JOINS AND DIRECT PRODUCTS OF EQUATIONAL CLASSES

G. Grätzer, H. Lakser, and J. Płonka ${ }^{1}$

(received March 15, 1969)

Let K_{0} and K_{1} be equational classes of algebras of the same type ${ }^{2}$. The smallest equational class K containing K_{0} and K_{1} is the join of K_{0} and K_{1}; in notation, $\mathrm{K}=\mathrm{K}_{0} \vee \mathrm{~K}_{1}$. The direct product $K_{0} \times K_{1}$ is the class of all algebras G which are isomorphic to an algebra of the form $a_{0} \times a_{1}, a_{0} \in K_{0}, a_{1} \in K_{1}$. Naturally, $K_{0} \times K_{1} \subseteq K_{0} \vee K_{1}$. Our first theorem states a very simple condition under which $K_{0} \times K_{1}=K_{0} \vee K_{1}$, and an additional condition under which the representation $a \cong a_{0} \times a_{1}$ is unique.

Let us call K_{0} and K_{1} independent if there exists a binary polynomial symbol p such that the identity $p=x_{i}$ holds in $K_{i}, i=0,1$.

THEOREM 1. Let K_{0} and K_{1} be independent. Then $\mathrm{K}_{0} \times \mathrm{K}_{1}=\mathrm{K}_{0} \vee \mathrm{~K}_{1}$. If, in addition, each algebra $G \in \mathrm{~K}_{0} \vee \mathrm{~K}_{1}$ has a modular congruence lattice, then each $a \in K_{0} \vee K_{1}$ has, up to isomorphism, a unique representation $a \cong a_{0} \times a_{1}, a_{0} \in K_{0}, G_{1} \in K_{1}$.

Remark. Many special cases of this theorem can be found in the literature; for example, see A.L. Foster [4] and A. Astromoff [1]; a special case of the first statement of this theorem was observed independently by P. Kelenson [7].

[^0]2. For the concepts and notations see [5].

Canad. Math. Bull. vol. 12, no. 6, 1969

As an illustration of independence, we present an example quite different from those in the literature. The equational classes K_{0} and K_{1} are of type $\langle 2,2\rangle$. Let K_{0} consist of all algebras $\left\langle\mathrm{G} ; \mathrm{f}_{0}, \mathrm{f}_{1}\right\rangle$ where G is a group, $f_{0}(x, y)=x y$, and $f_{1}(x, y)=x y^{-1}$. Let K_{1} consist of all algebras $\left\langle L ; f_{0}, f_{1}\right\rangle$ where L is a lattice, $f_{0}(x, y)=x \vee y$, and $f_{1}(x, y)=x \wedge y$. The polynomial symbol $p={\underset{f}{f}}_{1}\left(\underline{f}_{0}\left(\underline{x}_{0}, \underline{x}_{1}\right), \underline{x}_{1}\right)$ establishes the independence of K_{0} and K_{1}.

Proof of Theorem 1. Let $a \in K_{0} \vee K_{1}$, and let \oplus_{i} denote the smallest congruence relation on G such that $G / \Theta_{i} \in K_{i}$, $i=0,1$. Then $a / \Theta_{0} \vee \Theta_{1} \in K_{0} \wedge K_{1}$, and so satisfies $\underline{x}_{0}=\underline{p}=\underline{x}_{1}$; hence $\Theta_{0} \vee \Theta_{1}=\imath$.

We claim that ${ }^{3} a_{0} \equiv a_{1}\left(\oplus_{0}\right)$ if and only if $p\left(a_{0}, a_{1}\right)=a_{1}$. Indeed, if $p\left(a_{0}, a_{1}\right)=a_{1}$ then $\left[a_{0}\right] \oplus_{0}=p\left(\left[a_{0}\right] \oplus_{0},\left[a_{1}\right] \oplus_{0}\right)=\left[a_{1}\right] \oplus_{0}$; hence $a_{0} \equiv a_{1}\left(\Theta_{0}\right)$. Let Φ_{0} be the relation defined by $a_{0} \equiv a_{1}\left(\phi_{0}\right)$ if and only if $p\left(a_{0}, a_{1}\right)=a_{1}$. To show that $\Theta_{0}=\phi_{0}$ it suffices to show that ϕ_{0} is a congruence relation. Reflexivity, symmetry, transitivity, and the substitution property for the operation f follow from the identities:

$$
\begin{aligned}
\underline{p}(\underline{x}, \underline{x}) & =\underline{x}, \\
\underline{p}(\underline{p}(\underline{x}, \underline{y}), \underline{x}) & =\underline{x}, \\
\underline{p}(\underline{x}, \underline{p}(\underline{y}, \underline{z})) & =\underline{p}(\underline{p}(\underline{x}, \underline{y}), \underline{z}), \\
\left.\underline{p}\left(\underline{x}_{0}, \underline{x}_{1}, \ldots\right), \underline{f}\left(\underline{y}_{0}, \underline{y}_{1}, \ldots\right)\right) & =\underline{f}\left(\underline{p}\left(\underline{x}_{0}, \underline{y}_{0}\right), \underline{p}\left(\underline{x}_{1}, \underline{y}_{1}\right), \ldots\right) .
\end{aligned}
$$

Since these identities clearly hold in K_{0} and K_{1}, they hold in $\mathrm{K}_{0} \vee \mathrm{~K}_{1}$; thus $\Theta_{0}=\Phi_{0}$. Similarly, $a_{0} \equiv a_{1}\left(\Theta_{1}\right)$ if and only if $p\left(a_{0}, a_{1}\right)=a_{0}$.

Consequently, if $a_{0} \equiv a_{1}\left(\Theta_{0} \wedge \Theta_{1}\right)$ then $a_{0} \equiv a_{1}\left(\Theta_{i}\right)$; hence $p\left(a_{0}, a_{1}\right)=a_{i}$, and so $a_{0}=a_{1}$, establishing $\Theta_{0} \wedge \Theta_{1}=\omega$. Now let $a \equiv b\left(\Theta_{0}\right), b \equiv c\left(\Theta_{1}\right)$; then $a \equiv p(c, a)\left(\Theta_{1}\right), p(c, a) \equiv c\left(\Theta_{0}\right)$, and so Θ_{0} and Θ_{1} permute. Thus (see e.g. [5, Theorem 19.3]) $a \cong a / \Theta_{0} \times a / \Theta_{1}, a / \Theta_{0} \in K_{0}, a / \Theta_{1} \in K_{1}$, verifying the first statement of the theorem.
3. This idea can be traced to N. Kimura [8], [9], see also C. C. Chang, B. Jónsson, and A. Tarski [2].

Now let a have a modular congruence lattice, $a \cong a_{0} \times a_{1}$, $a_{0} \in K_{0}, a_{1} \in K_{1}$. Then $a_{0} \cong a / \Phi_{0}, a_{1} \cong a / \Phi_{1}$, where $\Phi_{0} \wedge \Phi_{1}=\omega$, $\Phi_{0} \vee \Phi_{1}=\imath$, and Φ_{0}, Φ_{1} permute. Because of the minimal property of $\Theta_{i}, \Phi_{i} \geq \Theta_{i}$, $i=0,1$, and so by modularity $\Phi_{0}=\Phi_{0} \wedge\left(\Theta_{0} \vee \Theta_{1}\right)$ $=\Theta_{0} \vee\left(\Phi_{0} \wedge \Theta_{1}\right)=\Theta_{0}$, and $\Phi_{1}=\Theta_{1}$, completing the proof of the theorem.

Does $\mathrm{K}_{0} \vee \mathrm{~K}_{1}=\mathrm{K}_{0} \times \mathrm{K}_{1}$ imply that K_{0} and K_{1} are independent? Trivial examples show that this is not the case. Let C_{p} denote the equational class of Abelian groups satisfying $\mathrm{px}=0$. Set $\mathrm{K}_{0}=\mathrm{C}_{2} \vee \mathrm{C}_{3}$, $K_{1}=C_{3} \vee C_{5}$. Then $K_{0} \vee K_{1}=K_{0} \times K_{1}$; but K_{0} and K_{1} are not independent, because the meet $K_{0} \wedge K_{1}$ of two independent classes can contain one-element algebras only, while $K_{0} \wedge K_{1}$ in this example is C_{3}. However, we can prove the following theorem.

THEOREM 2. Let $K_{0} \wedge \mathrm{~K}_{1}$ consist of one-element algebras only and let every $a \in K_{0} \vee K_{1}$ have a modular congruence lattice. Then $\mathrm{K}_{0} \vee \mathrm{~K}_{1}=\mathrm{K}_{0} \times \mathrm{K}_{1}$ if and only if K_{0} and K_{1} are independent.

