
JFP 22 (4–5): 574–613, 2012. c© Cambridge University Press 2012

doi:10.1017/S0956796812000214 First published online 10 July 2012

574

The Reduceron reconfigured and re-evaluated

MATTHEW NAYLOR and COLIN RUNCIMAN

Department of Computer Science, University of York, York, North Yorkshire, UK

(e-mail:){mfn,colin}@cs.york.ac.uk)

Abstract

A new version of a special-purpose processor for running lazy functional programs is

presented. This processor – the Reduceron – exploits parallel memories and dynamic analyses

to increase evaluation speed, and is implemented using reconfigurable hardware. Compared

to a more conventional functional language implementation targeting a standard RISC

processor running on the same reconfigurable hardware, the Reduceron offers a significant

improvement in run-time performance.

1 Introduction

Efficient evaluation of high-level functional programs on conventional computers is

a big challenge. Sophisticated techniques are needed to exploit architectural features

designed for low-level imperative execution. Furthermore, conventional computers

have limitations when it comes to running functional programs. For example,

memory bandwidth is limited to serial communication in small units. Evaluators

based on graph reduction perform intensive construction and deconstruction of

expressions in memory. Each such operation requires sequential execution of many

machine instructions, not because of any inherent data dependencies, but because

of architectural constraints in conventional computers.

All this motivates the idea of computers specially designed to meet the needs

of high-level functional languages – much as GPUs are designed to meet needs

in graphics. By providing a minimal set of features tailored to the execution of

functional programs, such a custom computer could be not only fast but simple, with

benefits such as fuller verification and lower energy consumption. This is not a new

idea. In the 1980s and 1990s there was a 15-year ACM conference series Functional

Programming Languages and Computer Architecture. In separate initiatives, there

was an entire workshop concerned with graph-reduction machines alone (Fasel &

Keller, 1987), and a major computer manufacturer built a graph-reduction prototype

(Scheevel, 1986). But the process of constructing exotic new hardware was slow and

uncertain. With major advances in compilation for ever bigger, faster and cheaper

mass-market machines, the idea of specialised hardware for functional languages

went out of fashion.

Reconfigurable hardware. Today, the situation is quite different. Field-programmable

gate arrays (FPGAs) have greatly reduced the effort and expertise needed to develop
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special-purpose hardware. They contain thousands of parallel logic blocks that can

be configured at will by software tools. They are widely available and represent an

advancing technology in its own right.

The downside of FPGA applications is that they typically have much lower

maximum clocking frequencies than corresponding directly fabricated circuits – this

is the price we pay for configurability. To obtain good performance using an FPGA,

it is therefore necessary to exploit significant parallelism.

The Reduceron. In this paper, we present a special-purpose machine for sequential

graph reduction – the Reduceron – implemented on an FPGA. We build upon our

previous work on the same topic (Naylor & Runciman, 2008) by presenting a new

design that exhibits a factor of five performance improvement.

A notable feature of our new design is that each of its six semantic reduction

rules is performed in a a single clock-cycle. All the necessary memory transactions

required to perform a reduction are done in parallel. The Reduceron performs on

average 0.55 hand-reductions per clock-cycle. A hand-reduction is a reduction that

a programmer would perform in by-hand evaluation trace of a program; it includes

function application and case analysis, but not machine-level reductions such as

updating and unwinding.

Another notable development in our new design is the use of two dynamic analyses

enabling update avoidance and speculative evaluation of primitive redexes, both of

which lead to significant performance improvements. On conventional computers,

the run-time overhead of these dynamic analyses would be prohibitive, but on an

FPGA they are cheap and simple to implement.

Contributions. In summary, we give the following:

Section 2. A precise description of the Reduceron compiler, including refinements

to the Scott encoding of constructors, used for compiling case expressions and

addressing various efficiency concerns.

Section 3. An operational semantics of the template instantiation machine under-

pinning the Reduceron implementation.

Section 4. A detailed description of how each semantic reduction rule is implemented

in a single clock-cycle using an FPGA.

Section 5. Extensions to the semantics to support (1) dynamic sharing analysis,

used to avoid unnecessary heap updates, and (2) dynamic detection of primitive

redexes, enabling speculative reduction of such expressions during function-body

instantiation.

Section 6. A comparative evaluation of the Reduceron implementation against other

functional language implementations.

Extensions. This paper is an extended version of a conference paper (Naylor &

Runciman, 2010). The main new developments are as follows:

• Figure 2 added to formalise the Reduceron compilation scheme.

• Section 4.3 extended with more details of our template-splitting algorithm.
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e ::= �e (Application)

| case e of {�a } (Case Expression)

| let {�b } in e (Let Expression)

| n (Integer)

| x (Variable)

| p (Primitive)

| f (Function)

| C (Constructor)

| <�f> (Case Table)

a ::= C�x -> e (Case Alternative)

b ::= x = e (Let Binding)

d ::= f �x = e (Function Definition)

Fig. 1. Core syntax of F-lite.

• Section 6.1 extended to include a brief description of each benchmark program.

• Section 6.3 extended with a comparison of the Reduceron against a conven-

tionally compiled functional language implementation targeting a Reduced

Instruction Set Computer (RISC) processor running on the same FPGA.

(This is the most significant new contribution, reflected by the addition of the

word ‘re-evaluated’ to the paper title).

• Section 6.9 extended with more details of our initial experiments with static

primitive-redex speculation (PRS).

• Sections 6.10, 6.12, 6.13 and 6.14 added to broaden discussion of related work.

2 Compilation

This section defines a series of refinements that take programs written in a lazy

functional language called F-lite to a form known as template code, which the

Reduceron can execute.

2.1 Source language

F-lite is a core lazy functional language, close to subsets of both Haskell and Clean.

The syntax of F-lite is presented in Figure 1.

Case expressions. Case expressions are in a simplified form that can be produced

by a pattern match compiler such as that defined in Peyton Jones (1987). Patterns

in case alternatives are constructors applied to zero or more variables. All case

expressions contain an alternative for every constructor of the case subject’s type.

Primitives. The meta-variable p denotes a primitive function symbol. All applications

of primitive functions are fully saturated. The Reduceron implements only a small

set of primitive operations, not the full set of a conventional processor, e.g. we have

no floating-point operations. Primitives used in this paper include (+), (-) and

(<=).
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Main. Every program contains a definition main = e, where e is an expression that

evaluates to an integer n; the result of the program is the value n.

Case tables. Note the unusual case-table construct <�f>. Case tables are not written

in source programs but are introduced during compilation – see Section 2.4.

Examples. Here are two example function definitions. The first concatenates two

lists and the second computes triangular numbers.

append xs ys = case xs of

{ Nil -> ys ; Cons x xs -> Cons x (append xs ys) }

tri n = case (<=) n 1 of

{ False -> (+) (tri ((-) n 1)) n ; True -> 1 }

2.2 Terminology

Application length. The length of an application e1 · · · en is n. For example, the length

of the application append xs ys is three.

Compound and atomic expressions. Applications, case expressions and let expressions

are compound expressions. All other expressions are atomic.

Flat expression. A flat expression is an atomic expression or an application e1 · · · en
in which each ei for i in 1 · · · n is an atomic expression. For example, append xs ys

is a flat expression, but tri ((-) n 1) is not.

Expression graph. A let expression

let { x1 = e1 ; · · · ; xn = en } in e

is an expression graph exactly if e is a flat expression and each ei for i in 1 · · · n is

a flat expression. Expression graphs are restricted A-normal forms (Flanagan et al.,

1993).

Constructor index and arity. Each constructor C of a data type with m constructors

is associated with a unique index in the range 1 · · ·m. More precisely, the index of a

constructor is its position in the alphabetically sorted list of all constructors of that

data type. For example, the standard list data type has two constructors: Cons has

index 1 and Nil has index 2. A constructor with index i is denoted Ci, and the arity

of a constructor C is denoted #C .

2.3 Primitive applications

In a lazy language, an application of a primitive function such as (+), (-) or (<=)

requires special treatment: The integer arguments must be fully evaluated before the

application can be reduced. One simple approach is to transform binary primitive

applications by the rule

p e0 e1 → e1 (e0 p) (1)
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with the run-time reduction rule

n e → e n (2)

for any fully evaluated integer literal n. To illustrate this approach, consider the

expression (+) (tri 1) (tri 2). By compile-time application of rule (1), the

expression is transformed to tri 2 ((tri 1) (+)). At run-time, reduction is as

follows.

tri 2 ((tri 1) (+)) { tri 2 evaluates to 3 }
= 3 ((tri 1) (+)) { Rule (2) }
= (tri 1) (+) 3 { tri 1 evaluates to 1 }
= 1 (+) 3 { Rule (2) }
= (+) 1 3

After transformation by rule (1), tri looks as follows.

tri n = case 1 (n (<=)) of

{ False -> n (tri (1 (n (-))) (+)) ; True -> 1 }

In Section 5, we present more efficient techniques for dealing with primitive

applications.

2.4 Case expressions

This section describes how case expressions are compiled. First we recall the Scott

encoding (Scott, 1968) recently rediscovered by Jansen et al. (2007). Then we make

a number of refinements to this encoding.

The Scott/Jansen encoding. The first step of the encoding is to generate, for each

constructor Ci of a data type with m constructors, a function definition

Ci x1 · · · x#Ci
k1 · · · km = ki x1 · · · x#Ci

(3)

The idea is that each data constructor Ci is encoded as a function that takes as

arguments the #Ci arguments of the constructor and m continuations.The function

encoding constructor Ci passes the constructor arguments to the ith continuation.

