
 

 
DESIGN SUPPORT TOOLS AND METHODS 485 

INTERNATIONAL DESIGN CONFERENCE – DESIGN 2022 
https://doi.org/10.1017/pds.2022.50 

Pure Vision-Based Motion Tracking for Data-Driven Design – A 
Simple, Flexible, and Cost-Effective Approach for Capturing 
Static and Dynamic Interactions

S. H. Johnston , M. F. Berg, S. W. Eikevåg, D. N. Ege, S. Kohtala and M. Steinert 

Norwegian University of Science and Technology, Norway 

 Sondrhjo@stud.ntnu.no 

 

Abstract 

This paper presents an exploratory case study where video-based pose estimation is used to analyse human 

motion to support data-driven design. It provides two example use cases related to design. Results are 

compared to ground truth measurements showing high correlation for the estimated pose, with an RMSE of 

65.5 mm. The paper exemplifies how design projects can benefit from a simple, flexible, and cost-effective 

approach to capture human-object interactions. This also entails the possibility of implementing interaction 

and body capturing in the earliest stages of design, at minimal effort. 
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1. Introduction 
Capturing human-object interaction within design science enables designers to understand complex 

prototype interactions better (Moggridge, 2007). These interactions might include location tracking 

and dynamics of the human body, often demanding high fidelity to obtain meaningful insights. 

However, capturing such data is not a trivial challenge, as many current technologies used for 

tracking interactions are expensive or lack the required fidelity. These technologies also confine 

testing to lab- environments, making it unsuitable for testing in real-world scenarios. Designers might 

want to track interactions between prototypes and users to determine how changing ergonomics 

affects use and output, examine complex design team scenarios, or better understand space 

utilisation. Manual video coding, in which interactions are filmed and processed post-test, can 

provide researchers with reliable data on team- and prototype interactions but is generally a tedious 

process (Wulvik, Erichsen and Steinert, 2016). Filming users also poses privacy challenges and 

potential behavioural changes that researchers must address.  

1.1. Methods for Analysing Human-Object Interaction 

Wearable-based methods can track human-object interactions but are often costly, lack flexibility, and 

are only useable in a lab environment. Wearable trackers include reflector-based motion capture 

systems that use infrared sensors capturing reflective markers attached to the participant, whose 

position can be referenced to acquire body composition and movement (Ma, Paterson and Pollick, 

2006). Designers also have the choice of using an inertial sensor-based motion capture system that 

relies on inertial measurement units placed on specific body parts to track acceleration and angular 

position (Zhu and Zhou, 2004; Zhou et al., 2008; Roetenberg, Luinge and Slycke, 2013). Sjöman et al. 

(2015) used a system of wearable devices as proxies for capturing team dynamics by measuring the 

relative distance between objects to analyse interactions over a period. This system, however, also 
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lacks flexibility and fidelity when examining specific prototype interactions. Time-consuming and 

expensive testing is restrictive in the initial design stages, where speed and agility are essential to 

progress development. Therefore, a low-cost, flexible, and simple system for capturing human-object 

interaction is needed. An alternative to manual video coding and wearable systems is vision-based 

body capturing, in which cameras are used to produce anonymous skeletal models of the subject 

(Sudderth, 2006), or more general conveyors without proper anatomical association interpreting 

movement (Kurakin, Zhang and Liu, 2012).  

Previous studies have described vision-based body capturing as lacking fidelity (Mitra and Acharya, 

2007; Wulvik, Erichsen and Steinert, 2016), but recent advances in open-source software have 

increased both fidelity and accessibility for design researchers. If the accessibility and accuracy of 

these open-source software are acceptably high, they could potentially replace the tedious process of 

manual video coding in some cases. Furthermore, privacy issues can be neglected since pose 

information can be collected in real-time without storing and collecting images of people.  

Video-based body capturing could have a profound effect on design activities. It can capture prototype 

interaction in a low-cost and simple way, thus making it available for implementation in the earliest 

stages of design. Sports equipment development is an example that could benefit from utilising this 

technology, where technique-based sports, such as running (Glover, Kakar and Chaudhari, 2021), 

skiing (Yoshioka et al., 2018), rowing (Severin et al., 2021), and cycling (Bini, Daly and Kingsley, 

2020) involves complex product interactions that should be captured in the early stages of design.  

1.2. Vision-Based Pose Tracking 

MediaPipe (Lugaresi et al., 2019) is an open-source, cross-platform framework for applying machine 

learning (ML) solutions to live media. It contains a state-of-the-art human pose estimation solution 

(MediaPipe Pose, 2020) based on BlazePose (Bazarevsky et al., 2020), which can run in real-time. 

