of dyadic trees is interpretable in formal concatenation theory QT+, a first-
order theory formulated in vocabulary LC, with the (universal closures) of
the following formulae as axioms:

(x∗y)∗z = x∗(y∗z). (QT1)

¬(x∗y = a) & ¬(x∗y = b). (QT2)

(x∗a = y∗a → x = y) & (x∗b = y∗b → x = y) &
& (a∗x = a∗y → x = y) & (b∗x = b∗y → x = y). (QT3)

¬(a∗x = b∗y) & ¬(x∗a = y∗b). (QT4)

x = a v x = b v (∃y(a∗y = x v b∗y = x) & ∃z(z∗a = x v z∗b = x)). (QT5)

It is convenient to have a function symbol for a successor operation on
strings:

Sx = y ↔ ((x = a & y = b) v (¬x = a & x∗b = y)). (QT6)

Since the last axiom is basically a definition, adding it to the other five
results in an inessential (i.e., conservative) extension.

The proof given in [3] of interpretability of T2 in QT+ relies on the binary
representation of dyadic trees by Æ strings but uses the coding scheme
given there. Here we adapt the argument to the Catalan coding described
in Section 3 to establish interpretability of theory T≤2 of ≤ 2-trees in QT+.
To define the domain of the interpretation we use the formula I∗(x) in the
language of concatenation theory obtained in [3, Section 6], which defines
the set of Æ strings in QT+. Let

I≤2(x) ≡ I∗(x) & ∀t (Tallyb(t) & t⊆px → t = b v t = bb).

We interpret 0 by the digit a, the function symbols �1 and �2 by setting

�1(x) =: bax �2(x, y) =: bbaxy,
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and let x � y be interpreted by the formula x = y v ax⊆py. Let Aκ be the
corresponding LC-translation of a formula A of T≤2. Note that here, unlike
in Section 2, we reason formally within the concatenation theory QT+.
Throughout this section we let M be an arbitrary model of QT+.

First, some preliminaries.

5.1 (a) QT+ � ∀x ∈ I∗∀t, y,w, z (Tallyb(t) & Tallya(y) & x = wyz & t ⊆p x
→ t ⊆p w v t ⊆p z).

(b) QT+ � I∗(x) & I∗(y) & z = bxy → I∗(z).
(c) QT+ � I∗(x) & I∗(y) → ¬xBy & ¬yBx.
(d) QT+ � I∗(x) & I∗(y) → ¬∃z(zBx & zEy).
(e) QT+ � I∗(y) & I∗(z) → ∀v,w(v ⊆p z & wE(bbayv) → wEv v

w = v v vEw).
(f) QT+ � I∗(z) → ∀u, v,w (w ⊆p z & uw = uw → u = w).
(g) QT+ � I∗(x) → ¬(ax ⊆p x).

Proof. For (a), see [2, 4.17(b)]; in [3] the formula I∗(x) is selected so as
to ensure this property. Part (b) is proved as (I1) in [3, Section 6.1(c)]. Parts
(c) and (d) are straightforwardly obtained from the definition of I∗ in [3] (cf.
2.3(a) and (c)). For (e), assume M |= I∗(y) & I∗(z). Then M |= J∗(y) & J∗(z),
where J∗ is the string form selected in [3, Section 6] that is closed under ∗ and
downward closed under ⊆p. Hence M |= J∗(bbayz). The claim follows from
the fact that J∗ was also selected to have the property described in (3.10)
of [2]. The same proof for (f) and (g) taking into account (3.6) and (3.12)
of [2]. �

5.2 (a) QT+ � I≤2(x) & z = bax → I≤2(z).
(b) QT+ � I≤2(x) & I≤2(y) & z = bbaxy → I≤2(z).

Proof. For (a), assume M |= I≤2(x) & z = bax. Then M |= I∗(x). We
have that M |= I∗(a), by definition of I∗. By 5.1(b) we then have that M |=
I∗(z).

Assume now that M |= Tallyb(t) & t⊆pz. Then M |= t⊆pbax. But then,
by 5.1(a) we have that M |= t⊆pb v t⊆px. Now, from M |= t⊆pb we have
M |= t = b, and from M |= t⊆px and hypothesis M |= I≤2(x) we have M |=
t = b v t = bb. Hence M |= t = b v t = bb, as required.

For (b), assume M |= I≤2(x) & I≤2(y) & z = bbaxy. Then M |= I≤2(bax)
by (a), so M |= I∗(bax). From hypothesis M |= I≤2(y) we have M |= I∗(y).
But then M |= I∗(z) by 5.1(b).

Assume now that M |= Tallyb(t) & t⊆pz. Then M |= t⊆pbbaxy. By 5.1(a),
we have that M |= t⊆pbb v t⊆pxy. If M |= t⊆pbb, then M |= t = b v t = bb.
Suppose now that M |= t⊆pxy. From M |= I∗(x) we have that M |= x =
a v aaEx. If M |= x = a, then from M |= t⊆pay we have M |= t⊆py.

If M |= aaEx, then M |= ∃x1x = x1aa, so M |= t⊆p(x1aa)y, whence M |=
t⊆px1 v t⊆py. So from M |= t⊆pxy we have M |= t⊆px v t⊆py, and thus
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from hypothesis M |= I≤2(x) & I≤2(y) we obtain M |= t = b v t = bb, as
required. �

5.2 shows that the domain of the formal interpretation is closed under the
concatenation operations chosen to interpret the tree-building functions �1
and �2 in T≤2. We next verify that the translations of the axioms of T≤2 are
derivable in QT+. Here we have to make sure that the subtree relation in
T≤2 is adequately represented by the particular variant of subword relation
between strings we chose above.

5.3. (a) QT+ � (T41)κ.
(b) QT+ � (T42)κ.
(c) QT+ � (T6)κ.
(d) QT+ � (T7)κ.
(e) QT+ � (T8)κ.

Proof. (a) We show that
QT+ � I≤2(x) & I≤2(y)→ (x = bay v ax ⊆pbay ↔ x = bay v x = y v ax⊆py).

Assume M |= I≤2(x) & I≤2(y). Suppose that M |= ax⊆pbay. We can
rule out M |= ax = bay v axBbay immediately. Then we have M |=
axEbay v ∃x1, x2 bay = x1(ax)x2, that is,

M |= ∃x1bay = x1(ax) v ∃x1, x2 bay = x1(ax)x2.

Hence M |= ∃x1x1Bbay. Now, we have that

QT+ � zBbaw → z = b v z = ba v baBz

So M |= x1 = b v x1 = ba v baBx1. We distinguish the cases:

(1) M |= x1 = b.