For example, the list constructors are transformed to the following functions.

Cons x xs c n = c x xs

Nil c n = n

Now case expressions of the form

case e of { C1 �x1 -> e1 ; · · · ; Cm �xm -> em } (4)

are transformed to

e (alt1 �v1 �x1) · · · (altm �vm �xm)

where�vi are the free variables occurring in the ith case alternative and each alti for

i in 1 · · ·m has the definition

alti �vi �xi = ei
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For example, the append function is transformed to

append xs ys = xs (consCase ys) (nilCase ys)

consCase ys x xs = Cons x (append xs ys)

nilCase ys = ys

Note that the application of nilCase could be reduced at compile-time. This is a

consequence of constructor Nil having arity 0.

Larger example. Now let us look at a slightly larger example: An evaluator for basic

arithmetic expressions.

eval x y e = case e of {

Add n m -> (+) (eval x y n) (eval x y m);

Neg n -> (-) 0 (eval x y n);

Sub n m -> (-) (eval x y n) (eval x y m);

X -> x;

Y -> y;

}

After transformation, and in-lining the nullary cases, we have

eval x y e = e (add x y) (neg x y) (sub x y) x y

add x y n m = (+) (eval x y n) (eval x y m)

neg x y n = (-) 0 (eval x y n)

sub x y n m = (-) (eval x y n) (eval x y m)

Look at the large body of eval: It contains three nested function applications

and several repeated references to x and y. In typical functional language im-

plementations, large function bodies are more expensive to construct than small

ones.

Refinement 1. Rather than partially applying each case-alternative function to the

free variables it refers to, we can define every alternative function alike to take

all free variables occurring in any alternative. A case alternative can simply ignore

variables that it does not need. So let us instead transform case expressions to

e alt1 · · · altm �v

where�v is the union of the free variables in each case alternative, and each alti for i

in 1 · · ·m has the definition

alti �xi �v = ei

Each case-alternative function now takes the constructor arguments followed by the

free variables, rather than the other way around. To illustrate, append now looks as

follows.

append xs ys = xs consCase nilCase ys

consCase x xs ys = Cons x (append xs ys)

nilCase ys = ys
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And eval becomes

eval x y e = e add neg sub xCase yCase x y

add n m x y = (+) (eval x y n) (eval x y m)

neg n x y = (-) 0 (eval x y n)

sub n m x y = (-) (eval x y n) (eval x y m)

xCase x y = x

yCase x y = y

The new bodies of append and eval contain no nested function applications and

no repeated references. An apparent disadvantage is that we have had to introduce

functions for the 0-arity constructor cases nilCase, xCase and yCase. But our next

refinement prepares the way to recover the cost of applying these functions.

Refinement 2. We now have a large row of contiguous constants in the body of

eval. To allow these constants to be represented efficiently (see Section 2.7) we place

them in a case table. Case expressions are transformed to

e <alt1, · · · , altm>�v

and each constructor Ci is encoded as

Ci x1 · · · x#Ci
t = (t ! i) x1 · · · x#Ci

where t!i returns the ith element of case table t.

Refinement 3. An evaluator can handle constructors more efficiently than general

function definitions. We could introduce the following reduction rule for constructors.

Ci e1 · · · e#Ci
t → (t ! i) e1 · · · e#Ci

This rule replaces a constructor with a case-alternative function by looking up the

case table using the constructor’s index. However, the rule also drops the t argument.

As a result, an implementation would have to slide the constructor arguments down

the stack. A reduction rule that does not require argument sliding is

Ci e1 · · · e#Ci
t → (t ! i) e1 · · · e#Ci

t (5)

To account for the fact that t has not been dropped, the case-alternative functions

take the form

alti �xi t �v = ei

The final version of append is

append xs ys = xs <consCase, nilCase> ys

consCase x xs t ys = Cons x (append xs ys)

nilCase t ys = ys

The t argument is simply ignored by the case alternatives. The final version of tri is

tri n = 1 (n (<=)) <falseCase, trueCase> n

falseCase t n = n (tri (1 (n (-))) (+))

trueCase t n = 1

In Sections 3.3 and 4.7 we will see how these refinements enable efficient choices to

be made at the implementation level.
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2.5 In-lining

Our definition of append is no longer directly recursive. This is a consequence

of splitting the case alternatives off as new function definitions. However, direct

recursion is easily recovered: simply in-line the definition of append in the body of

consCase.

consCase x xs t ys =

Cons x (xs <consCase, nilCase> ys)

This transformation motivates the following general in-lining rule: in-line saturated

applications of functions that have flat bodies. In-lining a flat expression e is often a

big win because it eliminates a reduction and e is often no larger than the application

it replaces.

2.6 Expression graphs

It is convenient for implementation purposes to make the graph structure of function

bodies explicit by transforming them to expression graphs (Section 2.2). This is

achieved by three rewrite rules.

(1) Lift nested applications into let bindings:

e1 · · · (ei) · · · en → let { x = ei } in e1 · · · x · · · en

where ei is an application or a let expression, and x is a fresh variable.

(2) Lift let expressions out of let bodies:

let { �b0 } in (let { �b1 } in e) → let { �b0 ; �b1 } in e

(3) Lift let expressions out of let bindings:

let { · · · ; x = let { �b } in e0 ; · · · } in e1 →
let { · · · ; �b ; x = e0 ; · · · } in e1

These rules assume suitable variable renaming to ensure no variable shadowing. To

illustrate, the definition of falseCase becomes

falseCase t n =

let {x0 = tri x1 (+); x1 = 1 x2; x2 = n (-)} in n x0

It is easy to see the number and length of applications in an expression graph.

For example, falseCase contains four applications and its longest application,

tri x1 (+), has length three.

2.7 Template code

Each function definition is now of the form

f x0 · · · xn = let { v0 = e0; · · · ; vm = em } in e

where all expressions are flat (and the list of let-bindings may be empty). This

is very close to the template code that can be actually executed natively by the
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Reduceron. We shall define template code as a Haskell data type, paving the way

for an executable semantics to be defined in Section 3. To highlight these semantic

definitions, and to distinguish them from F-lite code, we prefix them using the ‘>’

symbol.

In template code, a program is defined to be a list of templates.

> type Prog = [Template]

A template represents a function definition. It contains an arity, a spine application

and a list of nested applications.

> type Template = (Arity, App, [App])

> type Arity = Int

The spine application holds the let-body of a definition’s expression graph, and the

nested applications hold the let-bindings. Applications are flat and are represented

as a list of atoms.

> type App = [Atom]

An atom is a small, tagged piece of non-recursive data.

> data Atom =

> FUN Arity Int -- Function with arity and address

> | ARG Int -- Reference to a function argument

> | PTR Int -- Pointer to an application

> | CON Arity Int -- Constructor with arity and index

> | INT Int -- Integer literal

> | PRI String -- Primitive function name

> | TAB Int -- Case table

After applying transformations described in Sections 2.3 to 2.6, F-lite programs

can be compiled to the Reduceron template code by the compilation scheme defined

in Figure 2. The following paragraphs describe, less formally, how such programs

are compiled to template code.

Functions. Given a list of function definitions

f0 �x0 = e0, · · · , fn �xn = en

each function identifier fi occurring in e0 · · · en is translated to an atom FUN #f i,

where #f is the arity of function f.

Arguments. In each definition f x0 · · · xn = e, each variable xi occurring in e is

translated to an atom ARG i.

Let-bound variables. In each expression graph

let { x0 = e0 ; · · · ; xn = en } in e

each xi occurring in e, e0 · · · en is translated to an atom PTR i.

Integers, primitives and constructors. An integer literal n, a primitive p and a

constructor Ci are translated to atoms INT n, PRI p and CON #Ci i respectively.
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D fi x0 · · ·xn = let { v0 = e0; · · ·; vm = em } in e = (n+1,Aσ e , [Aσ e0 , · · · ,Aσ em ])

where

σ = [x0 → ARG 0, · · · ,xn → ARG n,

v0 → PTR 0, · · · ,vm → PTR m]

Aσ e0 · · ·en = [Eσ e0 , · · · ,Eσ en ]

Eσ n = INT n

Eσ p = PRI p

Eσ v = σ v

Eσ Ci = CON #Ci i

Eσ fi = FUN # fi i

Eσ fi, fi+1, · · · , f j = TAB i

Fig. 2. Compilation scheme from transformed F-lite programs to the Reduceron template

code. Scheme D applies to function definitions; scheme A applies to applications; scheme E

applies to atomic expressions; and σ ranges over mappings from variables to atoms.

Case tables. Given a list of function definitions

f0 �x0 = e0, · · · , fn �xn = en

each case table <fi, · · · fj> occurring in e0 · · · en is translated to an atom TAB i. We

arrange that the functions in each case table are defined contiguously in template

code.

Example. Consider the following program involving the tri function.

main = let { } in tri 5

tri n = let { x = n (<=) } in 1 x <falseCase, trueCase> n

falseCase t n = let { x0 = tri x1 (+); x1 = 1 x2; x2 = n (-) } in n x0

trueCase t n = let { } in 1

The template code for the above program is as follows.