Occlusion is a fundamental issue for vision-based pose estimation, in which the subject is not in full 

view of the camera. Recent studies resolve this by training pose estimation and shape feature 

prediction algorithms (Hou et al., 2020). BlazePose, the foundation for MediaPipe Pose, is an ML-

solution trained with substantial occlusion augmentation (Bazarevsky et al., 2020), making it robust 

in heavily occluded scenarios. MediaPipe Pose tracks the whole body by predicting the location of 

up to 33 3D landmarks in an image or a sequence of video frames, with each landmark 

corresponding to a specific point on the body. Tracking fine movements, such as hands and facial 

landmarks, can be obtained using other specific algorithms implemented in MediaPipe. The 

intended use in this paper is however at a gross motor level, and these functions are therefore not 

considered in this paper. The MediaPipe algorithm consists of two main steps: (1) detecting the 

region of the frame containing a person, and (2) estimating and tracking the landmarks based on this 

region. Each landmark consists of the x- and y-coordinates relative to the image frame, thus 

normalised to a value between zero and one. The z-coordinates represent the depth relative to the 

origin at the midpoint between the hips. The z-coordinates decrease towards the camera and are 

scaled similarly to the x-coordinates. Additionally, the real-world coordinates can be estimated in 

meters using the midpoint between the hips as the origin. 

Other specific examples of depth perception used in body-tracking include Microsofts Kinect 

(Morrison et al., 2016), Lidar technology (Shimizu et al., 2016), and stereo camera setups. One 

principle this study attempts to maintain is an easily accessible setup, for which MediaPipe's 

versatility in hardware makes it available to implement with any camera, given it has an appropriate 

resolution and framerate. With its cross-platform support, MediaPipe can be implemented on mobile 

and desktop devices and supports multiple programming interfaces, including Python, C++, and 

Java. The computer vision library OpenCV (Bradski and Kaehler, 2000) is used for capturing frames 

from a webcam, while MediaPipe provides the ML solutions for running inference on the captured 

frames. MediaPipe Pose also provides several configuration options for adjusting the processing 

time and accuracy, including detection confidence (between zero and one) and model complexity. 

  

https://doi.org/10.1017/pds.2022.50 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2022.50


 
DESIGN SUPPORT TOOLS AND METHODS 487 

1.3. Aim of Study 

This paper presents an exploratory case study where video-based pose estimation is used to capture 

motion tracking data for a data- driven design project. Hence, it exemplifies how design projects can 

benefit from a simple, flexible, and cost-effective approach to capture interactions reliably. The paper 

provides two example use cases, one where working ergonomics are analysed, and one where an 

adjustable rowing seat is tested. Results from the rowing seat test are compared to a ground truth 

measurement with three different camera angles to determine the reliability of the software as a tool 

for designers. The paper aims to demonstrate how design researchers can benefit from using open-

source software for tracking user interactions in real-world scenarios without the restrictions of 

invasive or expensive equipment. It also provides limitations and implications of using the software.  

2. Method  

2.1. Experiment Setup on Processing Procedures 

Two experiments were conducted to test the vision-based body-tracking system in different use cases. 

A Logitech C920 HD-pro webcam was used as the input device. The processing was performed on a 

PC (MSI Prestige 15 A10SC) with an intel core i7 10710u processor and 16GB 2666 MHz of RAM. 

We used Python to create a script for capturing frames (OpenCV) and extracting the body pose 

(MediaPipe), with the procedure shown in Figure 1. The frames were recorded at a resolution of 

1920x1080 pixels, providing sufficient details for estimating the pose. Videos were recorded with a 

sampling rate of ~30Hz, with pose-estimation analysis performed in post-processing. Figure 2 shows 

an example of an analysed frame, with points 1 to 5 representing detected landmarks and a skeletal 

model visualising the resulting pose. The angle of the hip-, shoulder-, and elbow-joints were 

calculated using trigonometry based on the landmark positions (normalised x- and y-coordinates) 1 to 

5 in Figure 2 and stored as a CSV file. Ground truth measurements were performed for one test, using 

a ruler attached to the rowing machine, as shown in Figure 2. 