Proof. Theorem 1 contains the "if" part. Now let $K_{0} \vee K_{1}=K_{0} \times K_{1}$ Let \mathcal{F} be the free algebra over $K_{0} \vee K_{1}$ with two generators x_{0} and x_{1}. It follows from the assumptions that $\mathcal{F} \cong \mathcal{F} / \Phi_{0} \times \mathcal{F} / \Phi_{1}$, where $\mathcal{F} / \Phi_{i} \in K_{i}$, i $=0,1$. Now let Θ_{0} and Θ_{1} be defined as in the proof of Theorem 1. Then $\Theta_{0} \leq \Phi_{0}, \Theta_{1} \leq \Phi_{1}$, and $\Theta_{0} \vee \Theta_{1}=\imath$ as before. Now take $\mathcal{Z} / \Theta_{0} \wedge \Theta_{1}$; since every homomorphism of \mathcal{F} to an $G_{i} \in K_{i}$ factors through $Z / \Theta_{0} \wedge \Theta_{1}$, and every algebra in $K_{0} \vee K_{1}$ is isomorphic to an algebra of the form $a_{0} \times a_{1}\left(G_{i} \in K_{i}, i=0,1\right)$, we conclude that $\mathcal{F} / \Theta_{0} \wedge \Theta_{1}$ also is free over K on two generators. Hence $\Theta_{0} \wedge \Theta_{1}=\omega$, and $\Theta_{i}=\Phi_{i}$ follows by modularity. Thus $\mathcal{F} \cong \mathcal{F} / \Theta_{0} \times \mathcal{F} / \Theta_{1}$, and \mathcal{F} / Θ_{i} is the free algebra over K_{i} generated by, say, $x_{0}^{i}, x_{1}^{i}(i=0,1)$, where x_{j} corresponds to $\left\langle x_{j}^{0}, x_{j}^{1}\right\rangle$ under this isomorphism $(j=0,1)$. Let p be a polynomial symbol that represents an element of corresponding to $\left\langle\mathrm{x}_{0}^{0}, \mathrm{x}_{1}^{1}\right\rangle$ under the above isomorphism. Then $\mathrm{p}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right) \equiv \mathrm{x}_{\mathrm{i}}\left(\Theta_{\mathrm{i}}\right)$, $i=0,1$; hence p establishes the independence of K_{0} and K_{1}, completing the proof of Theorem 2.

It should be noted that the independence of K_{0} and K_{1} means that the polynomials of K_{0} and K_{1} can be arbitrarily "paired". In other words, if p_{i} is a polynomial on $K_{i}, i=0,1$, then there is a polynomial p on $K_{0} \vee K_{1}$ acting as p_{i} on $K_{i}(i=0,1)$. This implies that every "Mal'cev type condition" (see [6]) shared by K_{0} and K_{1} holds for $K_{0} \vee K_{1}$, provided K_{0} and K_{1} are independent. By A. Day [3], modularity of congruence lattices is of Mal'cev type. Hence in the second statement of Theorem 1 the condition "every $a \in K_{0} \vee K_{1}$ has a modular congruence lattice" can be replaced by "every G in K_{0} or K_{1} has a modular congruence lattice".

REFERENCES

1. A. Astromoff, Some structure theorems for primal and categorical algebras. Math. Z. 87 (1965) 365-377.
2. C. C. Chang, B. Jónsson, and A. Tarski, Refinement properties for relational structures. Fund. Math. 55 (1964) 249-281.
3. A. Day, A characterization of modularity for congruence lattices of algebras. Canad. Math. Bull. 12 (1969) 167-173.
4. A.L. Foster, The identities of - and unique subdirect factorization within - classes of universal algebras. Math. Z. 62 (1955) 171-188.
5. G. Grätzer, Universal algebra. (The University Series in Higher Mathematics, D. Van Nostrand Co. Inc., Princeton, N.J., 1968).
6. G. Grätzer, Mal' cev type conditions. J. Comb. Theory (to appear).
7. P. Kelenson, Thesis. (Berkeley, 1969).
8. N. Kimura, Note on idempotent semigroups, III. Proc. Japan Acad. 34 (1958) 113-114.
9. N. Kimura, The structure of idempotent semigroups, I. Pacific J. Math. 8 (1958) 257-275.

University of Manitoba

[^0]: 1. The work of all three authors was supported by the National Research Council of Canada.