> tri5 :: Prog

> tri5 = [ (0, [FUN 1 1, INT 5], [])

> , (1, [INT 1, PTR 0, TAB 2, ARG 0],

> [[ARG 0, PRI "(<=)"]])

> , (2, [ARG 1, PTR 0],

> [[FUN 1 1, PTR 1, PRI "(+)"],

> [INT 1, PTR 2],

> [ARG 1, PRI "(-)"]])

> , (2, [INT 1], []) ]

Note that each function definition is mapped to a template represented as a triple.

The first component of each template is the arity of the function. The second and

third components represent the function’s let-body and let-bindings respectively.

Functions with no let-bindings are mapped to templates with an empty third

https://doi.org/10.1017/S0956796812000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000214


584 M. Naylor and C. Runciman

component. Functions, applications and arguments are all referred to by position.

For example, the atom FUN 1 1 in the first template represents a call to a function

of arity 1 found at index 1 in the list of templates (in this case, a call to the tri

function). And the atom PTR 2 in the third template is a pointer to the application

at index 2 in the list of let-bound applications (in this case, the application named

x2).

3 Operational semantics

This section defines a small-step operational semantics for the Reduceron. There

are two main reasons for presenting a semantics: (1) To define precisely how the

Reduceron works; and (2) to highlight the low-level parallelism present in graph

reduction that is exploited by the Reduceron. We have found it very useful to encode

the semantics directly in Haskell: before we commit to a low-level implementation,

we can assess the complexity and performance of different design decisions and

optimisations.

At the heart of the semantic definition is the small-step state transition function

> step :: State -> State

where the state is a 4-tuple comprising a program, a heap, a reduction stack and an

update stack.

> type State = (Prog, Heap, Stack, UStack)

The heap is modelled as a list of applications, and can be indexed by a heap-address

> type Heap = [App]

> type HeapAddr = Int

An element on the heap can be modified using the update function

> update :: HeapAddr -> App -> Heap -> Heap

> update i a as = take i as ++ [a] ++ drop (i+1) as

The reduction stack is also modelled as a list of nodes, with the top stack element

coming first and the bottom element coming last

> type Stack = [Atom]

> type StackAddr = Int

There is also an update stack

> type UStack = [Update]

> type Update = (StackAddr, HeapAddr)

The meaning of a program p is defined by run p, where

> run :: Prog -> Int

> run p = eval initialState

> where initialState = (p, [], [FUN 0 0], [])

> eval (p, h, [INT i], u) = i

> eval s = eval (step s)
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The initial state of the evaluator comprises a program, an empty heap, a singleton

stack containing a call to main and an empty update stack. The main template has

arity 0 and we arrange so that it is the template at address 0. To illustrate, run tri5

yields 15. In the following sections, the central step function is defined.

3.1 Primitive reduction

The prim function applies a primitive function to two arguments supplied as fully

evaluated integers.

> prim :: String -> Atom -> Atom -> Atom

> prim "(+)" (INT n) (INT m) = INT (n+m)

> prim "(-)" (INT n) (INT m) = INT (n-m)

> prim "(<=)" (INT n) (INT m) = bool (n<=m)

The comparison primitive returns a boolean value. Both boolean constructors have

arity 0; False has index 0 and True has index 1.

> bool :: Bool -> Atom

> bool False = CON 0 0

> bool True = CON 0 1

3.2 Normal forms

The number of arguments demanded by an atom on top of the reduction stack is

defined by the arity function.

> arity :: Atom -> Arity

> arity (FUN n i) = n

> arity (INT i) = 1

> arity (CON n i) = n+1

> arity (PRI p) = 2

To reduce an integer, the evaluator demands one argument as shown in rewrite rule

(2). And to reduce a constructor of arity n, the evaluator requires n + 1 arguments

(the constructor’s arguments and the case table) as shown in rewrite rule (5).

The arity of an atom is only used to detect when a normal form is reached. A

normal form is an application of length n whose first atom has arity � n.

Some functions, such as case-alternative functions, are statically known never to

be partially applied, so they cannot occur as the first atom of a normal form. Such

a function, say with address n, can be represented by the atom FUN 0 n.

3.3 Step-by-step reduction

There is one reduction rule for each possible type of atom that can appear on top

of the reduction stack.

Unwinding. If the top of the reduction stack is a pointer x to an application on

the heap, evaluation proceeds by unwinding: copying the application from the heap
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to the reduction stack where it can be reduced. We must also ensure that when

evaluation of the application is complete, the location x on the heap can be updated

with the result. So we push onto the update stack the heap address x and the current

size of the reduction stack.

> step (p, h, PTR x:s, u) = (p, h, h!!x ++ s, upd:u)

> where upd = (1+length s, x)

Updating. Evaluation of an application is known to be complete when an argument

is demanded whose index is larger than n, the difference between the current size of

the reduction stack and the stack address of the top update. If this condition is met,

then a normal form of arity n is on top of the reduction stack and must be written

to the heap.

> step (p, h, top:s, (sa,ha):u)

> | arity top > n = (p, h’, top:s, u)

> where

> n = 1+length s - sa

> h’ = update ha (top:take n s) h

Integers and primitives. Integer literals and primitive functions can be reduced as

described in Section 2.3, but see Sections 5.2 and 5.3 for refinements of this approach.

> step (p, h, INT n:x:s, u) = (p, h, x:INT n:s, u)

> step (p, h, PRI f:x:y:s, u) = (p, h, prim f x y:s, u)

Constructors. The Scott-encoded constructor applications are reduced by indexing

a case table, as described in Section 2.4.

> step (p, h, CON n j:s, u) = (p, h, FUN 0 (i+j):s,u)

> where TAB i = s!!n

There is insufficient information available to compute the arity of the case-alternative

function at address i+j. However, an arity of zero can be used because a case-

alternative function is statically known not to be partially applied (Section 3.2).

Function application. To apply a function f of arity n, n + 1 elements are popped

off the reduction stack, the spine application of the body of f is instantiated and

pushed onto the reduction stack, and the remaining applications are instantiated

and appended to the heap.

> step (p, h, FUN n f:s, u) = (p, h’, s’, u)

> where

> (arity, spine, apps) = p !! f

> h’ = h ++ map (instApp s h) apps

> s’ = instApp s h spine ++ drop arity s

Instantiating a function body involves replacing the formal parameters with argu-

ments from the reduction stack and turning relative pointers into absolute ones.

> instApp :: Stack -> Heap -> App -> App

> instApp s h = map (inst s (length h))
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> inst :: Stack -> HeapAddr -> Atom -> Atom

> inst s base (PTR p) = PTR (base + p)

> inst s base (ARG i) = s !! i

> inst s base a = a

4 Implementation

We now refine the semantic definition to an actual implementation that runs on

an FPGA. Specifically, our target is a mid-range Xilinx Virtex-5 released in 2008.

Our guiding design principle is to perform as much reduction as possible in each

clock-cycle. Our implementation performs each semantic reduction rule in a single

clock-cycle, and clocks around 100 MHz, a modest but respectable frequency for

processor-like FPGA designs.

4.1 Low-level parallelism

Below we motivate three main opportunities for parallelism that we exploit in our

implementation.

Parallel memories. The state of the reduction machine comprises four independent

memory regions: the program, the heap, the reduction stack and the update stack.

Most reduction rules refer to and modify more than one memory region. For example,

the reduction rule for unwinding writes to both the reduction stack and the update

stack. If the four memory regions are implemented as four separate memory units,

then they can be accessed in parallel, avoiding contentions that would arise if they

were all stored in a single memory unit.

Wide memories. Many of the reduction rules involve transferring applications to

and from memory. If a memory only allows one atom to be accessed at a time,

transferring a single application involves several memory accesses. If memories are

wide enough to allow a whole application to be accessed at a time, transferring an

application needs only a single memory access.

Parallel instantiation. The reduction rule for function application involves instanti-

ating each application in a function body and appending it to the heap. Each atom

in an application can be instantiated in parallel, as indicated by the use of map in

the definition of instApp. The wide heap then allows the instantiated application

to be written in one memory access. Further, each application in a function body

can also be instantiated in parallel, as indicated by the use of map in the semantic

rule for function application. If more than one application must be appended to

the heap, these applications are instantiated in parallel. All this is made possible

by imposing bounds on the structure of templates as discussed in Sections 4.2–

4.4.
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4.2 Bounded template instantiation

Maximum application length. Ideally, we would have a wide enough data bus to

transfer any entire application in one go. However, this is an impossibility without

some upper bound on the length of an application. Therefore, we introduce a bound,

MaxAppLen, on the number of atoms that can occur in an application.

To deal with an application whose length is larger than MaxAppLen, we split it

into two or more smaller ones. For example, if MaxAppLen is 3, the application

f a b c d e can be bracketed ((f a b) c d) e resulting in three applications rather

than one.

An alternative way to bound application length is to split applications into chunks

that are aligned contiguously in memory, with the final chunk especially tagged by

an end-marker. This approach (Naylor & Runciman, 2008) is more efficient in some

cases, but it cannot be expressed as a core-language transformation.

Maximum spine length. Spine applications are special because, during function

application, they are written to the stack, not the heap. So it is fine for spine

applications to have a different maximum length: MaxSpineLen.

Maximum applications per template. Ideally, all applications in a template would

be instantiated in parallel. To allow for such an implementation, we introduce a

bound, called MaxAppsPerBody, on the maximum number of applications that can

occur in a template body. To deal with templates containing more applications than

MaxAppsPerBody, we employ a technique called template splitting.