 
Figure 1. The process model of the visual-based tracking program 

 
Figure 2. Overlay of pose-estimation with nodes marking the joints used for measurements. A 

measuring tape was used for ground truth measurements with ~2 mm accuracy, where each 
camera is synchronised by a flashing light 
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2.2. Experiment 1: Human-Product Interaction Tracking to Evaluate Working 
Ergonomics 

The aim of experiment 1 is to analyse a user interacting with a keyboard on an office chair that is 

configured to different heights resulting in different postures. In the context of chair design, 

understanding posture can help combat unhealthy habits (Gerr, Marcus and Monteilh, 2004), where 

Faucett and Rempel (1994) found that having a higher elbow height in respect to the wrist is linked to 

reduced neck, shoulder, and arm discomfort. For simplification, we have classified three different 

zones with different criteria, as our experiment is only meant to test the applicability of MediaPipe 

Pose for tracking purposes rather than implying which positions are best. The three scenarios are 

shown in Figure 3, where MediaPipe is used to detect if the posture is good or not based on whether 

the elbow is 5% lower (red) or higher (green), or in between (yellow) relative to the wrist. 

The experiment focuses on gross motor movement, on an overall body level. A camera was set up 0.8 

m above the ground, approximately 2 m from the sagittal plane of the participant. A video was then 

captured while the participant used a keyboard and adjusted the seat. The experiment lasted 

approximately 20 seconds with three different chair positions being captured, as seen in Figure 3. 

While the person's input images are shown to demonstrate the use cases, with the pose-estimation 

overlaid, we only used the landmark coordinates of the participants' right elbow and wrist for 

interpreting each posture. 

 
Figure 3. Static images of three different postures, ranging from bad too good, with the pose-

estimation overlaid 

2.3. Experiment 2: Dynamic Tracking for Movement Analysis  

By capturing how humans interact dynamically with equipment in a data-driven design process, we 

can better understand how design choices affect the overall solution. Machine rowing is an example 

where the seat configuration can affect the performance of its user. The seating position can therefore 

be optimised by analysing the movement of a rower (Eikevåg et al., 2020; Severin et al., 2021). Since 

it involves cycles of repeated motion, it is ideal for assessing the reliability of MediaPipe Pose for 

movement analysis. 

A prototype of an adjustable rowing seat, fixed to a Concept 2 rowing ergometer, was developed to 

test different pre-determined angles with different ranges of motion and analyse how the body adjusts 

to various parameters throughout an exercise. The seat has three adjustable parameters, two angular 

and one linear. Linear movement C in Figure 4 (a) is the horizontal configuration of the seat on the 

ergometer. The angular parameters A and B have eight and ten individual positions, respectively, as 

shown in Figure 4. The degrees depicted are the seat and back angles when the pin is locked in the 

corresponding hole, shown as blue squares. Angle A spans a total of 24 degrees in eight increments to 

allow for extensive testing of total hip angle movement, while the back-rest B spans a total of 56 

degrees in ten increments. The combined angle of A and B defines the full seat angle "h". 
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Figure 4. (a) The adjustable parameters of the equipment, (b) The different positions used in 

dynamic testing. 

The experiment was performed in the three positions shown Figure 4 (b) with a fixed seat angle A and 

increasing back angles B. The participant adjusted the horizontal positions C subjectively as the feet 

have a fixed position on the machine. The participant rowed for approximately 40 seconds at a 

constant intensity, of which equal intervals were extracted for processing and to compare results. We 

have simplified the angular measurements as the depth is disregarded from this view, thus calculating 

the angles described in Table 1 based on the x- and y-coordinates. Stroke distances were analysed 

directly from the estimated world coordinates from MediaPipe. Three cameras were set up 210 cm 

from the rower at 90, 60, and 30 degrees, respectively, as shown in Figure 5 (a). Camera position 1 

and 3 were located 80 cm above the ground, while position 2 was elevated to 120 cm providing an 

isometric view. Pearson correlation coefficients were then calculated between the different camera 

measurements for each seating position, to evaluate the robustness and reliability of MediaPipe. 

To evaluate the accuracy of the MediaPipe, an additional test was captured with the camera in position 

1 with a measuring tape fixed to the rowing machine and rowing handle. A second camera was 

pointed directly down on the measuring tape and synchronized to the first camera, where we manually 

noted the maximum and minimum stroke distances frame by frame. Root-mean-square error (RMSE) 

was calculated between the ground truth and MediaPipe stroke distance measurements to evaluate 

accuracy. 

 
Figure 5. (a) Setup with three camera positions and (b) the angles measured in the dynamic 

experiment 

3. Results 

3.1. Experiment 1: Analysis of Different Working Ergonomics 

Figure 6 shows the subject's elbow and wrist positions based on the y-coordinates from the estimated 

world coordinates, where the origin is set between the hips and the y-axis pointing towards the ceiling. 

