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1. Introduction

A real matrix is called non-negative (positive) if all its entries are non-negative
(positive). Two matrices A and B are said to be cogredient if there exists a
permutation matrix Q such that 04Q" = B. A square non-negative matrix is
called reducible if it is cogredient to a matrix of the form

5 7]
0 Y
where the blocks X and Y are square. Otherwise it is called irreducible.

Frobenius (1) proved inter alia (see Section 3 below) that an irreducible
matrix is cogredient to a matrix in the form

[0 4, o . . . o0 0
0 0 Ay . . . O 0
, ()
0 0 . . . . 0 Ah—l,h
Ay O . . . . 0 0

where the zero blocks along the main diagonal are square and 4 is the index of
imprimitivity of A4, i.e. the number of eigenvalues of 4 of maximal modulus
(see Lemma 1 (c¢) in Section 3 below).

Mirsky (5) showed that if A,,, 4,5, ..., 4, are any complex m-square
matrices (here # is an arbitrary positive integer) and the eigenvalues of the
product 4,,4,5...4,, are @, ..., w,, then the eigenvalues of the Am-square
matrix in the form (1) with the 4; ;. , in the indicated superdiagonal positions
consist of all the Ath roots of w,, ..., w,, (@ Ath root of zero being counted A
times).

In this paper I extend Mirsky’s result to all complex matrices in the form (1)
where the superdiagonal blocks A4,,, ..., 4,; are not necessarily square, and I
use this theorem to gain new information about the structure of irreducible
matrices and their spectra.

+ This research was supported by the Air Force Office of Scientific Research under Grant
AFOSR-72-2164.

https://doi.org/10.1017/50013091500015492 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500015492

232 HENRYK MINC

2. Main results
Theorem 1. Let A be an n-square complex matrix in the superdiagonal block

Sform
[0 4,, © 0 0 |
0 0 A, 0 0
. I ) , )
0 0 . . - . 0 Ak_l’k
4y O . . . . 0 0 |

where the zero blocks along the main diagonal are square. Let w,, ..., 0,, be
the non-zero eigenvalues of the product A ,A,s...Ay,. Then the spectrum of A
consists of n—km zeros and the km kth roots of the numbers @,, ..., ®,.

In order to exploit significantly Theorem 1 via the result of Frobenius to the
case of irreducible non-negative matrices, we establish the following two auxiliary
theorems which may be of interest in themselves.

Theorem 2. Let B,, ..., B and C,, ..., C, be irreducible non-negative matrices.
The direct sums

and
1
H= 3" C;
i=1
are cogredient if and only if s = t and there exists a permutation ¢ such that B;
and C,; are cogredient for i = 1, ..., s.

Theorem 3. If A is an irreducible non-negative matrix and if A* is cogredient
to a direct sum of irreducible matrices C,, ..., Cy, then k divides the index of
imprimitivity of A, and all the C; have the same non-zero eigenvalues.

By an application of the above theorems we obtain the following result.

Theorem 4. Let A be an irreducible non-negative n-square matrix and suppose
that A* is cogredient to a direct sum of irreducible matrices C,, ..., Cy. If the non-
zero eigenvalues of C, are w,, ..., ®,, then the spectrum of A consists of n—km
zeros and the km kth roots of wy, ..., W,

3. Preliminaries
Some known results are first stated for reference purposes.
Lemma 1 (Frobenius (1)). If A is an irreducible non-negative matrix, then:

(@) A has a real simple positive eigenvalue r which is greater than or equal
to the moduli of its other eigenvalues (the number r is called the maximal
eigenvalue of A);
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(b) there exists a positive eigenvector corresponding to r;

(¢) if A has h eigenvalues of modulus r, then these are the distinct roots of
A'—r® = 0 (the number £ is called the index of imprimitivity of A. If
h = 1, then A is said to be primitive);

(d) A is cogredient to a matrix in the form (1).

Lemma 2. If A is a complex matrix in the form (2), then

Where B‘ = Al,l+1At+l,l+2"'At—l,l’ t = 1, veey k.

Lemma 3 (Sylvester (6)). All the matrices B, defined in Lemma 2 have]the
same nonzero eigenvalues.

Lemma 4 (Minc (4)). Let A be an irreducible non-negative matrix with index
of imprimitivity h. Then A is cogredient to a matrix in the form (2) with k non-
zero blocks in the superdiagonal if and only if k divides h.

Lemma 5 (Minc (4)). If A is an irreducible non-negative matrix in the form (2)
with k non-zero blocks in the superdiagonal, then
k

A*= Y B,

t=1
where the blocks B, = A, ;+1A141,142---A1-1,, are irreducible.

The last auxiliary result is an extension to complex matrices of a theorem of
Frobenijus (1) on non-negative matrices.

Lemma 6. Let A be a complex nxn matrix in the form (2), and let
A"+ Zb,A™,

where the coefficients b, are non-zero, be the characteristic polynomial of A.
Then k divides n—m, for all t.