4.3 Template splitting

Example. We introduce template splitting by example. Consider the following

template, representing the falseCase function occurring in the tri5 program

defined in Section 2.7.

(2, [ARG 1, PTR 0] -- Spine

, [ [FUN 1 1, PTR 1, PRI "(+)"] -- Application 1

, [INT 1, PTR 2] -- Application 2

, [ARG 1, PRI "(-)"] ] ) -- Application 3

It contains one spine application and three nested applications. If MaxAppsPerBody

is two then this template is split into two sub-templates. The first sub-template

(0, [FUN 0 4] -- Intermediate spine

, [ [FUN 1 1, PTR 1, PRI "(+)"] -- Application 1

, [INT 1, PTR 2] ] ) -- Application 2

replaces the original template in the tri5 program. The second sub-template is

appended to the program at the next free program address: address four in the case

of the tri5 program.

(2, [ARG 1, PTR (-2)] -- Spine

, [ [ARG 1, PRI "(-)"] ]) -- Application 3
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split :: Int -> Template -> [Template]

split f t@(arity, spine, apps)

| length apps < maxAppsPerBody = [t]

| otherwise =

(0, [FUN 0 f], take maxAppsPerBody apps)

: split (f+1) (arity, spine, drop maxAppsPerBody apps’)

where

apps’ = map (map decPTR) apps

decPTR :: Atom -> Atom

decPTR (PTR n) = PTR (n - maxAppsPerBody)

decPTR a = a

Fig. 3. An application split f t splits a template t into a list of sub-templates, where f is

the next unoccupied template address. The final sub-template returned replaces the original

un-split template, and the other sub-templates are appended to the program beginning at

address f.

The spine of the first sub-template is simply a call to the second sub-template. There

are three important points to note:

• The first sub-template contains three applications, which is still larger than

the bound MaxAppsPerBody. However, at the implementation level, we do not

count a spine application of the form [FUN 0 f] as an application: It can be

interpreted simply as ‘jump to template f’, and does not entail any heap or

stack accesses.

• In the second sub-template, each atom of the form PTR n is replaced by

PTR (n − 2) to account for the fact that instantiation of the first sub-template

would have increased the size of the heap by two.

• The arity of the first sub-template is set to zero: No elements are popped from

the stack since they may be required by the second sub-template.

Template splitting algorithm. In the general case, template splitting is performed by

the split function defined in Figure 3. To illustrate, consider the following function

body where f, g and h are function identifiers, and x and y are argument variables

f x (g (h y) x)

Supposing that MaxAppsPerBody is 2, then this body will be implemented as two

templates: one containing the applications of h and g and another containing the

application of f. Two templates mean that two reduction steps are required to

instantiate the body.

This splitting method is rather simplistic, and there may be a room for im-

provement. One alternative would be to abstract out the second argument of f by

introduction of

i x y = g (h y) x

allowing the following equivalent but smaller body

f x (i x y)
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Table 1. Effect of application-length, spine-length and applications-per-body on reduction

count and heap usage

Parameter Bound Reductions Heap

MaxAppLen 2 1.00 1.00

3 0.84 1.00

4 0.83 1.30

5 0.82 1.57

6 0.82 1.89

MaxSpineLen 2 1.00 1.00

3 0.82 0.76

4 0.76 0.67

5 0.71 0.60

6 0.70 0.57

MaxAppsPerBody 1 1.00 1.00

2 0.89 1.00

3 0.85 1.00

4 0.85 1.00

This smaller body can be implemented as a single template, and instantiated in a

single reduction step. In the case where the second argument of f is never demanded,

one reduction step is saved. In the case where the second argument of f is demanded,

a reduction of i is required, and overall no reduction step is saved and neither is

any incurred.

So splitting up function bodies at the template level is not the only option. We

could split function bodies at the F-lite combinator level; as illustrated above, this

could lead to improved performance.

4.4 Choosing the bounds

We must choose the values of the bounds MaxAppLen, MaxSpineLen and

MaxAppsPerBody carefully: making them too low prevents useful parallelism;

making them too high wastes resources. Our choices are informed by experiment.

Table 1 shows the performance effect of varying each parameter in turn – non-

varying parameters are effectively defined as infinity. The reduction count and heap

usage figures are normalised across the varying parameter and averaged across a

range of benchmark programs (see Section 6.1). The measurements are obtained by

using a PC implementation of operational semantics. The reduction count represents

the number of times that the step function is applied in the definition of eval.1

The chosen bounds are: MaxAppLen = 4, MaxSpineLen = 6 and MaxAppsPer

Body = 2. The measurements suggest that a MaxAppLen of three is preferable to four

due to better heap usage; the choice of four is motivated by another implementation

1 Constructor reductions are not counted, anticipating the optimisation presented in Section 4.7.
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Table 2. Size and type of each parallel memory unit

Memory unit Element Bits per element Elements

Program Template 234 1 k

Heap App 77 32 k

Reduction stack Atom 18 8 k

Update stack Update 28 4 k

Case-table stack Atom 18 4 k

Copy space App 77 16 k

parameter – the arity limit – introduced in Section 4.5. A MaxSpineLen of five

would not be much worse than six, but the choice of six does not cost much extra at

the implementation level. A MaxAppsPerBody of two is motivated by the fact that

three would not be much better and that two fits nicely with the dual-port memories

available on the FPGA.

4.5 Memory layout

Our Xilinx Virtex-5 FPGA contains 296 dual-port block RAMs, each with a capacity

of 18 kilobits giving a total on-chip RAM capacity of 5,328 kilobits. Each block

RAM is dual-port allowing two independent accesses per clock-cycle. The data-bus

and address-bus widths of each block-RAM are configurable. Possible configurations

include 1 k-by-18 bit and 16 k-by-1 bit, and a range of possibilities in-between. Two

18 kilobits block RAMs can be merged to give further possible configurations

ranging from 1 k-by-36 bit to 32 k-by-1 bit.

For simplicity, our implementation uses FPGA block RAMs only; no off-chip

RAMs are used. This represents a tight constraint on the amount of memory

available to the implementation. (The possibility of introducing off-chip memories

is discussed in Section 7.)

Memory structure. The parallel memory units, each built out of block RAMs, are

listed in Table 2 along with their capacities and the type of element stored at every

addressable location. Note that there are uniform sizes for every program template

and for every heap application. The two memory units at the bottom of the table

are introduced in Sections 4.7 and 4.8 respectively.

Wide memories. The wide heap memory is implemented by concatenating the data-

busses of 77 32 k-by-1 bit block RAMs and merging their address-busses. This is

done on both ports of each block RAM, making a dual-port heap. Similarly, the

wide program memory is implemented using 13 1 k-by-18 bit block RAMs, but this

time the dual-port capability is not needed.

Stack memories. We store the top N stack elements in special-purpose stack registers.

In any given clock-cycle, the stack implementation allows: the top N elements to

be observed; and up to N elements to be popped off; and up to N elements to
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be pushed on. If pushing and popping occur in the same clock-cycle, the pop is

performed before the push. Simultaneous access to the top N elements of the stack is

achieved by a crossbar switch: it requires over 2,000 logic gates, but this is less than

1% of our FPGA’s logic-gate capacity. There is a lot of parallelism in a crossbar,

so the investment is worth it. Further hardware-level implementation details of the

stack implementation are available in Naylor (2009b).

Arity limit. The stack implementation is parameterised by N, but requires N to be

a power of two. For the update stack, N is defined to be 1 since reading and writing

multiple values is of no benefit. For the reduction stack, there are three considerations

to take into account, bearing in mind the aim of single-cycle reduction: (1) only the

top N stack elements are available in any clock-cycle, hence the maximum number

of arguments that be taken by a function is N − 1; (2) the maximum length of a

partially applied function application, or normal-form, is therefore N − 1; and (3)

the choice of N should allow a normal form of length N − 1 to be written onto

the heap in a single clock-cycle. As two applications of length MaxAppLen can be

written to the dual-port heap per clock-cycle, and MaxAppLen is four, a sensible

choice for N is eight, since a normal form of length seven can be bracketed perfectly

into two applications of length four.

To deal with functions taking more than N−1 arguments, an abstraction algorithm

can be used (Turner, 1979). We have developed a minor variant (Naylor, 2009a)

of an abstraction algorithm based on director strings (Dijkstra, 1980; Kennaway

& Sleep, 1988), which uses a more coarse-grained combinator set than Turner’s

algorithm. However, we note that none of the benchmark programs used in this

paper (Section 6) exceeds the arity limit of 8.

4.6 One reduction per clock-cycle

Heap and program memory units are designed to have the following two properties:

• Property 1. If a memory location x is read in clock-cycle n, the value at address

x becomes available on the memory’s data bus on clock-cycle n + 1.

• Property 2. If a value is written to memory location x in clock-cycle n, the

new value at address x is not apparent until clock-cycle n + 1.

The top stack elements are always observable without any clock-cycle delay. Now

we show how each reduction rule in the semantics can be performed in a single

clock-cycle, with reference to the following two invariants.

• Invariant 1. If the top of the reduction stack is of the form PTR x then the

application at heap address x is currently available on the heap memory’s data

bus.

