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ON A PROBLEM OF DOOB CONCERNING MULTIPLY

SUPERHARMONIC FUNCTIONS

KOHUR GOWRISANKARAN

The following is a well-known result due to A.P. Calderon [2], asserting

the existence of non-tangential limits of multiply harmonic functions.

Let E = EλxEzx xEm be the cartesian product of the spaces Ek of

points Pk{xx

{k\ x2

(k\ ,xn

{k)), and F{P), P = {P19 , PJeE, be defined

and continuous in xn

{k)>0, ft = 1,2, ,m, and harmonic in Pk9 that is,

such that

- = 0 ft = 1,2, ,m.

Let BkaEk be the space xn

{k) = 0, and B = BλxB2x - - xBm the so-called

distinguished boundary of xn

(k)>0, ft = 1,2, ,wί, and suppose that for

every point Q = {Qί9Q29 ,Qm), Qi^Bi9 of a set 4̂ of positive measure of

J3, there exist regions ΓkQ, limited by cones with vertices at the points Qk

and hyperplanes xn

{k) = const such that the function F(P) is bounded in

ΓQ = Γ1QxΓ2Qx xΓmQ. Then almost everywhere in 4̂, F(P) has a limit

as P = (Pj, , P J tends to Q = (Q19 , Q m ) ε i in such a way that all Pk

tend to Qfc simultaneously and non-tangentially.

Generalizing the above result in the case of functions of one variable, but

on Green spaces, J.L. Doob [4] proved the following.

Let Ω be a Green space and Δ its Martin boundary. Let u and h be

two superharmonic functions on Ω, h>0. If, for every z^EaΔ, ~~ is

bounded below in a set which is not thin at z, then -^ has a finite fine

limit at μh almost every point of E; where μh is the canonical measure

corresponding to h in the Riesz-Martin integral representation with measures

on ΩUΔ.
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In this paper Doob stated that a similar result concerning the boundary

behaviour of multiply superharmonic functions involving the limit of these

functions under the product of fine filters is probably true. The object of

this note is to prove that Doob's theorem does not generalize to the functions

of several variables. In fact, as we shall see below the limits may fail to exist

even for some multiply harmonic functions.

Let us consider Ω = Ωx x Ω2 where Ωx and Ω2 are half planes (say the

region below the cc-axis of the plane) or equivalently (for our purpose) unit

discs. There is a well-known example due to Saks-Zygmund and others

[7,8] of a positive multiply harmonic function u on Ω which has the pro-

perty that for every (P\P2) in the distinguished boundary u{x\x2) diverges

as xι •—> Px (i = 1,2) non-tangentially and independent of each other. (This

function is constructed with the Abel means of an unbounded positive func-

tion [9] the indefinite integral which is of not strongly differentiable.) See

also [3]. With the above example it is enough to show that if u > 0 is a

multiply harmonic function on Ω such that uix1, x2) has a limit a as xτ >P%

following the fine filters ^ y in Ωt corresponding to Pι (i = l,2), where

(Pι,P2) is on the distinguished boundary of Ω, then u(xι,x2) tends to a as

x% —> Pι non-tangentially and independent of each other. We shall, in

fact, prove a more general theorem. Before doing so, let us recall the fol-

lowing.

A Stolz domain ζ with vertex at P (on the boundary) and radius p in

a ball or half-space ωaRn

9 is the connected open set which is the intersec-

tion of the open ball with centre at Pand radius p with an angular domain

(if n = 2) or a cone of revolution (n > 2) with vertex at P the closure of

which (with the exception of P) is contained in ω. Another Stolz domain

ζ' with the same vertex P is said to be sharper than ζ if ζ'cf, except for

P, in a neighbourhood of P.

Let Gyo( ) be the Green's function of ω with pole at yo^ω and if X is

on the boundary, Kx the minimal harmonic function on ω with pole at X

and such that Kx{y0) = 1. For every λ^R+, let

The sets aλ form a filter which is finer than the trace of all neighbourhoods

of X on ω. A set Eczω is thin (resp. semi-thin) at X if RJPχ

ϋλ (resp. Rfoaή

tends to zero as λ > + oo. The sets Ecω such that ω — E is thin (resp.

https://doi.org/10.1017/S0027763000013738 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000013738


PROBLEM OF DOOB 129

semi-thin) at X form the fine filter ^~x (resp. semifine filter ^"^) corres-

ponding to X. Evidently J^~" x is finer than J^J. A finite valued function

on an open subset of ΩxxΩ2 is said to be multiply harmonic there if it is

continuous and harmonic in each variable for every fixed value of the other.

THEOREM 1. Let u and h be multiply harmonic functions defined on Ω with

h>0 and -~- lower bounded in ζχXζ2 where ζ1 (i = 1,2) is a Stolz domain czΩi
ft

with vertex at P\ Then every adherent value a of -τ~ in the product ζί'xζ2

f of

two sharper Stolz domains ζλ

r [with vertex P1) and ζ2 (with vertex P 2 ), is also an

adherent value of -^- following the product filter ^ ' V x ^ ' V

From the above theorem, we deduce the following.

