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ON A PROBLEM OF DOOB CONCERNING MULTIPLY
SUPERHARMONIC FUNCTIONS

KOHUR GOWRISANKARAN

The following is a well-known result due to A.P. Calderon [2], asserting
the existence of non-tangential limits of multiply harmonic functions.
Let E = E,XE,x - -+ XE,, be the cartesian product of the spaces E, of

points Pyx,*, %,*®, « - -,2,%), and F(P), P=(P, +--, P,)EE, be defined
and continuous in #,* >0, k=1,2,+--,m, and harmonic in P, that is,
such that

n o:F

§1-—(3xi(k))2 =0 k=12,---,m.

Let B,cE, be the space z,” =0, and B = B;XB,X - --xB, the so-called
distinguished boundary of #,* >0, k=1,2,---,m, and suppose that for
every point Q = (Q;, Q. * * +,Qn), Q;=B,, of a set A of positive measure of
B, there exist regions [, limited by cones with vertices at the points @
and hyperplanes z,* = const such that the function F(P) is bounded in
Tg=T1gXTX +++XImg. Then almost everywhere in A, F(P) has a limit
as P=(P,-+-,P,) tends to @ = (@, + - -,Q,)A in such a way that all B
tend to @, simultaneously and non-tangentially.

Generalizing the above result in the case of functions of one variable, but
on Green spaces, J.L.. Doob [4] proved the following.

Let 2 be a Green space and 4 its Martin boundary. Let « and & be
is

two superharmonic functions on @, 2>0. If, for every zeEc4, —Z—

bounded below in a set which is not thin at z, then JZ’; has a finite fine
limit at g, almost every point of E; where g, is the canonical measure
corresponding to % in the Riesz-Martin integral representation with measures

on 2UAJ.
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In this paper Doob stated that a similar result concerning the boundary
behaviour of multiply superharmonic functions involving the limit of these
functions under the product of fine filters is probably true. The object of
this note is to prove that Doob’s theorem does not generalize to the functions
of several variables. In fact, as we shall see below the limits may fail to exist
even for some multiply harmonic functions.

Let us consider 2 = 2,x02, where @, and @, are half planes (say the
region below the z-axis of the plane) or equivalently (for our purpose) unit
discs. There is a well-known example due to Saks-Zygmund and others
[7,8] of a positive multiply harmonic function # on £ which has the pro-
perty that for every (P!, P?) in the distinguished boundary u(x!,x?) diverges
as ' — P' (i = 1,2) non-tangentially and independent of each other. (This
function is constructed with the Abel means of an unbounded positive func-
tion [9] the indefinite integral which is of not strongly differentiable.) See
also [3]. With the above example it is enough to show that if # >0 is a
multiply harmonic function on Q such that #(z!,2? has a limit « as z'—>P’
following the fine filters &z« in @, corresponding to P* (i =1,2), where
(P, P?) is on the distinguished boundary of @, then u(x!,x?) tends to « as
z"—> P' non-tangentially and independent of each other. We shall, in
fact, prove a more general theorem. Before doing so, let us recall the fol-
lowing.

A Stolz domain ¢ with vertex at P (on the boundary) and radius p in
a ball or half-space wcR", is the connected open set which is the intersec-
tion of the open ball with centre at Pand radius e with an angular domain
(if » =2) or a cone of revolution (n >2) with vertex at P the closure of
which (with the exception of P) is contained in w. Another Stolz domain
¢’ with the same vertex P is said to be sharper than ¢ if {'c§, except for
P, in a neighbourhood of P.

Let Gy,(+) be the Green’s function of » with pole at y,ew and if X is
on the boundary, K, the minimal harmonic function on o with pole at X
and such that K,(y,) =1. For every 2eR*, let

0 = {yEw:g—;Z((yy)Tzl} .

The sets o; form a filter which is finer than the trace of all neighbourhoods
of X on @. A set ECo is thin (resp. semi-thin) at X if RE* (resp. RF2*)

tends to zero as 2—> + o, The sets Eco such that o — E is thin (resp.
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semi-thin) at X form the fine filter & (resp. semifine filter & "'y) corres-
ponding to X. Evidently & /'y is finer than ;. A finite valued function
on an open subset of 2,xQ, is said to be multiply harmonic there if it is
continuous and harmonic in each variable for every fixed value of the other.

THEOREM 1. Let u and h be multiply harmonic functions defined on Q with

h >0 and WZ* lower bounded in & X&, where & (i =1,2) is a Stolz domain cQ,

with vertex at P'.  Then every adherent value a of ;ZL in the product &/x&, of
two sharper Stolz domains &, (with vertex P') and §,’ (with vertex P?), is also an
adherent value of qu Jollowing the product filter F " p1 X F ' pe.

From the above theorem, we deduce the following.