• Invariant 2. If the top of the reduction stack is of the form FUN n f then the

template at program address f is currently available on the program memory’s

data bus.
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Unwinding. The top of the reduction stack has the form PTR x. So the application

currently on the heap’s data bus, say app, is the application at heap address x

(Invariant 1). The following memory transactions are performed in parallel in a

single clock-cycle:

• The application app is pushed onto the reduction stack.

• An update (n, x) is pushed onto the update stack, where n is the size of the

reduction stack before modification.

• The first atom of app is the new top of the reduction stack and is used to look

up heap and program memory in order to maintain Invariants 1 and 2.

Updating. The update stack’s data bus is used to determine if an update is required,

and if so, at what heap address x. If an update is required, then a normal form is

available on the reduction stack’s data bus. The following memory transactions are

performed in parallel in a single clock-cycle:

• If the normal form has length less than or equal to four, it is written to the

heap at address x.

• If the normal form has length larger than four, it is bracketed into two

applications of maximum length four, one of which is written to the heap at

address x, and the other is appended to the heap.

• The top element of the update stack is popped.

• A program lookup is performed to preserve Invariant 2.

A heap lookup to preserve Invariant 1 is not necessary since the top of the reduction

stack cannot possibly be of the form PTR x if an update is being performed. So

updating requires at most two heap accesses, which can be done parallel, thanks to

dual-port memory.

Integers, primitives and constructors. Each of these reduction rules involves a pure

stack manipulation, and each straightforwardly consumes a single clock-cycle.

Function application. The top of the reduction stack has the form FUN n f. So the

template of f, say t, is available on the data bus (Invariant 2). There are two cases

to consider.

Case 1. If t contains a spine application of the form [FUN 0 f], then

• up to two nested applications in t are instantiated and appended to the heap;

• the atom FUN 0 f is written to the top of the reduction stack; and

• function f is looked up in program memory in order to preserve Invariant 2.

Case 2. If t is of some other form, then

• zero or one nested applications in t are instantiated and appended to the heap;

• the spine application in t is instantiated and written to the reduction stack;

and

• the first element of the instantiated spine is used to look up heap and program

memory to preserve Invariants 1 and 2.
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Table 3. Impact of optimisations on clock-cycle count across a range of programs

+Case +Update +Infix

Program Baseline +In-lining Stack Avoidance Primitives +PRS

Adjoxo 1.00 0.85 0.71 0.54 0.43 0.36

Braun 1.00 0.84 0.63 0.46 0.43 0.42

Cichelli 1.00 0.93 0.77 0.56 0.42 0.41

Clausify 1.00 0.79 0.59 0.48 0.41 0.41

CountDown 1.00 0.95 0.86 0.70 0.49 0.31

Fib 1.00 1.28 1.21 0.96 0.75 0.35

KnuthBendix 1.00 0.81 0.63 0.48 0.43 0.40

Mate 1.00 0.83 0.67 0.50 0.43 0.40

MSS 1.00 0.92 0.84 0.61 0.38 0.24

OrdList 1.00 0.73 0.55 0.42 0.42 0.42

PermSort 1.00 0.77 0.62 0.48 0.42 0.42

Queens 1.00 0.75 0.68 0.51 0.40 0.21

Queens2 1.00 0.82 0.67 0.55 0.50 0.50

SumPuz 1.00 0.95 0.80 0.60 0.50 0.48

Taut 1.00 0.90 0.70 0.56 0.51 0.50

While 1.00 0.93 0.77 0.58 0.50 0.49

Average 1.00 0.88 0.74 0.57 0.47 0.40

In Case 1, a heap lookup to preserve Invariant 1 is not required: the top of the

stack is known to be a FUN, not a PTR. Thus, in each case at most two heap access

are required.

4.7 The case-table stack

Constructor reduction modifies only the top element of the reduction stack by adding

the index of the constructor to the address of a case table. This addition is almost

cheap enough to be implemented in combinatorial logic (i.e. in zero clock-cycles)

without lengthening the critical path of the circuit. The problem is that the case table

must be fetched from a variable position on the stack. This requires a multiplexer,

making the combinatorial logic more expensive.

To solve this problem, we introduce a new stack memory to store case tables.

When unwinding an application containing a case table, the case table is pushed

onto the case-table stack. When performing constructor reduction, the case table of

interest is always in the same position: the top of the case-table stack.

Tables 3 and 4 show the impact of various optimisations on clock-cycle count

and heap usage across a range of benchmark programs. Together with the in-lining

strategy defined in Section 2.5, the case-table optimisation results in significant

performance gains on average. The other optimisations in Tables 3 and 4 are

introduced in Section 5. Note that in the Fib program, inlining has a slight negative

effect: the body of the recursive-case of fib grows to contain two applications both

of which need to be split, increasing instantiation time and unwinding time. Without
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Table 4. Impact of optimisations on heap usage across a range of programs

+Case +Update +Infix

Program Baseline +In-lining Stack Avoidance Primitives +PRS

Adjoxo 1.00 0.80 0.80 0.80 0.49 0.41

Braun 1.00 0.93 0.93 0.93 0.88 0.88

Cichelli 1.00 0.97 0.97 0.97 0.36 0.33

Clausify 1.00 0.59 0.59 0.59 0.42 0.42

CountDown 1.00 0.97 0.97 0.97 0.53 0.33

Fib 1.00 2.33 2.33 2.33 2.00 0.33

KnuthBendix 1.00 0.66 0.66 0.66 0.58 0.49

Mate 1.00 0.45 0.45 0.45 0.29 0.25

MSS 1.00 1.00 1.00 1.00 0.51 0.03

OrdList 1.00 0.67 0.67 0.67 0.67 0.67

PermSort 1.00 0.77 0.77 0.77 0.69 0.69

Queens 1.00 0.54 0.54 0.54 0.39 0.11

Queens2 1.00 0.92 0.92 0.92 0.77 0.73

SumPuz 1.00 1.06 1.06 1.05 0.74 0.63

Taut 1.00 0.99 0.99 0.99 0.90 0.87

While 1.00 0.95 0.95 0.95 0.81 0.80

Average 1.00 0.92 0.92 0.92 0.69 0.50

inlining, no applications are split because the long applications remain in the spine

position. There is scope for cleverer inlining.

4.8 Garbage collection

Our implementation employs a simple two-space stop-and-copy garbage collector

(Jones & Lins, 1996). Although a two-space collector may not make the best use of

limited memory resources, it does have the attraction of being easy to implement. In

particular, the algorithm is easily defined iteratively so that no recursive call stack

is needed. See Section 6.3 for some performance figures for garbage collection.

4.9 Hardware description

The Reduceron is described entirely in around 2,000 lines of York Lava

(Naylor et al., 2009), a hardware description language embedded in Haskell. A

large proportion of the description deals with garbage collection and the bit-level

encoding of template code; the actual reduction rules account for less than 400 lines.

The Reduceron description is quite different from other reported Lava ap-

plications. It combines structural and behavioural description styles. Behavioural

description brings improved modularity: we associate each reduction rule with the

memory transactions it performs, rather than associating each memory unit with all

the memory transactions performed on it. So each reduction rule can be expressed

in isolation.
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The behavioural description language, called Recipe and included with York Lava,

takes the form of a 300-line Lava library. It provides mutable variables, assignment

statements, sequential and parallel composition, conditional and looping constructs

and shared procedure calls. In addition, it uses the results of a simple timing analysis,

implemented by abstract interpretation, to enable optimisations.

4.10 Synthesis results

Synthesising our implementation on a Xilinx Virtex-5 LX110T (speed-grade 1)

yields an FPGA design using 14% of available logic slices and 90% of available

block RAMs. The maximum clock frequency after place-and-route is 96 MHz.

By comparison, Xilinx distributes a hand-optimised RISC soft-processor called the

MicroBlaze (Xilinx, 2009) that clocks at 210 MHz on the same FPGA. As the

Reduceron performs a lot of computation per clock-cycle and is not pipelined

(the Microblaze has five pipeline stages), 96 MHz seems respectable. However,

whereas the Microblaze is a 32-bit processor, the Reduceron only processes 18-bit

atoms (18 bits are sufficient to address the entire heap stored in block RAM);

increasing the atom size to 32 bits may affect the Reduceron’s maximum clocking

frequency. See Section 6.3 for a performance comparison of the Reduceron executing

template code and the Microblaze executing conventionally compiled code.

5 Optimisations

This section presents several optimisations, defined by a series of progressive

modifications to the semantics defined in Section 3. A theme of this section is

the use of cheap dynamic analyses to improve performance.

5.1 Update avoidance

Recall that when evaluation of an application on the heap is complete, the heap is

updated with the result to prevent repeated evaluation. There are two cases in which

such an update is unnecessary: (1) The application is already evaluated, and (2) the

application is not shared, so its result will never be needed again. On the Reduceron,

each update consumes a clock-cycle, so avoiding some unnecessary updates will

improve performance.

We identify non-shared applications at run-time, by dynamic analysis. Argument

and pointer atoms are extended to contain an extra boolean field.

> data Atom = · · · | ARG Bool Int | PTR Bool Int | · · ·

An argument is tagged with True exactly if it is referenced more than once in the

body of a function. A pointer is tagged with False exactly if it is a unique pointer;

that is, it points to an application that is not pointed to directly by any other atom

on the heap or reduction stack. There may be multiple pointers to an application

containing a unique pointer, so the fact that a pointer is unique is, on its own, not

enough to infer that it points to a non-shared application. To identify non-shared

applications, we maintain the following invariant.
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• Invariant 3. A unique pointer occurring on the reduction stack points to a

non-shared application.