Then M |= bay = bax v bay = b(ax)x2, whence M |= y = x v y = xx2, so
M |= y = x v xBy. But M |= xBy is ruled out by M |= I∗(x) & I∗(y) and
5.1(c). Hence M |= x = y.

(2) M |= x1 = ba.

Then M |= bay = ba(ax) v bay = ba(ax)x2, whence M |= y = ax v y =
axx2. But M |= aBy contradicts M |= I∗(y). So this case is ruled out.

(3) M |= baBx1.

Then M |= ∃x3x1 = bax3, so M |= bay = bax3(ax) v bay = bax3(ax)x2,
whence M |= y = x3(ax) v y = x3(ax)x2. But then M |= ax⊆py.

Therefore, M |= ax⊆pbay → x = y v ax⊆py. Conversely, suppose M |=
x = y v ax⊆py. Then M |= ax = ay v ax⊆py, whence M |= axEbay v
ax⊆pbay, which yields M |= ax⊆pbay. Therefore we also have M |= x =
y v ax⊆py → ax⊆pbay. But then M |= ax⊆pbay ↔ x = y v ax⊆py, and a
fortiori, M |= x = bay v ax⊆pbay ↔ x = bay v x = y v ax⊆py, as needed.
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(b) We show that

QT+ � I≤2(x) & I≤2(y) & I≤2(z) →
→ (x = bbayz v ax ⊆p bbayz ↔ x = bbayz v

v (x = y v ax ⊆p y) v (x = z v ax ⊆p z)).

Assume M |= I≤2(x) & I≤2(y) & I≤2(z). Suppose that M |= ax⊆pbbayz.
Again we can rule out M |= ax = bbayz v axB(bbayz). So we are left with
M |= axE(bbayz) v ∃x1, x2 bbayz = x1(ax)x2.

(1) M |= axE(bbayz).

Then by 5.1(e), M |= axEz v ax = z v zEax. If M |= axEz v ax = z, then
M |= ax⊆pz, and we are done. So we may assume that M |= zEax. Then
M |= ∃x1ax = x1z, whence M |= x1 = a v aBx1. If M |= x1 = a, then M |=
ax = az, and we obtain M |= x = z, as needed. If M |= aBx1, then M |=
∃x2 ax = x1z = (ax2)z, whence M |= x = x2z, and M |= x2Bx.

From hypothesis M |= axE(bbayz), we have M |= ∃z1 bbayz = z1ax =
z1a(x2z).

By 5.1(f), we obtain M |= bbay = z1ax2, whence M |= z1 = b v bBz1.
It follows that M |= bbay = bax2 v ∃z2 bbay = (bz2)ax2, hence also M |=
bay = ax2 v bay = z2ax2. But M |= bay = ax2 is ruled out. Hence M |=
bay = z2ax2, and so M |= x2Ebay. Now by 5.1(b), we have that M |= I∗(bay)
since M |= I∗(a) & I∗(y). But then M |= x2Bx & x2Ebay contradicts M |=
I∗(x) & I∗(y) by 5.1(d). Hence subcase M |= aBx1 is ruled out.

(2) M |= ∃x1, x2 bbayz = x1(ax)x2.

Then by 5.1(e), M |= x2Ez v x2 = z v zEx2.

(2a) M |= zEx2v x2 = z.

Then M |= ∃x4x2 = x4z v x2 = z, so M |= bbayz = x1ax(x4z) v bbayz =
x1(ax)z.

By 5.1(f), we have M |= bbay = x1axx4 v bbay = x1(ax), whence M |=
x1 = b v bBx1. It follows that

M |= bbay = baxx4 v ∃x3bbay = (bx3)axx4 v bbay = b(ax) v ∃x3bbay = (bx3)ax,

Hence M |= bay = axx4 v bay = x3axx4 v bay = ax v bay = x3ax, whence
M |= ax⊆pbay. Then M |= x = y v ax⊆py follows as in 5.3(a).

(2b) M |= x2Ez.

Then M |= ∃x3 z = x3x2; thus M |= x3Bz. Also, M |= bbay(x3x2) =
x1(ax)x2. Hence, by 5.1(f), M |= bbayx3 = x1(ax). Then, by 5.1(e), M |=
x3Ex v x3 = x v xEx3.

(2bi) M |= x3Ex v x3 = x.
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Then either way from M |= x3Bz and M |= I∗(x) & I∗(z) we obtain a
contradiction by 5.1(c) and 5.1(d). Hence subcase (2bi) is ruled out.

(2bii) M |= xEx3.

Then M |= ∃x5 x3 = x5x, whence M |= bbayx5x = x1ax. By 5.1(f), we have
M |= bbayx5 = x1a. Hence M |= x5 = a v aEx5. Then from M |= x3 = x5x,
we obtain M |= x3 = ax v axEx3. From M |= x3Bz, we obtain M |= ax⊆pz,
as needed.

This proves that M |= ax⊆pbbayz → (x = y v ax⊆py) v (x = z v ax⊆pz).
Conversely, suppose that M |= x = y v ax⊆py. If M |= x = y, then M |=

ax = ay, whence M |= ax⊆pbb(ay)z. So M |= x = y v ax⊆py → ax⊆pbbayz.
Likewise M |= x = z v ax⊆pz → ax⊆pbbayz. Therefore we also have

M |= (x = y v ax⊆py) v (x = z v ax⊆pz) → ax⊆pbbayz.

But then M |= ax⊆pbbayz ↔ (x = y v ax⊆py) v (x = z v ax⊆pz), and
finally M |= x = bbayz v ax⊆pbbayz ↔ x = bbayz v (x = y v ax⊆py) v
(x = z v ax⊆pz), as required.

(c) That QT+ � I≤2(x) → x = a v aa ⊆p x is immediate from the defini-
tion of I∗(x).

(d) We show that

QT+ � I≤2(x) & I≤2(y) → ((x = y v ax ⊆p y) & (y = x v ay ⊆p x) → x = y)

Assume M |= I≤2(x) & I≤2(y), and suppose, for a reductio, that M |=
ax⊆py & ay⊆px. Then M |= ax⊆py⊆pay⊆px. But this contradicts 5.1(g)
since M |= I∗(x). But then M |= (x = y v ax⊆py) & (y = x v ay⊆px) → x =
y follows.

(e) We show that

QT+ � I≤2(x) & I≤2(y) & I≤2(z) →
→ ((x = y v ax ⊆p y) & (y = z v ay ⊆p z) → (x = z v ax ⊆p z)).

Assume M |= I≤2(x) & I≤2(y) & I≤2(z) and suppose M |= ax⊆py & ay⊆pz.
Then M |= ax⊆py⊆pay⊆pz, so M |= ax⊆pz. Then M |= (x = y v ax⊆py) &
(y = z v ay⊆pz) → (x = z v ax⊆pz), as needed. �

From 5.2–5.3 we obtain:

Theorem 5.4. T≤2 is interpretable in QT+.