THEOREM 2. Let u and h be multiply harmonic on Q such that h >0 and
Ui lower bounded in the intersection with Q of a neighbourhood of (P!, P?), a

h
point on the distinguished boundary. If MZ%T@ 7)\/—-> a as x'—— Pt following
Fpr and x*—> P? following Fpe,  Then -= u(x’ ~~)—->a as x* converges non-

h(x', x%)
tangentially to P' (i = 1,2).

The theorem above is a generalization of a result of M. Brelot and J.L.
Doob [1], in the case when » and % are harmonic functions of one variable
on a half space satisfying similar conditions. In proving the first theorem
we make use of their proof in the case of functions of one variable.

However, a generalisation of Doob’s theorem to functions of several
variables can be proved, but the limits are those following the “fine” filters
[5] canonical to the structure of the multiply harmonic functions. More
precisely, we have to consider “fine” filters corresponding to the minimal
positive multiply harmonic functions; and these filters are finer than the
product of the fine filters corresponding to the minimal positive harmonic
functions. (The minimal positive multiply harmonic functions are of the
form h.h,- - - h, where k;’s are minimal positive on the respective coordinate
spaces [6].) These and other related results will be considered in a forthcom-
ing paper.

Progfs of the Theorem 1 and 2,
The second theorem is an immediate consequence of the first. Suppose
the hypotheses of the second theorem hold good. Since the filters Z7p:

are finer than 3 (i =1,2), 7;((%—))— tends to @ when x*'—— P’ following
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1 2 .
F p (i =1,2). Hence any adherent value of %} in the product
b
of any two Stolz domains with vertices at P! and P? necessarily coincides
y y

with «. It follows that l;gi’ZZ;H tends to « as a'—> P' (i =1,2) non-

tangentially. Before proving the first theorem, let us recall the following
two results. The first of them is Harnack’s inequality and the second is

implicitly contained in [1, p. 403].

1° Let B be a ball of radius p and centre z, in R* (n=2). Let Ba
be a concentric ball of radius ep(a <1). Then, there is a function ¢ of a,
(and #) such that whatever be the positive harmonic function v on B, for

all zeBa,

(2)
Bla) = (e =0

IA
<

Further 0(a) tends to 1 as o tends to 0.

2° Let w be a half space in R* (#==2). Let ¢ and ¢ be two Stolz
domains contained in o with the same vertex P on the boundary, ¢’ sharper
than ¢ Let {x,} converge to P, z,¢. Let d, be the distance of z,
from the boundary of w. Let the balls B, of radii ad, and centres x, be
contained in ¢ Then, n>Uno B, is not semi-thin at P, for all sufficiently

large #,.
Let us now assume that the hypotheses of the theorem 1 hold good.
If £ is a lower bound for % on ¢, x¢&, then we can consider #u-kk which

is a multiply harmonic function >0 on §;x§,. Hence we can suppose that
u>0 on §;x¢  We can find a sequence (x},z2) of elements in &!x¢l,

. 1 2
converging to (P!, P?) such that -J"‘f@’;,’ﬁg)ﬁ— tends to @ as n —>oco, Let us

7@, @7)
suppose that 0 < a <+ o (the other cases can be treated with suitable

alterations). Given 6 >0, there is a N, such that n =N,

_ u(wg, %2)
“TOE Gl gl =20

Let al be the distance of 2! from the boundary of ©,, We can choose

B8>0, sufficiently small so that, for = N, (chosen to be = N,) the closed

balls of radii gd: with centres at zi are contained in &, (i =1,2). Let

7 >0 and consider the balls B(xi,digr) with centres at z! and radii grd:
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(i =1,2) and =N, Now whatever be x2cB(x2, frd?), u(x',x? is harmonic
in #! and >0 on B(xl,pdl) and for 2'€B(z}, prd.), by 1°

and a similar inequality is valid for A(z',2?). Using this argument repeat-
edly and in the other variable too, it can be easily seen that

a—0 - u(@!,2?)
@) = hw, a7 =@ T IO
whatever be (x', x2) in B(x}, frd}) X B(x2, g7d2), (n=N,). Now, since 6(7)—>1

as 7—0, given ¢ >0, we can choose 4 >0 and 7 >0 near 0 so that
u(xt, x?)

— = — — =
“aTe= h(xt, x?) satée

whatever be (2,2 A = nZLJNz[B(xL,ﬁTd}L)xB(x,%,‘BTd,i)]. It is now enough to
show that AN(FxF’) is not void, for arbitrary Fe &% and F'e 9 'p.
Using (2°), we can choose a subsequence {;},2, in such a way that
B(x),prdi)NFs+¢ and F'NB(x:,prd:)+¢ for all i=i, for all suitably
large i, (so that n,,=N,). Now, since AN(FXF')D(FxF') iQio [B(x},,d} g7
X B(zk, prd:)] we have that AN(FxF’)# ¢. This completes the proof.

Remark. The Theorem 1 is true when @ is the product of a finite
number of half spaces (of different dimensions) with similar conditions on
u and &,
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