A pointer that is not unique is referred to as possibly-shared.

Unwinding. The reduction rule for unwinding becomes

> step (p, h, PTR sh x:s, u) = (p, h, app++s, upd++u)

> where

> app = map (dashIf sh) (h!!x)

> upd = [(1+length s, x) | sh && red (h!!x)]

If the pointer on top of the stack is possibly-shared, then the application is dashed

before being copied onto the stack by marking each atom it contains as possibly-

shared. This has the effect of propagating sharing information through an application

> dashIf sh a = if sh then dash a else a

> dash (PTR sh s) = PTR True s

> dash a = a

If the pointer on top of the stack is unique, the application it points to must be

non-shared according to Invariant 3. An update is only pushed onto the update

stack if the pointer is possibly-shared and the application is reducible. An application

is reducible if it is saturated or its first atom is a pointer.

> red :: App -> Bool

> red (PTR sh i:xs) = True

> red (x:xs) = arity x <= length xs

Updating. When an update occurs, the normal-form on the stack is written to the

heap. The normal-form may contain a unique pointer, but the process of writing it

to the heap will duplicate it. Hence, the normal-form on the stack is dashed

> step (p, h, top:s, (sa,ha):u)

> | arity top > n = (p, h’, top:dashN n s, u)

> where

> n = 1+length s - sa

> h’ = update ha (top:take n s) h

> dashN n s = map dash (take n s) ++ drop n s

It is unnecessary to dash the normal-form that is written to the heap, but there

is no harm in doing so: The application being updated is possibly-shared, and a

possibly-shared application will anyway be dashed when it is unwound onto the

stack.

Function application. When instantiating a function body, shared arguments must

be dashed as they are fetched from the stack

> inst s base (PTR sh p) = PTR sh (base + p)

> inst s base (ARG sh i) = dashIf sh (s!!i)

> inst s base a = a
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Performance. Tables 3 and 4 show that update avoidance offers a significant run-time

improvement. On average, 88% of all updates are avoided across the 16 benchmark

programs. Just over half of these are avoided due to non-reducible applications, and

just under half of them are avoided due to non-shared reducible applications. The

average maximum update-stack usage drops from 406 to 11.

The dynamic sharing analysis is not perfect. Some opportunities for update

avoidance are missed when a pointer is copied at run-time but the copy is thrown

away before the application it points to is actually evaluated. A full reference-

counting garbage collector would allow even more accurate sharing information to

be maintained.

5.2 Infix primitive applications

Consider the steps needed to evaluate an application (+) e0 e1. Using the approach

to primitive reduction of Section 3.1, the application is translated to e1 (e0 (+)) at

compile-time. At run-time, we need at least the following steps:

1. An integer reduction is required after e1 is evaluated (to perform rewrite rule

(2) defined in Section 3.1).

2. An unwind reduction is required to fetch the application e0 (+) from the heap.

3. A second integer reduction is required after e0 is evaluated.

4. A primitive reduction is required to apply (+) to the two evaluated arguments.

Requiring these four steps to reduce any primitive application is quite expensive.

In this section, we introduce a new method for handling primitive applications that

does not lead to so many reduction steps.

New method. For every binary primitive function p, we introduce a new primitive

*p, a version of p that expects its arguments flipped

> prim (’*’:p) n m = prim p m n

Any primitive function p can be flipped

> flip (’*’:p) = p

> flip p = ’*’:p

Now we translate binary primitive applications by the rule

p m n → m p n (6)

In place of the existing reduction rules for primitives and integers, we define

> step (p, h, INT m:PRI f:INT n:s, u) =

> (p, h, prim f m n:s, u)

> step (p, h, INT m:PRI f:x:s, u) =

> (p, h, x:PRI (flip f):INT m:s, u)

If both arguments are already evaluated, the primitive is applied. If only the
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first argument is evaluated, then the arguments are swapped and the primitive is

flipped.

Note that compilation rule (6) could just as sensibly be

p m n → n *p m (7)

In the interest of efficiency, the choice between (6) and (7) is informed for each

primitive application by compile-time knowledge of whether m or n is expected to

be already-evaluated.

Example. A primitive application of the form (+) e0 e1 is now translated to e0 (+) e1

at compile-time. And at run-time, we now only need the following steps:

1. An integer reduction is required after e0 is evaluated.

2. A primitive reduction is required after e1 is evaluated.

We have saved two reduction steps for every primitive application. Also note that

e0 (+) e1 comprises one application whereas e1 (e0 (+)) comprises two, so the former

is cheaper to instantiate.

Results. Tables 3 and 4 show run-time and heap-usage improvements brought by

the new approach.

5.3 Speculative evaluation of primitive redexes

Consider evaluation of the expression tri 5. Application of tri yields the expression

case (<=) 5 1 of

{ False -> (+) (tri ((-) 5 1)) 5 ; True -> 1 }

which contains two primitive redexes: (<=) 5 1 and (-) 5 1. This section introduces

a technique called primitive-redex speculation (PRS), in which such redexes are

evaluated during function body instantiation. For example, application of tri

instead yields

case False of { False -> (+) (tri 4) 5 ; True -> 1 }

The benefit is that primitive redexes need not be constructed in memory, nor fetched

again when needed. Even if the result of a primitive redex is not needed, reducing it

is no more costly than constructing it. We identify primitive redexes at run-time, by

dynamic analysis.

Register file. To support PRS, we introduce a register file to the reduction machine

for storing the results of speculative reductions

> type RegFile = [Atom]

The body of a function may refer to these results as required

> data Atom = · · · | REG Bool Int
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An atom of the form REG b i contains a reference i to a register, and a boolean field

b that is true exactly if there is more than one reference to the register in the body

of the function.

The instantiation functions inst and instApp are modified to take the register

file r as an argument, and the following equation is added to the definition of inst

> inst s r base (REG sh i) = dashIf sh (r !! i)

Waves. The primitive redexes in a function body are evaluated in a series of waves.

To illustrate, consider (+) 1 ((+) 2 3). In the first wave of speculative evaluation,

(+) 2 3 would be reduced to 5; in the second wave, (+) 1 5 would be reduced to

6.

More specifically, a wave is a list of independent primitive redex candidates. A

primitive redex candidate is an application that may turn out at run-time to be a

primitive redex. Specifically, it is an application of the form [a0, PRI p, a1], where

a0 and a1 are INT, ARG or REG atoms.

> type Wave = [App]

Templates are extended to contain a list of waves in which no application in a wave

depends on the result of an application in the same or a later wave.

> type Template = (Arity, App, [App], [Wave])

Given the reduction stack, the heap, and a wave list, prs produces a possibly

modified heap, and one result for each application in each wave

> prs :: Stack -> Heap -> [Wave] -> (Heap, RegFile)

> prs s h = foldl (wave s) (h, [])

> wave s (h,r) = foldl spec (h,r) . map (instApp s r h)

If a primitive redex candidate turns out to be a primitive redex at run-time, it

is reduced and its result is appended to the register file. Otherwise, the candidate

application is constructed on the heap, and a pointer to this application is appended

to the register file

> spec (h,r) [INT m,PRI p,INT n] = (h, r++[prim p m n])

> spec (h,r) app = (h++[app], r++[PTR False (length h)])

Function application. Since applications in a function body may refer to the results

in the PRS register file, PRS is performed before instantiation of the body. The new

rule is

> step (p, h, FUN n f:s, u) = (p, h’’, s’, u)

> where

> (pop, spine, apps, waves) = p !! f

> (h’, r) = prs s h waves

> s’ = instApp s r h’ spine ++ drop pop s

> h’’ = h’ ++ map (instApp s r h’) apps

The template-splitting technique outlined in Section 4.3 is modified to deal with

waves of primitive redex candidates. Each wave is split into a separate template. If a

wave contains more than MaxAppsPerBody applications, it is further split in order

to satisfy the constraint.
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Strictness analysis. PRS works well when recursive call sites sustain unboxed ar-

guments.2 For example, if a call to tri is passed an unboxed integer then, thanks

to PRS, so too is the recursive call. However, if the initial call is passed a boxed

expression, primitive redexes never arise, e.g. the outer call in tri (tri 5) is passed

a pointer to an application, inhibiting PRS.

A basic strictness analyser in combination with the worker–wrapper transforma-

tion (Gill & Hutton, 2009) alleviates this problem. Each initial call to a recursive

function is replaced with a call to a wrapper function. The wrapper applies a special

primitive to force evaluation of any strict integer arguments before passing them on

to the recursive worker.

Performance. Tables 3 and 4 show how PRS cuts run-time and heap-usage over the

range of benchmark programs. On average, the maximum stack usage drops from

811 to 104, and 85% of primitive redex candidates turn out to be primitive redexes.

6 Comparative evaluation

This section evaluates the Reduceron in the context of previous and current work

on functional language implementation.

6.1 Benchmark programs

The performance of the Reduceron is measured using a set of 16 benchmark

programs. The programs, though small (the largest is of 551 lines), are diverse and

fairly representative of functional programs in general. The programs are available

online (Naylor et al., 2009). Below are brief descriptions of each program.

Adjoxo (108 lines). An adjudicator for the game noughts and crosses. The input is

a game position, and the output is one of the three values Win, Draw or Loss

indicating the outcome with the best play for each of the players whose turn it

might be. The method is the usual minimax recursive evaluation of completed game

trees.