§6. Mutual interpretability of finitely axiomatized tree theories. For each
m ≥ 2, we have that T2 is a subtheory of the theory of ≤ m-trees T≤m: so
T2≤IT≤m. Now, T≤m allows any number≤ m of immediate descendants. We

https://doi.org/10.1017/bsl.2023.5 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2023.5


488 ZLATAN DAMNJANOVIC

wish to show that T2≤ITn for each n ≥ 2, so that formal simulacra of dyadic
trees can be systematically identified from among n-ary trees. Consider, for
example, the dyadic trees b2a2b2ab2a4 and b2ab2a3b2a2b2a3:

If we ignore the middle single-descendant branchings, we see that the
ternary trees b3a3b3ab3a6 and b3ab3a5b3a3b3a4 reproduce their characteristic
forms in the latters’ left and right branchings:

The same idea works with any n ≥ 3, with n–2 singleton branchings
instead. For fixed n ≥ 2, we define a map on Æ2 strings such that

	(a) = a 	(b2ax1x2) = bna	(x1)an–2	(x2).

The operation is defined by Æ2 � Æ≤n recursion, by letting p = a and
G(y1, y2, y) be the LC-formula ∃z1,z2, z3(y = bnaz1 & z1 = y1z2 & z2 =
an–2y2). Hence by Theorem 2.17 its graph is expressible in LC, and we have
that

�∗ |= ∀x (Æ2(x) → Æn(	(x))).

To define the formal interpretation of T2 in Tn we let the domain be defined
by the formula

I(x) ≡ ∀y (y � x → ∀y1 ... yn(y = �n(y1, ... , yn) → ∧1<i<n yi = 0)),

and let 0 be interpreted by 0, the binary operation �2(x, y) of T2 by
�n(x, 0, ... , 0, y), and the relational symbol � of T2 by � in Tn. First we
show that I(x) is closed, provably in Tn, under the n-ary operation that is to
serve as the interpretation of �2, and next we verify that the translations of
the axioms of T2 are indeed deducible in Tn. Throughout this section we let
M be an arbitrary model of Tn, for fixed n ≥ 2.
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6.1. (a) For each n ≥ 2, Tn � I(x) & I(y) & z = �n(x, 0, ... , 0, y) → I(z)..
(b) For each n ≥ 2,

Tn � I(x) & I(y) & I(z) → (z � �n(x, 0, ... , 0, y) ↔ z = �n(x, 0, ... , 0, y)v z � x v z � y).

Proof. (a) Assume that M |= z = �n(x, 0, ... , 0, y) where M |=
I(x) & I(y). Suppose M |= w � z where M |= w = �n(w1,w2, ... ,wn).
We need to show that M |= ∧1<i<n wi = 0. We have that M |= w �
�n(x, 0, ... , 0, y). By (T4n), we get

M |= w = �n(x, 0, ... , 0, y) v w � x v w � 0 v ... v w � 0 v w � y).

We distinguish the cases:
(i) M |= w = �n(x, 0, ... , 0, y).
Then from M |= w = �n(w1,w2, ... ,wn), by (T3n), we have M |=

∧1<i<n wi = 0.
(ii) M |= w � x.
Then from M |= I(x) & w = �n(w1,w2, ... ,wn) we have M |= ∧1<i<n

wi = 0.
(iii) M |= w � 0.
Then from (T6) and (T7), we have M |= w = 0. But this contradicts

hypothesis M |= w = �n(w1,w2, ... ,wn) by (T1n). Hence each of these n–2
cases is ruled out.

(iv) M |= w � y.
Exactly analogous to (ii).
With (i)–(iv) we have that

M |= ∀w (w � z → ∀w1 ...wn(w = �n(w1, ... ,wn) → ∧1<i<n wi = 0)),

which means that M |= I(z).
(b) Assume M |= I(x) & I(y) & I(z), and let M |= z � �n(x, 0, ... , 0, y).

Then we have, by (T4n), M |= z = �n(x, 0, ... , 0, y) v z � x v z �
0 v ... v z � 0 v z � y.

Now, suppose M |= z � 0. Then, by (T6) and (T7), we have M |= z = 0.
But then, again by (T6), M |= z � x. Hence M |= z � 0 → z � x, and so we
have, under hypothesis M |= z � �n(x, 0, ... , 0, y), that in fact

M |= z = �n(x, 0, ... , 0, y) v z � x v z � y.

Therefore, M |= z � �n(x, 0, ... , 0, y) → z = �n(x, 0, ... , 0, y) v z � x v
z � y.

The converse follows from (T4n). �
We then obtain:

Theorem 6.2. For each n ≥ 2, T2≤ITn.

On the other hand, since Tn is a subtheory of T≤n, we have that Tn≤IT≤n.
By Theorem 4.2, for each n ≥ 2, also T≤n≤IT≤2, and by Theorem 5.4 we
have that T≤2≤IQT+.
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In [3], we have established that the concatenation theory QT+ is formally
interpretable in the theory of dyadic trees, so QT+≤IT2. Putting all this
together, we obtain:

Theorem 6.3. For each n ≥ 2, T≤n≡IT≤2≡IT2≡ITn.

§7. Interpreting T∗ in QT+. We now let all Æ strings into play and have
I∗(x) define the domain of the interpretation. Again, 0 is interpreted by the
digit a, and x � y by the formula x = y v ax⊆py. We use the relational
formulation of the axioms of T∗ given in Section 4 and interpret the
(n + 1)-place relational symbols Tn for n ≥ 1 by setting Tn(x1, ... , xn, x) ≡
bnax1 ... xn = x. Essentially, we are interpreting, for each fixed n, the
function symbol for the n-ary tree-building operation �n(x1, ... , xn) by the
concatenation operation bnax1 ... xn. We let M be an arbitrary model of
QT+. Again, we’ll need some preliminaries:

7.1. (a) QT+ � J∗(z) → ∀x, y(xBz & yBz → xBy v x = y v ybx).
(b) QT+ � J∗(z) → ∀x, y(xEz & yEz → xEy v x = y v yEx).
(c) QT+ � J∗(y) & J∗(z) → ∀x(xByz ↔ xBy v x = y v ∃w(wBz & yw =

x)).
(d) QT+ � J∗(x) & J∗(y) → ∀u(uBb(xy) → u = b v uBbx v u = bx v ∃y1

(y1By & u = bxy1)).
(e) For each n ≥ 1,

QT+ � ∧1≤i≤n J∗(xi) → ∀w(wBbnax1 ... xn → wBbnv w = bn v
v w = bna v ∃z1(z1Bx1 & w = bnaz1) v ∨1≤i≤n w = bnax1 ... xi v

v ∨1≤i≤n ∃z1(ziBxi & w = bnax1 ... xi–1zi)).

