ERRATUM

Bruce E. Hansen, Strong Laws for Dependent Heterogeneous Processes. *Econometric Theory* 7(1992): 213–221.

There were some errors made in [2]. The results of Section 2 are stated to hold for L^r -mixingales, r > 1. They hold, however, only for $r \ge 2$. The proof of Lemma 1 on page 219 uses Minkowski's inequality in the r/2 norm, which requires that $r/2 \ge 1$. The author is grateful to Myoung-jae Lee for pointing out this error.

For $1 < r \le 2$, $x \ge 0$ and $y \ge 0$, the inequality $(x + y)^{r/2} \le x^{r/2} + y^{r/2}$ can be used in place of Minkowski's inequality to establish the following results for L^r -mixingales satisfying $||E_{i-m}X_i||_r \le c_i\psi_m$. Set $S_j = \sum_{i=1}^j X_i$, $\bar{K} = 18[r/(1-r)]^{3/2}$, and $\Psi = \sum_{i=1}^{\infty} \psi_m$.

LEMMA 1.

$$\|\max_{j\le n}|S_j|\|_r \le \bar{K}\sum_{m=-\infty}^{\infty} \left(\sum_{i=1}^n E|E_{i-m}X_{im} - E_{i-m-1}X_i|^r\right)^{1/r}.$$

LEMMA 2.

$$\|\max_{j\leq n} |S_j\|_r \leq 2\bar{K}\Psi\left(\sum_{i=1}^n c_i^r\right)^{1/r}$$

COROLLARY 1. If $\Psi < \infty$ and $\sum_{i=1}^{\infty} c_i^r < \infty$, then S_n converges almost surely.

COROLLARY 2. If $\Psi < \infty$ and $\sum_{i=1}^{\infty} (c_i/i)^r < \infty$, then $S_n/n \to 0$ almost surely.

Section 3 concerned zero-mean sequences $\{Y_i\}$ which are L^q near-epoch dependent (q > 1) upon some strong-mixing sequence $\{X_i\}$ with mixing coefficients α_m satisfying

 $\|E(Y_i|\mathfrak{T}_m) - Y_i\|_q \le d_i \nu_m, \text{ where } \mathfrak{T}_m = \sigma(X_i: i - m \le t \le i + m).$

For the case 1 < q < 2 the following theorem follows directly from Corollary 2 and the near-epoch dependent inequality given in [1]:

THEOREM 2. If for some
$$p > q$$
, $\sum_{i=1}^{\infty} \nu_m < \infty$, $\sum_{i=1}^{\infty} \sum_{i=1}^{\infty} d_i^q < \infty$,
 $\sum_{i=1}^{\infty} \alpha_m^{1/q-1/p} < \infty$ and $\sum_{i=1}^{\infty} ||Y_i||_q^p < \infty$, then $n^{-1} \sum_{i=1}^{n} Y_i \to 0$ a.s.

It should also be noted that the original proof of Theorem 2 in [2] worked with the truncated sequence $Y_{1i} = Y_i 1(|Y_i| \le 1)$, implicitly assuming that Y_{1i} is NED with the same coefficients as Y_i . This is not obviously true, and the author is grateful to Don Andrews for pointing out this error.

422 ERRATUM

REFERENCES

- 1. Andrews, D.W.K. Laws of large numbers for dependent non-identically distributed random variables. *Econometric Theory* 4 (1988): 458–467.
- 2. Hansen, B.E. Strong laws for dependent heterogeneous processes. *Econometric Theory* 7 (1991): 213-221.