Braun (51 lines). A Braun tree is a balanced binary tree offering an efficient yet simple

implementation of flexible arrays. The program tests the property that converting a

list to a Braun tree and back again is equivalent to the identity function.

Cichelli (200 lines). Finds a perfect hash function for Haskell keywords. It uses a

backtracking search to find an assignment of natural-number values to each letter

that starts or ends a keyword such that hash values for keywords, computed as start-

value + end-value + length, are unique and occupy a small integer range without

gaps.

2 An unboxed integer is an integer literal INT n as opposed to a pointer PTR x to an expression of type
integer.
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Clausify (132 lines). Puts propositional formulae in clausal form using a multi-stage

transformation of formula-trees. It is almost a purely symbolic application, with

hardly any arithmetic.

CountDown (120 lines). Hutton’s solution to the countdown problem, a numbers

game in which the aim is to construct arithmetic expressions satisfying certain

constraints (Hutton, 2002).

Fib (10 lines). Computes the Nth number in the Fibonacci sequence using a simple

but naive doubly recursive function definition. It is a purely arithmetic program

involving no data structures at all.

KnuthBendix (550 lines). The Knuth–Bendix completion method tries to derive

a convergent term-rewriting system for a given equational theory and symbol-

weighting scheme. It is a typical symbolic computing application from computer

algebra. The example input used in the program gives group-theoretic axioms from

which 10 rewriting rules are derived.

Mate (393 lines). Solves chess end-game problems of the form ‘P to move and

mate in N ’. The method is a brute-force search in an explicit AND-OR game tree

developing the given position to depth of 2N-1. Boards are represented by a square-

piece association list for each player, where squares are coded as rank-file numeric

pairs, so there is a fair amount of primitive arithmetic and comparison.

MSS (47 lines). Computes the maximum segment sum of a list of integers. It works

by dividing the input list into all sub-lists, computing the sum of each and returning

the maximum.

OrdList (46 lines). Checks the property that insertion of a number into an ordered

list of numbers results in a list that is still ordered. Numbers are represented as

peano numerals, so this is a purely symbolic program.

PermSort (39 lines). Enumerates the permutations of a list of numbers, and returns

the first ordered permutation.

Queens (49 lines). Solves a programming problem made famous by Wirth: Place

N queens on an N × N chess board so that no two queens occupy a common

rank, file or diagonal. The solution involves backtracking, list processing and an

inner recursive loop testing the safety of each candidate position for a new queen

by primitive arithmetic comparisons with the coded positions of queens already in

place.

Queens2 (62 lines). A purely symbolic solution to the N-queens problem which

represents the board as a list of lists. It places a queen on one row at a time,
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maintaining a grid of threatened squares, and backtracks if a queen cannot be

placed.

SumPuz (158 lines). A cryptarithmetic solver applied to several problem instances.

Taut (97 lines). A tautology checking program. The method is a brute-force evalua-

tion for all possible boolean assignments to variables.

While (96 lines). A structural operational semantics for the While language (Neilson

& Neilson, 2007) applied to an imperative program that naively computes the

number of divisors of a given integer.

6.2 Comparison with the 2007 Reduceron

Compared to the Reduceron presented in Naylor & Runciman (2008), the implemen-

tation described in this paper reduces the number of clock-cycles required to run the

benchmark programs by an average factor of 6.4. As the previous implementation

clocks at 111 MHz, and the new one at 96 MHz on the same FPGA, the raw speed-

up factor is 5.5. The gains are mainly due to the combined impact of improved

case-expression compilation, single-cycle reduction and the optimisations listed in

Tables 3 and 4. But another factor is that the new implementation performs spineless

evaluation (Burn et al., 1988). During function application, the spine of a function

body is only written onto the stack, reducing heap contention and heap usage. The

spine is only ever written to the heap during updating, and even then, only if it is a

possibly shared normal-form. Spineless evaluation is also more modular in the sense

that it allows function application to be conceptually separated from updating.

6.3 Comparison with conventionally compiled graph reduction

In this section we compare the run-time performance of the Reduceron against that

of two conventional lazy functional language implementations: (1) The state-of-the-

art Glasgow Haskell Compiler (GHC, version 7.0.3); and (2) our own F-lite-to-C

compiler (FtoC).

The first aim of our comparison is to see how FPGA technology can fare against

conventional PCs for the task of sequential graph reduction. We simply compare

wall-clock times of programs running on the Reduceron against GHC-compiled

programs running on a desktop PC. However, we must be careful not to infer too

much from this comparison: The Reduceron is running on reconfigurable hardware

but could in-principle be realised as a specially fabricated chip with a higher clock

frequency.

The second aim of our comparison is to determine the performance benefit (if

any) offered by the special architectural features of the Reduceron. One way to

determine this is to configure the FPGA as a conventional processor and run

the GHC-compiled programs on it; this way, both implementations are realised

using the same circuit technology. Unfortunately, GHC does not yet target any
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Table 5. Performance of programs running on an Intel Core 2 Duo processor clocking at 3

GHz using (1) the GHC compiler and (2) the FtoC compiler. The acronym ‘%GC’ denotes

‘percentage of time spent garbage collecting’. FtoC-compiled programs have a 480 kilobyte heap

GHC -O2 FtoC

Program Time (s) %GC Time (s) %GC Slow-down Factor

Adjoxo 0.07 1.6 0.15 2.0 2.14

Braun 0.27 9.8 0.47 8.4 1.74

Cichelli 0.06 3.2 0.15 6.5 2.50

Clausify 0.20 20.0 0.39 12.4 1.95

CountDown 0.05 2.6 0.14 2.8 2.80

Fib 0.28 0.0 0.61 0.4 2.17

KnuthBendix 0.05 6.6 0.05 18.2 1.00

Mate 0.66 2.7 2.90 10.0 4.40

MSS 0.13 3.2 0.19 4.6 1.46

OrdList 0.61 45.3 0.51 1.4 0.83

PermSort 0.51 2.5 0.72 1.4 1.41

Queens 0.11 0.9 0.21 1.0 1.90

Queens2 0.47 15.7 0.57 5.8 1.21

SumPuz 0.80 4.4 1.64 3.9 2.05

Taut 0.16 34.8 0.20 2.7 1.25

While 0.08 2.7 0.18 1.0 2.25

FPGA environments. Therefore, we have developed our own compiler (FtoC) which

generates standalone C code that can run on the MicroBlaze, a 32-bit RISC processor

for FPGAs developed by Xilinx.

FtoC is an experimental compiler developed within a short period just for this

paper. It only supports a first-order subset of F-lite; we have specialised higher order

programs in a straightforward mechanical fashion. To deal efficiently with primitive

arithmetic operations, FtoC supports a variant of primitive redex speculation based

on static analysis (static PRS), discussed further in Section 6.9. Table 5 shows that

FtoC-compiled programs typically run around a factor of two slower than GHC-

compiled programs on a conventional PC. One exception is the Mate program, on

which GHC’s optimiser has a particularly significant effect.

Table 6 shows that the Reduceron is typically between 10 and 20 times faster than

FtoC-compiled programs running on the MicroBlaze; we therefore predict that it

would typically be between 5 and 10 times faster than GHC-compiled code running

on the Microblaze. The three exceptions are Fib, Queens and KnuthBendix. In Fib

and Queens, static PRS makes FtoC very effective; however, as shown in Table 8, the

Reduceron can also benefit significantly from static PRS on these two programs. In

KnuthBendix, FtoC benefits a lot from the specialisation of higher order functions,

but so too would the Reduceron.

Note that FtoC-compiled programs running on the MicroBlaze have been limited

to a 176 kilobyte heap: this is the maximum heap size we were able to obtain in a

MicroBlaze setup where all memory is realised in block RAMs. The effect can be
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Table 6. Performance of programs running on a Virtex-5 FPGA using (1) the FtoC compiler

targeting the MicroBlaze processor and (2) the Reduceron. FtoC-compiled programs have a 176

kilobyte heap and the Reduceron a 462 kilobyte heap

FtoC (210 MHz) Reduceron (96 Mhz)

Program Time (s) %GC Time (s) %GC Speed-up factor

Adjoxo 3.98 5.2 0.39 0.5 10.21

Braun 14.85 34.1 0.74 6.7 20.06

Cichelli 5.03 15.6 0.41 1.3 12.27

Clausify 14.03 36.7 0.73 4.4 19.48

CountDown 3.49 7.6 0.19 1.4 18.36

Fib 21.77 0.8 2.52 0.1 8.64

KnuthBendix 1.60 52.1 0.19 14.7 8.42

Mate 118.18 40.8 6.74 3.0 17.53

MSS 8.22 12.8 0.69 0.1 11.91

OrdList 12.69 4.3 0.98 0.9 12.94

PermSort 18.83 4.9 1.62 1.3 11.62

Queens 6.84 2.2 1.00 0.2 6.84

Queens2 15.32 16.7 1.29 3.2 11.87

SumPuz 45.14 9.6 3.82 1.4 11.82

Taut 5.75 7.8 0.57 1.0 10.08

While 5.00 2.9 0.36 0.4 13.88

seen in the increased proportion of time spent on garbage collection, especially in

KnuthBendix and Mate.

Analysing Tables 5 and 6 together, we deduce that on average GHC-compiled

programs running on a 3 GHz PC are around 4–5 times faster than programs running

on the 0.1 GHz Reduceron. Given the speed-up over our previous implementation

of the Reduceron, we had hoped that the performance of our new implementation

would approach that of the PC implementations. However, new GHC optimisations

and the use of a 3 GHz Core 2 Duo instead of a 2.8 GHz Pentium-4 have significantly

boosted the PC results. (The Dhrystone (Weicker, 1984) MIPS per MHz of the Core

2 Duo is almost twice that of the Pentium-4 (Longbottom, 2009).)

In summary, architectural features of the Reduceron do offer a significant

performance boost, but not enough to fully absorb the difference in clock frequencies

between PC and FPGA technologies.

6.4 Hand-reductions per clock-cycle

Table 7 shows hand-reductions per clock-cycle. A hand-reduction is the application of

a function or a primitive function; it includes applications of functions introduced

by case compilation, but does not include updating, unwinding, integer reduction,

constructor reduction or applications of functions introduced by template splitting.
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Table 7. Hand-reductions per clock-cycle performed by the Reduceron

Hand-reductions

Program per clock-cycle

Adjoxo 0.65

Braun 0.46

Cichelli 0.52

Clausify 0.54

CountDown 0.62

Fib 0.90

KnuthBendix 0.47

Mate 0.52

MSS 0.65

OrdList 0.43

PermSort 0.43

Queens 0.72

Queens2 0.40

SumPuz 0.46

Taut 0.46

While 0.49

Table 8. Static vs. dynamic PRS schemes

Run-times Hand-reductions per cycle

Dynamic Static Dynamic Static

Fib 1.00 0.50 0.90 1.80

Queens 1.00 0.45 0.72 1.58

6.5 Modern processors

Modern microprocessors are the product of almost half a century of intensive

engineering. Instruction pipelines with tens of stages have helped achieve clock

frequencies in the region of 3–4 GHz. Techniques such as dynamic branch prediction,

out of order execution and caching have enabled high utilisation of such deep

pipelines.

The Reduceron, fully described in just 2,000 lines of Lava, exploits parallelism in

a simpler way that arises very naturally in graph reduction: rather than process one

word at a time, it processes several in parallel. It is not pipelined, so the sophisticated

techniques needed to keep rapidly clocked pipelines busy are not needed.

6.6 The G-machine

In Peyton Jones (1987), template instantiation is presented as a ‘simple’ first step

towards a more sophisticated approach to graph reduction based on the G-machine.

So why is the Reduceron based on template instantiation and not the G-machine?
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The G-machine approach aims to generate good code for conventional hardware,

exploiting its strengths and avoiding its weaknesses. We base the Reduceron

on template instantiation precisely because it does not make assumptions about

the target hardware. The G-machine executes a sequential stream of fine-grained

instructions, many of which could in fact be executed in parallel. The FPGA negates

the assumption that such a sequential stream of instructions is necessary to avoid

interpretive overhead.

6.7 Manipulating basic values

One aspect of reduction that the G-machine approach aims to optimise is the

processing of basic values such as integers. In particular, avoiding construction of

strictly needed primitive applications in memory can lead to large performance

gains. For example, if a function body has the form f ((+) x 1) and f is strict

then construction of (+) x 1 on the heap can be avoided.

The Reduceron can also avoid construction of primitive applications to good

effect (Section 5.3). However, it discovers suitable primitive applications at run-time

and evaluates them speculatively. The Reduceron allows construction of (+) x 1 to

be avoided regardless of whether or not f is strict, but only if x, at run-time, takes

the form INT i.

So the conditions under which construction of primitive applications can be

avoided are quite different between the two approaches. As discussed in Section

5.3, strictness analysis can aid PRS. But strictness analysis alone, without some

mechanism for reducing primitive redexes cheaply, is of little use to the Reduceron.

PRS provides such a mechanism.

6.8 The SKIM machine

SKIM is a microcoded processor designed specifically to perform combinator

reduction (Stoye, 1985). Stoye writes that ‘a combinator reducer coded on an 8-

MHz 68000 goes at about one thirtieth of the speed of SKIM, and was considerably

harder to write than SKIM’s microcode’.

One interesting aspect of SKIM is its use of one-bit reference counts. Stoye (1985)

observes that such reference counts can be stored in the pointer to an application

rather than in the application itself, making useful information about an application

available without the expense of de-referencing a pointer. A reference count bit

indicates whether the pointer is a unique application pointer or multiple application

pointer. This information is used to good effect in SKIM: space pointed to by a

unique pointer is reused rather than discarded. On average about 70% of used cells

are immediately reused.

SKIM’s successful use of reference-count bits partly motivated the development

of the dynamic sharing analysis presented in Section 5.1. We have precisely specified

the modifications needed to implement dynamic sharing analysis in a general graph-

reduction machine. We also discuss two important details not mentioned by Stoye

(1985): (1) The subtle case in which an update can cause a unique pointer to
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become non-unique; and (2) Invariant 3, an important key to understanding why

the technique actually works. We use the results of the analysis not for storage

reclamation (which would complicate the machinery for template instantiation), but

for update avoidance.

6.9 Static versus dynamic analysis

Sharing analysis. Burn et al. (1998) discuss the possibility of avoiding updates by

identifying non-shared applications, including trade-offs between static and dynamic

sharing analysis. The authors write that dynamic sharing analysis has the advantage

of greater precision but that ‘in general we strongly suspect that the cost of

dashing greatly outweighs the advantages of precision when compared to [static

analysis]’. In the Reduceron, dynamic sharing analysis (dashing) has no time cost: It

is implemented in combinatorial logic that is not on the Reduceron’s critical path.

It is precise and simple to implement, requiring only minor modifications to three

of the Reduceron’s reduction rules.

Static analysis for primitive redex speculation. We have noted two important features

of the Reduceron design: (1) By using wide parallel memories templates can be

instantiated in a single clock-cycle. The size of templates is bounded, and if necessary

templates are split, to make this single-cycle instantiation possible. (2) Primitive

redexes in instances of templates are detected dynamically, and evaluated during

instantiation – primitive redex speculation.

The cooperation of these two features is problematic. As templates must be

determined statically at compile-time, but primitive speculation depends on a

dynamic test, sizes of templates containing primitive applications must be reckoned

in a way that allows for the worst case – every primitive-redex test may fail. So

templates are split pessimistically and we do not gain the full benefit of PRS.

One way to avoid this problem is to perform a static analysis of the program.

The goal of the analysis is to find all primitive applications whose every run-time

instance can be guaranteed to be a redex.

We have some preliminary results from a trial of this approach for first-order

programs. All Reduceron primitives have integer arguments. Our iterative analysis

finds places where primitive speculation can sustain and exploit valuable data

structures, in which integer components are already evaluated, without compromising

non-strict semantics. If the pattern of valuable arguments to a function varies

between applications, the definition of the function is cloned so that valuable cases

can be exploited.

Benefits of static PRS include larger templates (since some primitive applications

vanish) and simpler machinery for instantiation (since no PRS failures can occur).

Preliminary results include significant gains for programs with an inner core of

recurrent primitive computation. For example, Figure 8 shows the effect upon Fib

and of Queens (naively de-functionalised). Besides better than 2× speed-ups, note

the overall reduction rates well above one hand-reduction per cycle: the benefit

of parallel primitive computation is clearly seen. Although Fib and Queens are
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examples for which static PRS is most advantageous, so far we have never observed

it to perform less well than the dynamic scheme.

6.10 NORMA

Another special-purpose graph-reduction machine built in the 1980s is NORMA, the

Normal Order Reduction MAchine (Scheevel, 1986). Like the Reduceron, NORMA

used a wide instruction word (370 bits) and a wide data word containing a tag and

two pointer-size components. NORMA also had an advanced register file allowing

any number of data transfers between pairs of registers at the same time. In terms

of performance, NORMA was capable of around 250,000 reductions per second. It

had a clock frequency of around 5 MHz, giving a reduction rate of 0.125 reductions

per cycle. NORMA was based on Turner’s combinators, so a NORMA reduction is

more fine-grained than a Reduceron reduction.

Unfortunately, at that time, building custom machines was a slow and expensive

process, and any performance benefit obtained was wiped out by the next advance

in stock hardware. In contrast, the Reduceron implementation is extremely cheap,

thanks to FPGAs, and FPGAs are now an advancing technology in their own

right.

6.11 The big word machine

A prototype machine similar in spirit to the Reduceron is Augustsson’s Big Word

Machine (BWM) (Augustsson, 1992). The BWM is a graph-reduction machine with

a wide word size, four pointers long, allowing wide applications to be quickly

built on, and fetched from, the heap. Augustsson likens the BWM to a very

long instruction word (VLIW) machine (Hennessy & Patterson, 1992), designed

for functional languages rather than scientific computing. Like the Reduceron, the

BWM has a crossbar switch attached to the stack allowing complex rearrangements

to be done in a single clock-cycle. The BWM also uses the Scott encoding to

implement case expressions and constructors. Unlike the Reduceron, the BWM

works on an explicit instruction stream rather than by template instantiation. The

BWM was never actually built. Some simulations were performed but Augustsson

writes: ‘The absolute performance of the machine is hard to determine at this point’.

6.12 Ward’s work

Ward (2000) explores the possibility of implementing a lazy functional language on

FPGA by compilation to the hardware description language Handel-C. Consider

the three main steps performed by a template instantiator running on a standard

PC:

1. