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1. Introduction
Let v = (au ..., an) be a real w-tuple and a* ^ a* ^ ... ^ a* be the numbers

ai, ..., an arranged in decreasing order. Let £(m)t> denote the sum of m greatest
components of v and £(m)tf the sum of m smallest components of v, i.e.,

Z(-)p = s £ a*j and L „ = £ a*
; = i J = i

If ,4 is an n-square matrix, let /4(j) denote the ith row of ,4 and r((̂ 4) (or simply
n

/•() the fth row sum of A, i.e., r, = £ ai;. The permanent of A is defined by
j = i

per 04)= X I ! flto(O»
IT 6 Sn i = 1

where the summation on the right-hand side is over all permutations a of the
symmetric group Sn. A matrix is said to be non-negative (positive) if all its
entries are non-negative (positive).

Many inequalities for permanents of various classes of non-negative matrices
have been obtained recently (see bibliographies in (3) and (5)), such as doubly
stochastic matrices (4) and (0, l)-matrices (see bibliography in (6)). Jurkat
and Ryser (1) obtained the following bounds for the permanent of a non-negative
matrix A:

ft ( 0 4 0 £ f l 2(%)- (1)
i= X i = 1

Rather surprisingly these are the only known non-trivial bounds for a general
non-negative matrix.

In the present paper the bounds in (1) are presented in a somewhat more
general guise (Theorem 1) and are proved by a method substantially simpler
than that in (1). The cases of equality for both bounds are also discussed. In
Theorem 2, we give a lower and an upper bound for the permanent of a non-
negative matrix that are better than the bounds in (1).

2. Results
If A is an n-square matrix and i and j are positive integers, 1 ^ i, j ^ n,
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then A(i \j) denotes the submatrix obtained from A by deleting the /th row and
the^th column of A.

Theorem 1. Let A — (atJ) be a non-negative n-square matrix. Then

max f[ Z(0^(<T(0)^per(X)^min f\ S('M(<T(0). (2)
S t= 1 aeSn 1= 1

If A is positive, then equality can occur in (2) if and only if A contains an(n-l)xn
submatrix all of whose rows are multiples of (I, 1, ..., 1).

Proof. Let B = (btJ) = PA where P is a permutation matrix. We prove
by induction that

per(B)^ ft *'%)> (3)
i = 1

and that if B happens to be positive then equality can hold in (3) if and only if

bn = bl2 = ... = bin, i = l n - 1 . (4)

It is easily seen that (3) and the assertion about equality hold in case n = 2.
Assume that they hold for all non-negative (n - l)-square matrices. Expand the
permanent of B by the last row and apply the induction hypothesis:

per (£) = ^ t t K per (B(n |;)) g _^ bnJ "ff £(0(£(« | j))(0- (5)
Obviously

) (6)
= 1, ..., n—1,7 = 1, ..., n, and therefore

1 - 1

n £(o£<
=i

fn-l
0= n

\i = 1
i O = n ly

j = 1 / 1=1

Thus per (A) = per (/M) g f| E(0(/'y4)(0 for any permutation matrix P.
i= 1

Hence

perG4)gmin f\ Zw(PA)(i) = min ft 2(lU(.(0),
P 1= 1 ( r e S n i = l

which is the upper bound in (2). The lower bound is proved similarly.
Now suppose that A (and thus B) is positive. Then equality can hold on

the right-hand side of (2) if and only if (3) is equality for some permutation
matrix P. This can occur if and only if both (5) and (7) are equalities. Now,
by the induction hypothesis, (5) can be an equality if and only if all the entries
in each of the rows 1, ..., n — 2 of B(n \j) are equal forj = 1,..., n, and therefore
if and only if

bn = bl2 = ... = bin (8)
for i = 1,..., Ti-2. Now, (7) holds with equality if and only if (6) is an equality
for / = 1, ..., n— 1, i.e., if and only if (8) holds and

| 1)-B(n-i), (9)
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j = 1, ..., n. Let ba_ut = max (bn-ltj) and bn.Us = min (fe.,-7,1,-). Then for

j = t, the equality (9) reads

i.e.,

i.e., fen_lf, = bn_iiS and therefore bn.ul = ... = fcn_1>n.

