ON A PROBLEM OF DOOB CONCERNING MULTIPLY
SUPERHARMONIC FUNCTIONS

KOHUR GOWRISANKARAN

The following is a well-known result due to A.P. Calderon [2], asserting
the existence of non-tangential limits of multiply harmonic functions.

Let \(E = E_1 \times E_2 \times \cdots \times E_m \) be the cartesian product of the spaces \(E_k \) of
points \(P_k(x^{(k)}, x_2^{(k)}, \ldots, x_n^{(k)}) \), and \(F(P), \ P = (P_1, \ldots, P_m) \in E, \) be defined
and continuous in \(x^{(k)} > 0, \ k = 1, 2, \ldots, m, \) and harmonic in \(P_k \), that is,
such that

\[
\sum_{i=1}^{n} \frac{\partial^2 F}{(\partial x_i^{(k)})^2} = 0 \quad k = 1, 2, \ldots, m.
\]

Let \(B_k \subset E_k \) be the space \(x^{(k)} = 0, \) and \(B = B_1 \times B_2 \times \cdots \times B_m \) the so-called
distinguished boundary of \(x^{(k)} > 0, \ k = 1, 2, \ldots, m, \) and suppose that for
every point \(Q = (Q_1, Q_2, \ldots, Q_m), \ Q_i \in B_i, \) of a set \(A \) of positive measure of
\(B, \) there exist regions \(\Gamma_{kQ}, \) limited by cones with vertices at the points \(Q_k \)
and hyperplanes \(x^{(k)} = \text{const} \) such that the function \(F(P) \) is bounded in
\(\Gamma_Q = \Gamma_{1Q} \times \Gamma_{2Q} \times \cdots \times \Gamma_{mQ}. \) Then almost everywhere in \(A, \ F(P) \) has a limit
as \(P = (P_1, \ldots, P_m) \) tends to \(Q = (Q_1, \ldots, Q_m) \in A \) in such a way that all \(P_k \)
tend to \(Q_k \) simultaneously and non-tangentially.

Generalizing the above result in the case of functions of one variable, but
on Green spaces, J.L. Doob [4] proved the following.

Let \(\Omega \) be a Green space and \(\Delta \) its Martin boundary. Let \(u \) and \(h \) be
two superharmonic functions on \(\Omega, \ h > 0. \) If, for every \(z \in E \subset \Delta, \ \frac{u}{h} \)
is bounded below in a set which is not thin at \(z, \) then \(\frac{u}{h} \) has a finite fine
limit at \(\mu_h \) almost every point of \(E \); where \(\mu_h \) is the canonical measure
corresponding to \(h \) in the Riesz-Martin integral representation with measures
on \(\Omega \cup \Delta. \)

Received February 3, 1969.
In this paper Doob stated that a similar result concerning the boundary behaviour of multiply superharmonic functions involving the limit of these functions under the product of fine filters is probably true. The object of this note is to prove that Doob’s theorem does not generalize to the functions of several variables. In fact, as we shall see below the limits may fail to exist even for some multiply harmonic functions.

Let us consider \(\Omega = \Omega_1 \times \Omega_2 \) where \(\Omega_1 \) and \(\Omega_2 \) are half planes (say the region below the \(x \)-axis of the plane) or equivalently (for our purpose) unit discs. There is a well-known example due to Saks-Zygmund and others \([7,8]\) of a positive multiply harmonic function \(u \) on \(\Omega \) which has the property that for every \((P^i, P^g) \) in the distinguished boundary \(u(x^i, x^g) \) diverges as \(x^i \to P^i \) \((i = 1, 2)\) non-tangentially and independent of each other. (This function is constructed with the Abel means of an unbounded positive function \([9]\) the indefinite integral which is of not strongly differentiable.) See also \([3]\). With the above example it is enough to show that if \(u > 0 \) is a multiply harmonic function on \(\Omega \) such that \(u(x^i, x^g) \) has a limit \(\alpha \) as \(x^i \to P^i \) following the fine filters \(\mathcal{F}_P^i \) in \(\Omega_i \) corresponding to \(P^i \) \((i = 1, 2)\), where \((P^i, P^g) \) is on the distinguished boundary of \(\Omega \), then \(u(x^i, x^g) \) tends to \(\alpha \) as \(x^i \to P^i \) non-tangentially and independent of each other. We shall, in fact, prove a more general theorem. Before doing so, let us recall the following.

A Stolz domain \(\zeta \) with vertex at \(P \) (on the boundary) and radius \(p \) in a ball or half-space \(\omega \subset \mathbb{R}^n \), is the connected open set which is the intersection of the open ball with centre at \(P \) and radius \(p \) with an angular domain (if \(n = 2 \)) or a cone of revolution \((n > 2)\) with vertex at \(P \) the closure of which (with the exception of \(P \)) is contained in \(\omega \). Another Stolz domain \(\zeta' \) with the same vertex \(P \) is said to be sharper than \(\zeta \) if \(\zeta' \subset \zeta \), except for \(P \), in a neighbourhood of \(P \).

Let \(G_{y^o}(\cdot) \) be the Green’s function of \(\omega \) with pole at \(y^o \in \omega \) and if \(X \) is on the boundary, \(K_x \) the minimal harmonic function on \(\omega \) with pole at \(X \) and such that \(K_x(y^o) = 1 \). For every \(\lambda \in \mathbb{R}^+ \), let

\[
\sigma_\lambda = \left\{ y \in \omega : \frac{K_x(y)}{G_{y^o}(y)} \geq \lambda \right\}.
\]

The sets \(\sigma_\lambda \) form a filter which is finer than the trace of all neighbourhoods of \(X \) on \(\omega \). A set \(E \subset \omega \) is thin (resp. semi-thin) at \(X \) if \(R_{K_x}^{E(\sigma_\lambda)} \) (resp. \(R_{G_{y^o}}^{E(\sigma_\lambda)} \)) tends to zero as \(\lambda \to +\infty \). The sets \(E \subset \omega \) such that \(\omega - E \) is thin (resp.
semi-thin) at X form the fine filter \mathcal{F}_X (resp. semifine filter $\mathcal{F}_{''X}$) corresponding to X. Evidently $\mathcal{F}_{''X}$ is finer than \mathcal{F}_X. A finite valued function on an open subset of $\Omega_1 \times \Omega_2$ is said to be multiply harmonic there if it is continuous and harmonic in each variable for every fixed value of the other.

Theorem 1. Let u and h be multiply harmonic functions defined on Ω with $h > 0$ and $\frac{u}{h}$ lower bounded in $\zeta_i \times \zeta_2$ where ζ_i ($i = 1, 2$) is a Stolz domain $\subset \Omega_i$ with vertex at P_i. Then every adherent value α of $\frac{u}{h}$ in the product $\zeta_i' \times \zeta_2'$ of two sharper Stolz domains ζ_i' (with vertex P_i') and ζ_2' (with vertex P_2'), is also an adherent value of $\frac{u}{h}$ following the product filter $\mathcal{F}_{''P_1} \times \mathcal{F}_{''P_2}$.

From the above theorem, we deduce the following.

Theorem 2. Let u and h be multiply harmonic on Ω such that $h > 0$ and $\frac{u}{h}$ is lower bounded in the intersection with Ω of a neighbourhood of (P_1, P_2'), a point on the distinguished boundary. If $\frac{u(x^1, x^2)}{h(x^1, x^2)} \to \alpha$ as $x^i \to P_i$ following \mathcal{F}_{P_i} and $x^2 \to P_2$ following \mathcal{F}_{P_2}, Then $\frac{u(x^1, x^2)}{h(x^1, x^2)} \to \alpha$ as x^i converges non-tangentially to P_i ($i = 1, 2$).

The theorem above is a generalization of a result of M. Brelot and J.L. Doob [1], in the case when u and h are harmonic functions of one variable on a half space satisfying similar conditions. In proving the first theorem we make use of their proof in the case of functions of one variable. However, a generalisation of Doob's theorem to functions of several variables can be proved, but the limits are those following the "fine" filters canonical to the structure of the multiply harmonic functions. More precisely, we have to consider "fine" filters corresponding to the minimal positive multiply harmonic functions; and these filters are finer than the product of the fine filters corresponding to the minimal positive harmonic functions. (The minimal positive multiply harmonic functions are of the form $h_1 h_2 \cdots h_n$ where h_i's are minimal positive on the respective coordinate spaces [6].) These and other related results will be considered in a forthcoming paper.

Proofs of the Theorem 1 and 2.

The second theorem is an immediate consequence of the first. Suppose the hypotheses of the second theorem hold good. Since the filters \mathcal{F}_{P_i} are finer than \mathcal{F}_{P_i} ($i = 1, 2$), $\frac{u(x^1, x^2)}{h(x^1, x^2)}$ tends to α when $x' \to P'$ following
... \mathcal{F}'' \rho^i (i = 1,2). Hence any adherent value of \frac{u(x^1, x^2)}{h(x^1, x^2)} in the product of any two Stolz domains with vertices at \rho^1 and \rho^2 necessarily coincides with \alpha. It follows that \frac{u(x^1, x^2)}{h(x^1, x^2)} tends to \alpha as \mathcal{X} \longrightarrow \rho^i (i = 1,2) non-tangentially. Before proving the first theorem, let us recall the following two results. The first of them is Harnack’s inequality and the second is implicitly contained in [1, p. 403].

1° Let \(B \) be a ball of radius \(p \) and centre \(z_0 \) in \(\mathbb{R}^n \) \((n \geq 2)\). Let \(B_{\alpha} \) be a concentric ball of radius \(a\rho (\alpha < 1) \). Then, there is a function \(\theta \) of \(\alpha \), (and \(n \)) such that whatever be the positive harmonic function \(v \) on \(B \), for all \(z \in B_{\alpha} \),

\[
\frac{1}{\theta(\alpha)} \leq \frac{v(z)}{v(z_0)} \leq \theta(\alpha).
\]

Further \(\theta(\alpha) \) tends to 1 as \(\alpha \) tends to 0.