We can interpret these landmark-coordinates without using the actual images of the person 

considering the points have IDs corresponding to their body location, thus maintaining the 

participants' privacy. Furthermore, the proposed method can be used to analyse posture continuously, 

allowing the natural sitting habit of a person to be captured without invading their privacy, which can 

provide valuable insights that are difficult to measure in a controlled lab setting. The graph in Figure 6 

shows the duration in which the user has bad, moderate, and good posture, in addition to showing 

(a) (b) 

(a) (b) 
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when the seat configuration is changed. The relative height difference between the wrist and elbow 

were verified visually, which was captured correctly by the predicted pose. 

 
Figure 6. Comparison between right elbow and wrist height with bad (red), mediocre (yellow), 

and good (green) posture highlighted, corresponding to the postures illustrated in Figure 3. 

3.2. Experiment 2: Dynamic Motion Tracking  

The hip, elbow, and shoulder angles are shown in Figure 7 for seating positions 1, 2 and 3, measured 

directly from MediaPipe in camera position 1. The S angle bounces back up when the shoulder joint 

moves behind the back and reaches the zero-degree limit. The resulting relationships between angles 

are shown in Table 1, with the mean and standard deviation for both the maximum and minimum H 

angle throughout the exercise. By using body-tracking, human motion dynamics can be analysed to 

explain if the user consciously or subconsciously exceeds the equipment's boundary conditions. For 

example, in position 1, the participant's max H angle is 114.8 degrees, which is 19.3 degrees more 

than the seat angle (h). The participant pushes his lumbar and pelvic away from the seat, rendering the 

full seating surface unused, potentially causing discomfort and suboptimal performance. 

Lastly the furthest point forward in the movement is different in the three positions even though the 

seat angle remains the same and the participant has little to no restrictions from the seatback. This 

indicates a correlation between the participant's ability to stretch further forwards and one of two 

factors. The first is the participant's leg position, which is adjusted subjectively for comfort, and the 

second is how much momentum the participant has gathered in the movement leading up to the final 

forward stretch pushing him further. Both factors could also work alongside each other.  

 
Figure 7. Movement pattern (a) position 1, (b) position 2, (c) position 3. 
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Table 1. Adjusted seat angles and the measured pose angles in degrees 

Variables Position 1 Position 2 Position 3 

Seat bottom angle A 11.4 11.4 11.4 

Seatback angle B 73.1 54.5 35.8 

Full seat angle (h) 95.5 114.1 132.8 

Max H  114.8 ± 3.4 122.4 ± 5.9 132.8 ± 3.4 

Min H  56.5 ± 2.3 69.0 ± 3.5 61.9 ± 3.3 

Total hip angle (H) 58.3 53.4 70.9 

 

Figure 8 shows the absolute stroke distance, measured from the right wrist landmark in world 

coordinates directly from MediaPipe, with the origin set at the initial forward-most wrist position. The 

measurements are shown for each seating position (a-c) and each camera position (1-3), synchronized 

by a flashing light. The Person correlation coefficients between cameras range from 0.81-0.98, as 

shown in Table 2, indicating that the camera angle does not substantially affect the robustness of the 

measurements, although calibration is needed to improve the correctness of the measurements for 

various camera angles. The lowest correlations at ~0.8 can be explained by camera 3 in seat position 2, 

where the origin is not captured at the outer position for the wrist landmark for this camera angle. 

 
Figure 8. Absolute stroke distance measured from the right wrist landmark in seating position 

(a) 1, (b) 2, and (c) 3, for each camera angle. 

Table 2. Average stroke distance with SD, and Pearson correlation coefficients between 
camera measurements.   

Position Avg. stroke distance ± SD [mm] 

 

Pearson correlation coefficients 

CAM 1 CAM 2 CAM 3 CAM 1-2 CAM 1-3 CAM 2-3 

1 821.4 ± 16.6 834.4 ± 22.3 564.5 ± 31.8 0.98 0.96 0.97 

2 903.7 ± 32.6 901.3 ± 35.6 496.5 ± 25.4 0.97 0.82 0.81 

3 948.7 ± 45.8 880.5 ± 43.7 722.4 ± 70.5 0.98 0.98 0.98 

 

Figure 9 shows the stroke distance measured through MediaPipe from camera position 1 for one test 

scenario, with manual ground truth measurements using a ruler (see Figure 2). Although MediaPipe 
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and the ground truth measurements have a high correlation (>0.99), the RMSE is 65.5 mm. After 

fitting a simple linear regression model (resulting in an intercept of -26.2 mm and a coefficient of 

1.09) using the scikit-learn python library, with only two samples as input (2nd and 3rd ground truth 

point with the corresponding MediaPipe measurements), the RMSE is reduced to 28.5 mm, showing 

that the accuracy of MediaPipe for real world measurements can be improved with relatively simple 

steps. 