Proof. For (a) and (b), see the proof of 5.1(e)–(g), this time with
reference to (3.8) of [2] for (a) and (3.10) for (b). For (c) and (d), see
[3, 3.7(b) and (c)]. We focus on (e), arguing by induction on n. Assume that
M |= ∧1≤i≤nJ∗(xi). For n = 1, we have from (d) that

QT+ � wBbax1 → w = b v wBba v = ba v ∃z1(z1Bx1 & w = baz1).

Now, QT+ � wBba → w = b and QT+ � ¬wBba, so in fact we have that

QT+ � wBbax1 → w = b v w = ba v ∃z1(z1Bx1 & w = baz1),

as needed. Assume now that the claim holds for k. We then have that

M |= wBbkax1 ... xk → wBbk v w = bk v w = bka v ∃z1(z1Bx1 & w = bkaz1) v
v ∨1≤i<kw = bkax1 ... xi v ∨1≤i≤k∃zi(ziBxi & w = bkax1 ... xi–1zi).

Assume M |= wBb((bkax1 ... xk)xk+1). By (d),

M |= w = b v wBb(bkax1 ... xk) v w = b(bkax1 ... xk) v

v ∃zk+1(zk+1Bxk+1 & w = b(bkax1 ... xk)zk+1).
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From M |= w = b, we have M |= wBb(bk), i.e., M |= wBbk+1.
Suppose that M |= wBb(bkax1 ... xk). By (c), then

M |= wBb v w = b v ∃z(zBbkax1 ... xk & bz = w).

But QT+ � ¬wBb, and we have M |= w = b → wBbk+1. Given the
inductive hypothesis, we have from M |= zBbkax1 ... xk & bz = w that

M |= zBbk v z = bk v z = bka v ∃z1(z1Bx1 & z = bkaz1) v
v ∨1≤i<kz = bkax1 ... xi v ∨1≤i≤k∃zi(ziBxi & z = bkax1 ... xi–1zi).

Now, it is easily seen that M |= bz = w & zBbk → wBbk+1 and M |= bz =
w & z = bk → w = bk+1, and also that M |= bz = w & z = bka → w =
bk+1a.

Furthermore, M |= bz = w & ∃z1(z1Bx1 & z = bkaz1) → ∃z1(z1Bx1 & w
= bk+1az1) and M |= bz = w & z = bkax1 → w = bk+1ax1, and so on, plus
M |= bz = w & ∃zk(zkBxk & z = bkax1 ... xk–1zk) → ∃zk(zkBxk & w = bk+1

ax1 ... xk–1zk).
Thus we have

M |= wBb(bkax1 ... xk) → wBbk+1 v w = bk+1 v w = bk+1a v
v ∃z1(z1Bx1 & w = bk+1az1) v ∨1≤i<kw = bkax1 ... xi v
v ∨1≤i≤k∃zi(ziBxi & w = bkax1 ... xi–1zi).

But then

M |= wBb((bkax1 ... xk)xk+1) → wBbk+1 v w = bk+1 v w = bk+1a v
v ∃z1(z1Bx1 & w = bk+1az1) v ∨1≤i<k+1w = bk+1ax1 ... xi v
v ∨1≤i≤k+1∃zi(ziBxi & w = bk+1ax1 ... xi–1zi).

as required. �
We then have:

7.2 (a) QT+ � ¬(bnax1 ... xn = a).
(b) For 1 ≤ m < n, QT+ � ¬(bmax1 ... xm = bnay1 ... yn).
(c) QT+ � ∧1≤i≤nI∗(xi) & ∧1≤i≤n I∗(y1) →

→ (bnax1 ... xn = bnay1 ... yn → ∧1≤i≤n xi = yi).
(d) QT+ � ∧1≤i≤nI∗(xi) & x = bnax1 ... xn → I∗(x).
(e) QT+ � ∧1≤i≤nI∗(xi) & I∗(y) → (y = bnax1 ... xnv ay ⊆p bnax1 ... xn

↔ y = bnax1 ... xnv ∨1≤i≤n (y = xi v ay⊆p xi)).

Proof. (b) Suppose, for a reductio, that M |= bmax1 ... xm = bnay1 ... yn

where m < n. After m applications of (QT3) we obtain M |= ax1 ... xm =
bm–nay1 ... yn contradicting (QT4).

(c) Assume M |= bnax1 ... xn = bnay1 ... yn where M |= ∧1≤i≤nI∗(xi) &
∧1≤i≤nI∗(yi). We formalize the reasoning of 2.4 in QT+. After n + 1
applications of (QT3) we obtain M |= x1 ... xn = y1 ... yn. We have that
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M |= J∗(x1 ... xn) where J∗(x) is the string form constructed in [3, Section
6], and M |= x1B(x1 ... xn) & y1B(x1 ... xn). By 7.1(a), M |= x1By1 v x1 =
y1 v y1Bx1. By 5.1(c), M |= ¬x1By1 & ¬y1Bx1. But then M |= x1 = y1. The
rest of the proof follows the pattern of 2.4.

(d) For this we need to formalize the proof of 2.7 in QT+. The proof has
two parts: first we show in QT+ that under the hypothesis ∧1≤i≤nI∗(xi) we
have (ci) α(x) = �(x) + 1, and, secondly, (cii) ∀w

(
wBx → α(w) ≤ �(w). In

[3, Section 5], we have shown that the graphs of the counting functions α
and � are expressible byLC-formulae A#(x, y) and B#(x, y), respectively, and
that their fundamental properties, including additivity, are provable in QT+

modulo the method of formula selection explained there. These functions
take finite strings as arguments and yield natural numbers as values. In the
formal definition of their graphs in [3], the numerical values are represented
by b-tallies, and a key role is played by the relation Addtally(x, y, z) between
b-tallies that behaves like addition on natural numbers. (See [3, Section 3]
for the relevant properties of Addtally and the associated relation ≤ between
b-tallies.) With this machinery in place, it is a straightforward exercise in
proof formalization to show, following the computation in the first part of
the proof of 2.7, that for each n ≥ 1,

QT+ � ∧1≤i≤nI∗(xi)&x = bnax1 ... xn → (A#(x, u) & B#(x, v) → u = Sv)

i.e., that (ci) holds. For (cii), assume that M |= wBx & A#(x, u) & B#(x, v),
where M |= ∧1≤i≤nI∗(xi) & x = bnax1 ... xn. From 7.1(e) we have that

M |= wBbn v w = bn v w = bna v∃z1(z1Bx1 & w = bnaz1) v
v ∨1≤i<nw = bnax1 ... xi v ∨1≤i≤n∃zi(ziBxi & w = bnax1 ... xi–1zi).