THEOREM 2. Let u and h be multiply harmonic on Ω such that h > 0 and

~- is lower bounded in the intersection with Ω of a neighbourhood of (Pι,P2), a

point on the distinguished boundary. If -^γγ-j—2 >a as x1 > P1 following
h(x , x )

and x2-—> P2 following J^*. Then Jp^-^Q— > a as xι converges non-
rZ\X f X J

tangentially to Pι (i = 1,2).

The theorem above is a generalization of a result of M. Brelot and J.L.

Doob [1], in the case when u and h are harmonic functions of one variable

on a half space satisfying similar conditions. In proving the first theorem

we make use of their proof in the case of functions of one variable.

However, a generalisation of Doob's theorem to functions of several

variables can be proved, but the limits are those following the "fine" filters

[5] canonical to the structure of the multiply harmonic functions. More

precisely, we have to consider "fine" filters corresponding to the minimal

positive multiply harmonic functions; and these filters are finer than the

product of the fine filters corresponding to the minimal positive harmonic

functions. (The minimal positive multiply harmonic functions are of the

form h1h2> hn where h^s are minimal positive on the respective coordinate

spaces [6].) These and other related results will be considered in a forthcom-

ing paper.

Proofs of the Theorem 1 and 2.

The second theorem is an immediate consequence of the first. Suppose

the hypotheses of the second theorem hold good. Since the filters ^ ~ V

are finer than ^ * (/ = 1,2), - ! γ 4 ^ v ~ t e n d s t o a w n e n x% > Pι following
ft\X , X )
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^ " P « (z = 1,2). Hence any adherent value of " ^ y ^ L in the product
fl\X f X )

of any two Stolz domains with vertices at P1 and P2 necessarily coincides

with a. It follows that j ^ ^ f - t e n d s t o a a s χi—>pi (* = M ) non-

tangentially. Before proving the first theorem, let us recall the following

two results. The first of them is Harnack's inequality and the second is

implicitly contained in [1, p. 403].

1° Let B be a ball of radius φ and centre z0 in Rn (n^2). Let Ba

be a concentric ball of radius ajρ{a < 1). Then, there is a function Θ of α,

(and n) such that whatever be the positive harmonic function υ on B, for

all ztΞ

θ{a) — v(z0)

Further θ{a) tends to 1 as « tends to 0.

2° Let ω be a half space in Rn (w^2). Let f and f be two Stolz

domains contained in ω with the same vertex P on the boundary, ζ' sharper

than ζ. Let {xn} converge to P, xn^ζr. Let dn be the distance of xn

from the boundary of ω. Let the balls Bn of radii adn and centres xn be

contained in ξ". Then, U Bn is not semi-thin at P, for all sufficiently
n>nQ

large n0.

Let us now assume that the hypotheses of the theorem 1 hold good.

If k is a lower bound for ~ on ξΊx£2> then we can consider u-kh which

is a multiply harmonic function > 0 on ξ"iXξ"2 Hence we can suppose that

u >0 on ζίXζ2. We can find a sequence {x\,xl) of elements in ζ\xζ\,

converging to (P1,^2) such that __^Wi |̂) tends to a as n >oo. Let us
n(xn9 xn)

suppose that 0 < a < + oo (the other cases can be treated with suitable

alterations). Given δ > 0, there is a JVi such that

h{xι

n,xl)

Let aι

n be the distance of xι

n from the boundary of Ωi% We can choose

β > 0, sufficiently small so that, for n>.N2 (chosen to be >Nλ) the closed

balls of radii βdι

n with centres at xι

n are contained in ζi (i = 1,2). Let

r > 0 and consider the balls B(xι

n, d
ι

nβϊ) with centres at xι

n and radii
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{i = 1,2) and n^N2. Now whatever be x2<=B{xl,βϊdl), uix^x2) is harmonic

in x1 and > 0 on B(xι

n,βdl) and for x^Bixl, βϊdl), by 1°

and a similar inequality is valid for hix^x2). Using this argument repeat-

edly and in the other variable too, it can be easily seen that

{Θ{ΐ)Y = h(x\x2) =

whatever be (x1, x2) in B(xι

n, βrdι

n)xB(x2

n,βTdl), {n^:N2). Now, since θ(ϊ) >l

as ΐ > 0, given ε > 0, we can choose δ > 0 and ΐ > 0 near 0 so that

whatever be {x\x2)(=A= U iB(xl,βrdι

n)xB(xl,βϊdZn)]. It is now enough to
n>Nz

show that An{FxF;) is not void, for arbitrary F G ^ J I and F ' e ^ - ' V 2 .

Using (2°), we can choose a subsequence {n^^i in such a way that

Bixi^βϊd'nJΠF^φ and FfΠB{x2

ni,βϊd2

nί) ψ φ for all z >: /0, for all suitably

large f0 (so that niQ>N2). Now, since AΓ[{FxF')z>{FxF') Π [B{xl

Ui,d
l

njr)
i>i0

we have that i n ( F x F ) =̂ ̂ . This completes the proof.

Remark, The Theorem 1 is true when Ω is the product of a finite

number of half spaces (of different dimensions) with similar conditions on

u and h.
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