 
Figure 9. Ground truth stroke distance measurements compared with MediaPipe and linear 

regression. 

4. Discussion 
We have shown how MediaPipe can be used for pose-estimation in the context of design, including 

both static and dynamic scenarios. Our results demonstrate a simple, flexible, and cost-effective 

approach for providing new opportunities and insights in design research and product development. 

The static analysis demonstrated a simple use case where MediaPipe can automatically monitor 

posture, which can be used for long periods of time without having to record personal data directly, 

thus reducing the ethical requirements regarding privacy. The information we extracted could reliably 

determine if the user had good or bad posture, using measurements based on findings by Faucett and 

Rempel1994). 

In the dynamic experiments, we were able to extract useful information that can be related back to the 

rowing equipment, to better understand the design requirements and user-interaction. Three cameras 

with different orientations were used to test how reliably MediaPipe can estimate the pose, showing 

high correlation between measurements. However, an initial calibration step is needed to improve the 

correctness of the measurements, as the different camera angles resulted in different world coordinates 

being estimated. Ground truth measurements were compared to MediaPipe for one test case where the 

stroke distance was analysed, resulting in a Pearson correlation coefficient of >0.99 and an RMSE of 

65.5 mm, which was reduced to 28.5 mm using only two datapoints for fitting a linear regression 

model. 

Capturing dynamic movement in real-time has an upper limit in velocity and acceleration depending 

on the camera's framerates and the computer's processing performance. Initially, attempts were made 

to connect all three cameras to one computer for the dynamic experiment, which severely limited the 

framerate to around 8-12 fps. Capturing videos independently before post-processing with MediaPipe 

is therefore required in these scenarios. Camera distance and resolution also play a prominent role as 

the program interprets body parts from only 2D images, where distinct features need to be recognised 

in order to improve landmark detection. In our experiment, the camera placed with a 30 degree angle 

to the subject struggled with contrast as the participant wore black trousers. For optimal accuracy of 

motion and dynamic human-equipment interaction, the contrast between clothing, user, equipment, 

and background, in addition to lighting, must be considered.  

Occlusion is a fundamental challenge for pose-estimation. Using the previous frames in a video 

sequence can predict occluded body-parts well, which is more challenging when using single images. 
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The capturing method should therefore be carefully considered based on the context of the study being 

conducted. 

Figure 7 and Table 1 provide insights on areas where vision-based body tracking helps interpret 

important human-product interactions. Comparing the results given by MediaPipe to the physical 

changes in position on the rowing ergometer can give clear implications on whether the parameters are 

restricting or superfluous. It can also show how relations work in conjunction, improving the 

designer's ability to converge on a position where the output parameters are optimised with minimal 

limitations on others. This could be directly implemented when trying to understand the best position 

for a specific athlete to use regarding the back angle of the fixed seat during rowing. Our testing 

implies that the seat restricts the participant's movement for anything above 54.5 degrees. It also 

suggests that the optimal back angle where it is neither restricting nor superfluous lies around 35.8 

degrees, where further testing around this specific area could give valuable insight on how minor 

adjustments affect the participant's performance. Table 1 also shows a concrete example of a change in 

position where one would expect an improvement in range of motion, but the opposite happens. This 

can give designers indications on when human attributes desire changes in equipment that are hard to 

distinguish subjectively by the user. 

Movement can also alter significantly when switching from lab-setting to field testing and executions. 

Vision-based body tracking is a simple way of tracking movements during field tests, where only a 

single camera is required, compared to other solutions where multiple camera systems are often 

needed. However, further comprehensive studies are required to properly evaluate the millimetre 

accuracy of MediaPipe compared to state-of-the-art tracking solutions. 

5. Conclusion 
This paper has presented an exploratory case study where camera-based pose estimation is used to 

track and analyse human motion to support data-driven design research. The paper provides two 

example use cases, one where the working ergonomics and static postures were analysed, and one 

dynamic where an adjustable rowing seat was evaluated. A test case in the dynamic scenario 

compared the estimated pose information to ground truth measurements, showing a correlation of 

>0.99 and an RMSE of 65.5 mm. Our results demonstrate how design projects can benefit from a 

simple, flexible, and cost-effective system using open-source software, while showing that interactions 

can be captured reliably with some limitations regarding the estimated pose accuracy. The paper also 

demonstrates how design researchers can benefit from open-source pose-estimation algorithms 

without the restrictions imposed by invasive or expensive equipment, supporting early adaptation of 

this technology in design and product development at minimal effort.  
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