Proof of Lemma 6. Let p(4, M) denote the characteristic polynomial of M.
Suppose that 4 is in the form (2), where the block 4, ,, isn,xn.,, 1 =1, ...,

n—1, and A4,, is n,xn;, and let
k
D= Y’ o1,
=1
where § = exp (2ri/k). Then
D~ 1AD = 04,
and therefore

DY (6A1,— A)D = 0\, — A),

5o that
pOA, A) = 6"p(2, A).
Hence
9",1"+Z b6™ ™ = 6"A"+Y b,6"A™,
ie. ‘ !
0" =0"
E.M.S.—19/3—Q
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for all . Thus

exp Rri(rn—m)/k) =1
for all . The result follows.

4. Proofs

Proof of Theorem 1. The proof is similar to that of Mirsky’s theorem (5).
By Lemma 3, the spectrum of A* consists of the numbers ;, ..., ®,,, ach counted
k times, and n— km zeros. Thus

P, Ay =2~ T (—wp, 3)
and therefore /=t
p(4, A) = A"*"¢(),

km

oD = tzl c '

where

By Lemma 6, a coefficient ¢, must vanish unless & divides
n—(n—km+t) = km—t.

It follows that ¢, = 0 whenever k£ does not divide . In other words, ¢(4) is a
_polynomial in A*:

(D) = II1 (A*=¢)
=
for some numbers (4, ..., {,. Hence

P 4) = 274 T (-0

= jn—km ]._I (A= Mkg9), 4)

1 tsm
1 A

k
where 0 = exp (2nifk) and {}/* denotes any fixed kth root of {,. Therefore the
characteristic polynomial of A4* is

P, A9 = 277 [T =00t ®)

Comparing (3) and (5) it can be concluded that the numbers {,, ..., {,, are the

same as the numbers w,, ..., @,,, in some order. Thus the characteristic equation
(4) of A reads

TAIA
NANA

p(A, A)=2""F" [ (-,

1=t
1=j

IAUA
IAIA

k
and the theorem is established.

Proof of Theorem 2. The sufficiency of the conditions is quite obvious. To
prove the necessity let P be a permutation matrix such that

P'GP=H
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and let T be the permutation corresponding to P, so that the (i, j) entry of G is
permuted into the (1(i), ©(j)) position of H = P'GP. For brevity the notation i
is used in place of t(i). Denote by A[u,, ..., #, | vy, ..., v} the submatrix of 4
lying in rows numbered u,, ..., i, and columns numbered v, ..., v,; the rows
Hys ---» g Of A (and the columns v,, ..., v,) are said to intersect the submatrix.
Now suppose that for some v, 1 < v < t,

C,=H[&y, ..., &y Byt os Byl @1y wovs &g Bpia1s -or Bols
and that rows and columns «y, ..., , of G intersect block B, but none of rows
nor columns f,,,, ..., B, of G intersect B,. However, the only non-zero entries
in the rows a,, ..., ¢, of G are in the columns «,, ..., a,. Thus

Glays ooy @y | Bpr1s -os B] =0,
H[&l’ ceey &p | Bp-i-la csey Bq] = 0'

But this would imply that C, is reducible. Hence the supposition is impossible,
and each of the C; can intersect only rows and columns corresponding to rows

and therefore

t 3
and columns that intersect a single B;. Since ) ' C;and Y ' B, are cogredient,
2 2
the result follows. ' '

Proof of Theorem 3. It is first shown that k must divide the index of im-
primitivity 4 of 4. Let r be the maximal eigenvalue of 4 and let x be a positive
eigenvector corresponding to . Then x is an eigenvector of 4* corresponding

k

tor®. Now, 4*is cogredient to Y C, and therefore r* is an eigenvalue (clearly
t=1
of maximal modulus) of each C,. Since the C, are irreducible, the eigenvalue r*
is simple and therefore A4* has exactly k eigenvalues equal to r*. But Lemma
I (c¢) implies that there are d = gcd (A, k) such eigenvalues. Hence d = k and
thus & divides A.
It now follows from Lemma 4 in conjunction with Lemma 2 and Lemma 3

that 4* is cogredient to

k

2 B,

t=1

where the B, are irreducible and all the B, have the same non-zero eigenvalues.
k k
But then > B, and ) C, are cogredient, and all the B, and all the C, are
t=1 t=1

irreducible. Thus by Theorem 2 the B,, ..., B, are cogredient to the C,, ..., C,,
in some order, and the result follows.

Proof of Theorem 4. By Theorem 3, k divides the index of imprimitivity of 4,
and thus by Lemma 4, the matrix A4 is cogredient to a matrix in the form (2)
with blocks 4,,, A,3, ..., 4, in the superdiagonal. Then 4* is cogredient to

k
3" B,, where B, = 4, ;114,41 142.-- A1~y t = 1, ..., k, and all the B, have

t=1
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the same non-zero eigenvalues. Hence by Theorem 2 and Theorem 3, the
matrices B, and C, have the same non-zero eigenvalues. The result now follows
by virtue of Theorem 1.
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