2° Let \(\omega \) be a half space in \(\mathbb{R}^n \) \((n \geq 2)\). Let \(\zeta \) and \(\zeta' \) be two Stolz domains contained in \(\omega \) with the same vertex \(P \) on the boundary, \(\zeta' \) sharper than \(\zeta \). Let \(\{x_n\} \) converge to \(P \), \(x_n \in \zeta' \). Let \(d_n \) be the distance of \(x_n \) from the boundary of \(\omega \). Let the balls \(B_n \) of radii \(ad_n \) and centres \(x_n \) be contained in \(\xi \). Then, \(\cup_{n \geq n_0} B_n \) is not semi-thin at \(P \), for all sufficiently large \(n_0 \).

Let us now assume that the hypotheses of the theorem 1 hold good. If \(k \) is a lower bound for \(\frac{u}{h} \) on \(\zeta_1 \times \zeta_2 \), then we can consider \(u-kh \) which is a multiply harmonic function \(>0 \) on \(\zeta_1 \times \zeta_2 \). Hence we can suppose that \(u > 0 \) on \(\zeta_1 \times \zeta_2 \). We can find a sequence \((x^1_n, x^2_n) \) of elements in \(\zeta_1 \times \zeta_2 \), converging to \((P^1, P^2) \) such that \(\frac{u(x^1_n, x^2_n)}{h(x^1_n, x^2_n)} \) tends to \(\alpha \) as \(n \longrightarrow \infty \). Let us suppose that \(0 < \alpha < +\infty \) (the other cases can be treated with suitable alterations). Given \(\delta > 0 \), there is a \(N_1 \) such that \(n \geq N_1 \),

\[
\alpha - \delta \leq \frac{u(x^1_n, x^2_n)}{h(x^1_n, x^2_n)} \leq \alpha + \delta.
\]

Let \(x^i_n \) be the distance of \(x^i_n \) from the boundary of \(\Omega_i \). We can choose \(\beta > 0 \), sufficiently small so that, for \(n \geq N \) (chosen to be \(\geq N_1 \)) the closed balls of radii \(\beta d^i_n \) with centres at \(x^i_n \) are contained in \(\zeta_i \) \((i = 1,2)\). Let \(\gamma > 0 \) and consider the balls \(B(x^i_n, d^i_n \gamma r) \) with centres at \(x^i_n \) and radii \(\beta \sigma d^i_n \gamma r \).
(i = 1, 2) and $n \geq N_2$. Now whatever be $x^2 \in B(x_n^1, \beta_i d_n^1)$, $u(x^1, x^2)$ is harmonic in x^1 and > 0 on $B(x_n^1, \beta_i d_n^1)$ and for $x^1 \in B(x_n^1, \beta_i d_n^1)$, by 1°

$$\frac{1}{\theta(\tau)} \leq \frac{u(x^1, x^2)}{u(x_n^1, x_n^2)} \leq \theta(\tau)$$

and a similar inequality is valid for $h(x^1, x^2)$. Using this argument repeatedly and in the other variable too, it can be easily seen that

$$\frac{\alpha - \delta}{(\theta(\tau))^{i_0}} \leq \frac{u(x^1, x^2)}{h(x^1, x^2)} \leq (\alpha + \delta)(\theta(\tau))^{i_0}$$

whatever be (x^1, x^2) in $B(x_n^1, \beta_i d_n^1) \times B(x_n^2, \beta_i d_n^2)$, $(n \geq N_2)$. Now, since $\theta(\tau) \rightarrow 1$ as $\tau \rightarrow 0$, given $\varepsilon > 0$, we can choose $\delta > 0$ and $\tau > 0$ near 0 so that

$$\alpha - \varepsilon \leq \frac{u(x^1, x^2)}{h(x^1, x^2)} \leq \alpha + \varepsilon$$

whatever be $(x^1, x^2) \in A = \bigcup_{n \geq N_2} (B(x_n^1, \beta_i d_n^1) \times B(x_n^2, \beta_i d_n^2))$. It is now enough to show that $A \cap (F \times F')$ is not void, for arbitrary $F \in \mathcal{F}^{u^1}$ and $F' \in \mathcal{F}^{u^2}$.

Using (2°), we can choose a subsequence $\{n_i\}_{i=1}^{\infty}$ in such a way that $B(x_n^1, \beta_i d_n^1) \cap F \neq \phi \text{ and } F' \cap B(x_n^2, \beta_i d_n^2) \neq \phi$ for all $i \geq i_0$, for all suitably large i_0 (so that $n_{i_0} \geq N_2$). Now, since $A \cap (F \times F') \supseteq (F \times F') \cap [B(x_n^1, d_n^1, \beta_i) \times B(x_n^2, \beta_i d_n^2)]$ we have that $A \cap (F \times F') \neq \phi$. This completes the proof.

Remark. The Theorem 1 is true when Ω is the product of a finite number of half spaces (of different dimensions) with similar conditions on u and h.

BIBLIOGRAPHY

McGill University,
Montréal, Québec,
Canada.