We then follow the pattern of the second part of the proof of 2.7,
formalizing in each case the argument that M |= u ≤ v. We omit the details.

(e) Assume that M |= ∧1≤i≤nI∗(xi) & I∗(y). Assume further that M |=
ay⊆pbnax1 ... xn. We show that for each j, 0 ≤ j < n–1,

($) M |= ay⊆pbn–jax1 ... xn–j → ay⊆pxn–j v y = xn–j v ay⊆pbn–(j+1)ax1 ... xn–(j+1).

Assume that M |= ay⊆pbn–jax1 ... xn–j. Then

M |= ay = bn–jax1 ... xn–j v ayB(bn–jax1 ... xn–j) v ayE(bn–jax1 ... xn–j) v
v ∃y1, y2bn–jax1 ... xn–j = y1(ay)y2.

Now, M |= ay = bn–jax1 ... xn–j v ayB(bn–jax1 ... xn–j) is ruled out immedi-
ately by (QT4).

Suppose that (1) M |= ayE(bn–jax1 ... xn–j). Then, from M |= xn–jE(bn–jax1

... xn–j) we have, by 7.1(b), M |= ayExn–jv ay = xn–j v xn–jEay. If M |=
ayExn–j v ay = xn–j, then M |= ay⊆pxn–j and we are done. So we may assume
that M |= xn–jEay.
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Then M |= ∃y1ay = y1xn–j, whence M |= y1 = a v aBy1. If M |= y1 = a,
then M |= ay = y1xn–j = axn–j; hence M |= y = xn–j, as needed.

If M |= aBy1, then M |= ∃y2y1 = ay2. That is, M |= ay = y1xn–j = ay2xn–j,
whence M |= y = y2xn–j. Then M |= y2By. Now, from hypothesis M |=
ayE(bn–jax1 ... xn–j) we have

M |= ∃z1bn–jax1 ... xn–(j+1)xn–j = z1ay = z1ay2xn–j,

whence, by 5.1(f), M |= bn–jax1 ... xn–(j+1) = z1ay2. Then M |= z1 =
b v bBz1, so we have M |= bbn–(j+1)ax1 ... xn–(j+1) = bay2 v ∃z2bbn–(j+1)ax1 ...

xn–(j+1) = (bz2)ay2, whence M |= bn–(j+1)ax1 ... xn–(j+1) = ay2 v bn–(j+1)ax1 ...

xn–(j+1) = z2ay2. But M |= bn–(j+1)ax1 ... xn–(j+1) = ay2 is ruled out. Hence
M |= bn–(j+1)ax1 ... xn–(j+1) = z2ay2, and so M |= y2E(bn–(j+1)ax1 ... xn–(j+1)).
But by (d) from M |= ∧1≤i≤n–(j+1)I∗(xi) we have M |= I∗(bn–(j+1)ax1 ... xn–(j+1)).
This, however, contradicts M |= I∗(y) & y2By by 5.1(d). Hence subcase
M |= aBy1 is ruled out.

Suppose that (2) M |= ∃y1, y2bn–jax1 ... xn–j = y1(ay)y2. Then M |=
y2E(bn–jax1 ... xn–j), whence by 7.1(b), M |= xn–jEy2 v xn–j = y2 v y2Exn–j.
We distinguish the subcases:

(2a) M |= xn–jEy2.

Then M |= ∃y4y2 = y4xn–j, that is, M |= bn–jax1 ... xn–(j+1)xn–j = y1ay(y4xn–j).
By 5.1(f), we get M |= bn–jax1 ... xn–(j+1) = y1ayy4. Then M |= y1 =
b v bBy1; hence

M |= bbn–(j+1)ax1 ... xn–(j+1) = bayy4 v ∃y3bbn–(j+1)ax1 ... xn–(j+1) = by3ayy4,

and further, M |= bn–(j+1)ax1 ... xn–(j+1) = ayy4 v bn–(j+1)ax1 ... xn–(j+1) =
y3ayy4. But M |= bn–(j+1)ax1 ... xn–(j+1) = ayy4 is ruled out. Hence M |=
bn–(j+1)ax1 ... xn–(j+1) = y3(ay)y4, and so we obtain M |= ay⊆pbn–(j+1)ax1 ...
xn–(j+1), as needed.

(2b) M |= xn–j = y2.

Then M |= bn–jax1 ... xn–(j+1)xn–j = y1ayxn–j, and by 5.1(f), M |=
bn–jax1 ... xn–(j+1) = y1ay. But then M |= y1 = b v bBy1. We proceed
as in (2a) to show that M |= ∃y3bn–(j+1)ax1 ... xn–(j+1) = y3ay, whence
M |= ay⊆pbn–(j+1)ax1 ... xn–(j+1), as needed.

(2c) M |= y2Exn–j.

Then M |= ∃y3xn–j = y3y2, so M |= y3Bxn–j. Also, M |= bn–jax1 ... xn–(j+1)

(y3y2) = y1ayy2, and by 5.1(f), M |= bn–jax1 ... xn–(j+1)y3 = y1ay.
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So M |= y3E(bn–jax1 ... xn–(j+1)y3) & yE(bn–jax1 ... xn–(j+1)y3), whence by
7.1(b), M |= y3Ey v y3 = y v yEy3.

(2ci) M |= y3Ey v y3 = y.

Then from M |= I∗(y) and M |= I∗(xn–j) & y3Bxn–j we obtain a contradic-
tion, either by 5.1(d) or 5.1(c). Thus (2ci) is ruled out.

(2cii) M |= yEy3.

Then M |= ∃y5y3 = y5y, so M |= bn–jax1 ... xn–(j+1)(y5y) = y1ay. By 5.1(f),
M |= bn–jax1 ... xn–(j+1)y5 = y1a. Then M |= y5 = a v aEy5. From M |= y3 =
y5y, we then have M |= y3 = ay v ayEy3, whence from M |= y3Bxn–j, we
obtain M |= ay⊆pxn–j, as needed.

This completes the proof of ($).
After n–1 applications of ($) we have from hypothesis M |=

ay⊆pbnax1 ... xn that

M |= ∨0≤i≤n–2(y = xn–iv ay⊆pxn–i) v ay⊆pbax1.

If M |= ay⊆pbax1, we have exactly as in the proof of 5.3(a) that

M |= y = x1 v ay⊆px1.