Thus, when B is positive, equality in (3) can hold if and only if (4) is satisfied.
Now, if the right inequality in (2) is equality, i.e., if

n

per (A) = min Y[
aeSn i= 1

then

i = I

for some permutation matrix P. We have just shown that this implies that the
first n— 1 rows of PA are multiples of (1, 1, ..., 1) which means that A contains
an (n — l)xn submatrix all of whose rows are multiples of (1, 1, ..., 1).

To prove the converse, suppose that

A(i) = ail, 1, ..., 1) (10)

for all /, except possibly one: i = k, say. Let a be the transposition {k, ri)
if k 5̂  n, and let a be the identity permutation if k = n. Then expanding
per (A) by the kth row we get

Now, by (10),

per 04)=

i = 1
= "fl

i = 1

and therefore

per 04) =
i = 1

The case of equality for the lower inequality in (2) is proved similarly.
Note that the condition for equality may not be a necessary condition if A

is merely non-negative. For example, if

, _

1 1 1 1
1 1 1 1
0 0 1 2
2 1 0 0
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then per (A) = 18, and the upper bound in (2) is

lx( l + l)x(2+l+0)x(2+l + 0+0) = 18,

while the lower bound is

l x ( l + l)x(0+0+l)x(0+0+l+2) = 6.

Let ais and ait denote the largest coordinate and the smallest coordinate
of Aw, respectively.

Theorem 2. Let A = (ai}) be a non-negative matrix. Then

per04) g min ]J E(>U(ff(i))-(nao(1)>s-rff(1)) £ E(*-iA<*) > (11)
<reSn\i = 1 * = 2 /

^ max nViaWj ^d)^!).!) 11
k= 2

Proof. In the proof of Theorem 1 we re-proved the Jurkat-Ryser in-
equalities (1), that is, we showed that

ft £(O*(o g per (X) g ft 2(I)X(I) (13)
i = l i = 1

for any non-negative /z-square matrix X. Let B = PA, where P is a permutation
matrix, and let bu= max {bt •) and bu = min (bt,). First we shall prove (11).

j j

Let C = (cy) and D = (di3) be «-square matrices defined by:

1J = bls-b1JU = l, ..., n) and Uu = bls (; = 1, ..., n)
cij = 6y , otherwise; [dy = fey, otherwise.

Now, the permanent function is a multilinear function of the rows [(2); see
2.11.4]. Thus per(£>) = per (£) + per (C), i.e., per (B) = per (D) - per (C)
But, by (13),

ft (0= ft %)
i= I i= 1

and
per(C)= £ Cl j .per(C(l|j))= J (bls-biy) per (JB(1 | j))

j = i j = I

l * 2

( l s 1 ) fj
Thus

^ ft ^ fl
£ = 1 * = 2
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and

per (A) = min (per (PA))
p

g mini f l I(l)i4((r(O)-(n««(i)i.-r<,(1)) f l £(*-i)^(.(*))J-
o 6 Sn \ i = 1 * = 2 /

To prove the lower bound, let G = (gtJ), H = (g^) be defined by:

j = blJ—bu(j = l,...,ri) and {hij — bu(j = \,...,n\
j = 6fj, otherwise, \hu = 6,y, otherwise.

Then, again by the multilinearity of the permanent function,
per (B) = per (G)+per (H).

Now, by (13),

per (if) ^ f l *WH(O= f l 2(0B(0,
i = 1 « = 1

and

per (G) = X 9l j- per (G(l | j)) = ^ (b^- bu) per (B(l |;))

n «—-1 n n

Thus

per (J5) ̂  p Z(0£(0+(*-!-«&!,) n 2(*-i)B(lk),

and (12) follows.
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