Hence M |= ∨1≤i≤n(y = xiv ay⊆pxi).
But then M |= ay⊆pbnax1 ... xn → ∨1≤i≤n(y = xi v ay⊆pxi).
Conversely, suppose that M |= ∨1≤i≤n(y = xiv ay⊆pxi). If M |= ay⊆pxj

where 1 ≤ j ≤ n, we immediately have that M |= ay⊆pxj⊆pbnax1 ... xn.
Assume now that M |= ∨1≤i≤ny = xi. If M |= y = x1, then M |= ay =
ax1⊆pbnax1 ... xn. If j = k + 1 ≤ n, we have from hypothesis M |= I∗(xk),
that M |= xk = a v aExk. But then if M |= y = xj , then M |= ay =
axj⊆pbnax1 ... xkxj...xn, as required. Hence we also have

M |= ∨1≤i≤n(y = xi v ay⊆pxi) → ay⊆pbnax1 ... xn.

But then M |= ay⊆pbnax1 ... xn ↔ ∨1≤i≤n(y = xi v ay⊆pxi), whence M
|= y = bnax1 ... xn v ay⊆pbnax1 ... xn ↔ y = bnax1 ... xn v ∨1≤i≤n(y = xi v ay
⊆pxi), as required. �

We have dealt with (T5) – (T8) in 5.3(c) and (d). Hence from 7.2 we have:

Theorem 7.3. T∗ is interpretable in QT+.

§8. Some theories of dyadic trees. The theory T introduced by Kristiansen
and Murwanashyaka in [4] is formulated in the vocabulary LT = {0, �,�},
and has as its axioms:

∀x, y¬�(x, y) = 0 (T1)

∀x, y, z,w [�(x, y) = �(z,w) → x = z & y = w] (T2)

https://doi.org/10.1017/bsl.2023.5 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2023.5


TREE THEORY: INTERPRETABILITY BETWEEN WEAK FIRST-ORDER THEORIES OF TREES 495

∀x [x � 0 ↔ x = 0] (T3)

∀x, y, z [x � �(y, z) ↔ x = �(y, z) v x � y v x � z] (T4)

Let I(x) be an LT-formula with x as sole free variable. We say that I(x) is
a (dyadic) tree form if T � I(0) and T � ∀x(I(x) & I(y) → I(�(x, y))).

Note that if J1 and J2 are tree forms, then so is J1 & J2.
Let IZ(x) ≡ 0 � x, IREF�(x) ≡ x � x & ∀x1, x2(x = �(x1, x2) → x1 �

x1 & x2 � x2), and ITRANS�(x) ≡ ∀y, z(y � z & z � x → y � x).
Throughout this section we let M be any model of T. Then we have:

8.1 IZ(x), IREF�(x), and ITRANS�(x) are tree forms.

Proof. That IZ(x) is a tree form easily follows from (T3) and (T4).
For IREF�(x), note that T � IREF�(0) follows immediately from (T3) and
(T1). Assume M |= IREF�(u) & IREF�(v) and consider x = �(u, v). We
have that M |= �(u, v) � �(u, v) by (T4). On the other hand, assume
M |= �(u, v) = �(x1, x2). Then M |= u = x1 & v = x2 by (T2), whence from
M |= IREF�(u) & IREF�(v) we obtain M |= x1 � x1 & x2 � x2. Hence we
have

M |= ∀x1, x2(�(u, v) = �(x1, x2) → x1 � x1 & x2 � x2),

that is, M |= IREF�(�(u, v)). We now deal with ITRANS�(x). Let x = 0
and assume M |= y � z & z � 0. Then M |= z = 0 by (T3), whence
M |= y � 0, and we obtain M |= ITRANS�(0). Assume now that M |=
ITRANS�(u) & ITRANS�(v), and suppose M |= y � z & z � �(u, v). By
(T4) we have that M |= z = �(u, v) v z � u v z � v. If M |= z = �(u, v),
then M |= y � �(u, v). If M |= z � u, then M |= y � u follows from M |=
ITRANS�(u). From (T4) we then obtain that M |= y � �(u, v). Analogously
if M |= z � v. Therefore, M |= ∀y, z(y � z & z � �(u, v) → y � �(u, v)), that
is, M |= ITRANS�(�(u, v)). �

If I(x) and J(x) are LT-formulae with x as sole free variable, we write J ⊆ I
if T � ∀x (J(x) → I(x)). And we write “∀x ∈ J(... )” for “∀x (J(x) → ... )”
and “∀x � t(... )” for “∀x (x � t → ... )” for an LT-term t.

8.2. (a) For any tree form I there is a tree form J ⊆ I such that

T � J(x) & y � x → J(y).

(b) For any tree form I there is a tree form J ⊆ I such that

T � ∀x ∈ J ∀y(�(x, y) �= x & �(y, x) �= x).

(c) For any tree form I there is a tree form J ⊆ I such that

T � ∀y ∈ J (∀z(z � y → z = y) v ∃y1, y2y = �(y1, y2)).
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(d) For any tree form I there is a tree form J ⊆ I such that

T � ∀x ∈ J ∀y (x � y & y � x → x = y).

(e) For any tree form I there is a tree form J ⊆ I such that

T � ∀x ∈ J ∀u, v (x � u v x � v → x �= �(u, v)).

(f) For any tree form I there is a tree form J ⊆ I such that

T � ∀x ∈ J (x = 0 v ∃y, z (y � x & z � x & y �= x & z �= x &
& (y � z v ∀w(y � w � x → w = x v w = y))
& (z � y v ∀w(z � w � x → w = x v w = z)))).

Proof. (a) Let J(x) ≡ I�(x) ≡ I(x) & ∀z � x I(z).

Assume M |= z � 0. Then M |= z = 0 by (T3) and M |= I(z) holds
since I(x) is a tree form. Hence M |= I�(0). Assume now that M |=
I�(u) & I�(v) and suppose that M |= z � �(u, v). By (T4) we have that
M |= z = �(u, v) v z � u v z � v. If M |= z � u v z � v we have that M |=
I(z) follows from hypothesis M |= I�(u) & I�(v). If M |= z = �(u, v) then
M |= I(z) again from hypothesis M |= I�(u) & I�(v) and the fact that I(x)
is a tree form. Hence M |= I�(�(u, v)).

(b) Let J(x) ≡ I(x) & IREF�(x) & ∀z � x∀y(�(z, y) �= z & �(y, z) �= z).
Assume M |= z � 0. Then M |= z = 0 by (T3), and M |= J(0) follows
from (T1) and M |= IREF�(0). Now, assume M |= J(u) & J(v), and let
M |= z � �(u, v). Then M |= z = �(u, v) v z � u v z � v by (T4). Suppose
(i) M |= z = �(u, v), and assume, for a reductio, that M |= �(z, y) = z, that
is, M |= �(�(u, v), y) = �(u, v). Then by (T2) we have M |= �(u, v) = u,
contradicting the hypothesis M |= J(u). Similarly if M |= �(y, z) = z. Hence
(i) is ruled out. Suppose (ii) M |= z � u v z � v. Then from hypothesis
M |= J(u) & J(v) we have M |= ∀y(�(z, y) �= z & �(y, z) �= z). Therefore,
M |= ∀z � �(u, v)(∀y(�(z, y) �= z & �(y, z) �= z)). Given that IREF� is a tree
form, we thus have M |= J(�(u, v)). Hence J(x) is also a tree form.

(c) Let J(x) ≡ I(x) & (∀y(y � x → y = x) v ∃x1, x2x = �(x1, x2)). That
J(x) is a tree form follows from (T3).

(d) Let J(x) ≡ IREF�(x) & ITRANS�(x) & I8.2(b)(x) & ∀y (x � y & y � x
→ x = y). Assume M |= 0 � y & y � 0. Then M |= y = 0, by (T3). Hence
for x = 0, we have M |= x � y & y � x → x = y. Thus M |= J(0). Assume
now that M |= J(u) & J(v), and let x = �(u, v). Suppose M |= �(u, v) �
y & y � �(u, v). By (T4) we have that M |= y = �(u, v) v y � u v y � v. If
M |= y = �(u, v), then M |= x = y. Suppose, on the other hand, that M |=
y � u. From M |= J(u) we have

M |= IREF�(u) & ITRANS�(u) & I8.2(b)(u).

By (T4) we have that M |= u � �(u, v). And from hypothesis M |=
�(u, v) � y and M |= y � u we obtain M |= �(u, v) � u. Then M |= u =
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�(u, v) follows from hypothesis M |= J(u). But this is a contradiction since
also M |= I8.2(b)(u). Hence M |= y � u is ruled out. A completely analogous
argument rules out M |= y � v. Therefore, M |= ∀y (�(u, v) � y & y �
�(u, v) → �(u, v) = y), and so M |= J(�(u, v)).

(e) Let J(x) ≡ I8.2(d)(x) & ∀u, v (x � u v x � v → x �= �(u, v)). We have
M |= J(0) by (T1). Assume M |= J(y) & J(z) and consider x = �(y, z).
Suppose, for a reductio, that M |= �(y, z) � u & �(y, z) = �(u, v). Then M |=
y = u & z = v by (T2); hence M |= J(u), whence M |= IREF�(u). By (T4)
then M |= u � �(u, v). On the other hand, also M |= �(u, v) � u. Hence,
again from M |= J(u), we obtain M |= u = �(u, v). But this contradicts
M |= J(u). Thus, M |= �(y, z) � u → �(y, z) �= �(u, v). Exactly analogously
we derive M |= �(y, z) � v → �(y, z) �= �(u, v). Therefore,

M |= ∀u, v (�(y, z) � u v �(y, z) � v → �(y, z) �= �(u, v)),

which suffices to show that J is a tree form.
(f) Let

J(x) ≡ I8.2(d)(x) & (x = 0 v ∃y, z (y � x & z � x & y �= x & z �= x &
& (y � z v ∀w(y � w � x → w = x v w = y)) &
(z � y v ∀w(z � w � x → w = x v w = z)))).

We clearly have M |= J(0). Assume M |= J(u) & J(v) and consider
x = �(u, v). Then from M |= IREF�(u) & IREF�(v) we have M |= u �
�(u, v) & v � �(u, v), and from M |= I8.2(b)(u) & I8.2(b)(v), that M |= u �=
�(u, v) & v �= �(u, v). Suppose that M |= ¬u � v, and assume M |= u � w �
x. Then M |= w � �(u, v), and by (T4) we have M |= w = �(u, v) v w �
u v w � v. If M |= w = �(u, v) = x, we are done. So assume M |= w � u.
Then from hypothesis M |= u � w we have M |= w = u since M |= I8.2(d)(u).
Suppose, on the other hand, that M |= w � v. Then from hypothesis
M |= u � w we have M |= u � v since M |= ITRANS�(v). But this contradicts
hypothesis M |= ¬u � v. Therefore

M |= u � v v ∀w (u � w � �(u, v) → w = �(u, v) v w = u).

Exactly analogously we establish that

M |= v � u v ∀w (v � w � �(u, v) → w = �(u, v) v w = v).

Since I8.2(d)(x) is a tree form this suffices to show that M |= J(�(u, v)). �
We now consider several extensions of T postulating additional “natural”

properties of dyadic trees. Let:

∀x, y (�(x, y) �= x & �(y, x) �= x). (T9)

∀x (∀y(y � x → y = x) v ∃y, z x = �(y, z)). (T10)
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∀x, u, v (x � u & x � v → x �= �(u, v)). (T11)

∀x (x = 0 v ∃y, z (y � x & z � x & y �= x & z �= x &
& (y � z v ∀w(y � w � x → w = x v w = y)) &
& (z � y v ∀w(z � w � x → w = x v w = z)))).

(T12)

Let D0 stand for the theory T. (“D” is for “dyadic.”) Further, let:

D1 =: D0 + (T5), (T8).

D2 =: D1 + (T6).

D3 =: D2 + (T7)(= T2).

D4 =: D3 + (T9).

D5 =: D4 + (T10).

D6 =: D0 + (T5), (T7), (T11).

D7 =: D0 + (T5), (T7), (T8), (T9), (T12).

Then we have:

Theorem 8.3. D0≡ID1≡ID2≡ID3≡ID4≡ID5≡ID6≡ID7.

In particular, T≡IT2.

Proof. Note that, with the exception of D5 and D7, all of the theories
considered are universal. We introduce a series of different translations Aϕ

of LT-formulae into LT-formulae where ϕ(x) is a given LT-formula with
x as sole free variable. In each case, the translation relativizes all free and
bound variables in A to ϕ(x), otherwise leaving the formula unchanged.
In the resulting interpretations, we generally let 0 and � be interpreted by
themselves, and we let ϕ(x) define the domain of the interpretation. The
chosen formula will in each case be a tree form, ensuring that the domain
of the interpretation contains 0 and is closed under �. In most cases, the
validation of the axioms in T of the ϕ-translations of the axioms of the
interpreted theory is immediate given the choice of ϕ.

(a) D1 ≤I D0.
Let ϕ(x) ≡ IREF�(x) & ITRANS�(x). It suffices to note that T � (T5)ϕ

and T � (T8)ϕ .
(b) D2 ≤I D0.

Let ϕ(x) ≡ IREF�(x) & ITRANS�(x) & IZ(x). Then also T � (T6)ϕ .
(c) D3 ≤I D0.

Let ϕ(x) ≡ IREF�(x) & ITRANS�(x) & IZ(x) & I8.2(b)(x) & ∀y (x � y&
y � x → x = y). Then also T � (T7)ϕ .

https://doi.org/10.1017/bsl.2023.5 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2023.5


TREE THEORY: INTERPRETABILITY BETWEEN WEAK FIRST-ORDER THEORIES OF TREES 499

(d) D4 ≤I D0.
Let ϕ(x) be as in (c). Then also T � (T9)ϕ .
(e) D5 ≤I D0.
Let ϕ(x) abbreviate

IREF�(x) & ITRANS�(x) & IZ(x) & I8.2(b)(x) & ∀y (x � y & y � x → x = y) &
& (∀y(y � x → y = x) v ∃y, z x = �(y, z)).

Suppose M |= ϕ(x). Then M |=∀y(y � x → y = x) v∃z1, z2x = �(z1, z2)
)

.

If M |= ∀y(y � x → y = x), then M |= ∀y(ϕ(y) → (y � x → y = x)).
Suppose M |= ¬∀y(y � x → y = x). From M |= IREF�(x) we have
M |= ∀x1, x2(x = �(x1, x2) → x1 � x1 & x2 � x2). Hence
M |= z1 � z1 & z2 � z2. But then, by (T4), M |= z1 � �(z1, z2) = x & z2 �
�(z1, z2) = x.
Since by 8.2(a) we may assume that ϕ(x) is downward closed with respect

to �, it follows that M |= ϕ(z1) & ϕ(z2). Therefore,

M |= ∀y(ϕ(y) → (y � x → y = x)) v ∃z1, z2(ϕ(z1) & ϕ(z2) & x = �(z1, z2)),

that is, M |= (T10)ϕ .

(f) D6≤ID0.

Let ϕ(x) ≡ I8.2(e).

(g) D7≤ID0.

Letϕ(x) ≡ I8.2(f). By 8.2(a) we may assume thatϕ(x) is downward closed
under �. Then it is easily seen that we also have T � (T12)ϕ .
From (a)–(g) we have that Dj≤ID0≤IDk , where 1 ≤ j, k ≤ 7. This
completes the proof of the theorem. �

§9. Right or left?. Some authors define binary trees more broadly so as
to allow differentiating between left-hand and right-hand single branchings:
a binary tree either consists of a null tree, e, or of a single vertex, a, or has
as its “left child” a binary tree T1 and as its “right child” a binary tree T2, in
which case the tree is of the form �(T1, T2). This gives us, e.g., two 2-vertex
and five 3-vertex binary trees:

We axiomatize the corresponding theory Te in the language LT,e =
{e, a, �,�} with two individual constants e and a, a single binary function
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symbol �, and a 2-place relational symbol �:

∀x, y¬�(x, y) = e. (T0e)

�(e, e) = a. (T1e)

∀x, y, z,w [�(x, y) = �(z,w) → x = z & y = w]. (T2)

∀x (x � e ↔ x = e). (T3e)

∀x, y, z [x � �(y, z) ↔ x = �(y, z) v x � y v x � z]. (T4)

Thinking of the null tree as an invisible branching to a “phantom” (or
anti-node) 0 as opposed to a “real” node 1, the trees

�(e, a), �(a, e), �(�(a, e), e), �(�(e, a), e), �(e, �(a, e)), �(e, �(e, a)), �(a, a)

listed above may be described using the obvious parenthetical notation,
omitting the outermost parentheses, as

01, 10, (10)0, (01)0, 0(10), 0(01), 11,

respectively. We are in effect identifying these trees with 2-colored dyadic
trees:

the red branches indicating the invisible branchings to a phantom node.
Taking a bold step into abstraction and thinking of a single real node as
the result of conjoining two anti-nodes into a single tree (or, alternatively,
of collapsing two invisible branchings into a single point/vertex), we obtain
the parenthetical notations

0(00), (00)0, ((00)0)0, (0(00))0, 0((00)0), 0(0(00)), (00)(00), ... .

Each of these, on the other hand, represents an ordinary (monochromatic)
dyadic tree:
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Thus we obtain the following direct interpretation ε of Te in Kristiansen
and Murwanashyaka’s T. Let

eε =: 0, aε =: �2(0, 0), [�(x, y)]ε =: �2(x, y) and [x � y]ε ≡: x � y.

The ε-translations of the axioms of Te are immediately derivable in T.
Hence Te≤IT. On the other hand, Te obviously extends T in the expanded
vocabulary LT,e modulo relabeling 0 in T as e. So we have

Theorem 9.1. Te≡IT. �
We analogously obtain theories T≤n,e, for n ≥ 2, and T∗

e allowing for
left-hand and right-hand single branchings in ≤ n-ary trees, by expanding
the vocabularies of T≤n and T∗ with an additional constant e, relabeling 0 as
a, and by adding axioms (T0e), (T1e), and (T3e), written with �2 in place of
�, while omitting (T12) and replacing (T6) with (T6e): e � x. Then a slight
variant of the above argument shows that

T≤n,e ≤IT≤n and T∗
e≤IT

∗.

On the other hand, by Theorems 4.2, 8.3, and 9.1 we also have

T≤n≤IT2≤IT≤ITe≤IT≤n,e.

Thus we also obtain

Theorem 9.2. For each n ≥ 2, T≤n,e ≡IT≤n.

Taking into account Theorem 7.3 and [3], we also have

T∗≤IQT+≤IT≤IT≤2,e≤IT
∗

e

since T∗
e extends T≤2,e. Thus we have:

Theorem 9.3. T∗ ≡IT∗
e.

§10. The big picture. In [1] we used the concatenation theory QT+ as
a linchpin to establish mutual interpretability of several well-known weak
theories of numbers, sets, and strings. In [3], we added T to that list, in part
relying on Kristiansen and Murwanashyaka’s interpretation of Robinson
arithmetic Q in T. We are now in the position to expand the list to include
the theories of trees considered in this paper.

From Theorem 7.3 and [3], we have that T∗≤I QT+≤IT2. Since T2 is a
subtheory of T∗, we then obtain from Theorems 6.3, 8.3, 9.1, and 9.2:

Theorem 10.1. For each n ≥ 2,

T≤n,e ≡IT≤n≡IT≤2≡IT≡ITe≡IT2≡ITn≡IT
∗≡IT

∗
e≡IQT+≡IQ≡IAST + EXT.

Here AST + EXT is Adjunctive Set Theory with Extensionality described
in [1]. See [1, 3] for more theories that belong in this chain. To summarize,
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even though on the surface these theories, in their intended interpretations,
refer to objects of as diverse kinds as numbers, sets, strings, and finite trees of
different arities, and to corresponding relations and operations associated
with those objects, it turns out that each one of these theories contains
expressive and deductive resources sufficient to allow it to formally simulate
reasoning in any one of the other theories.
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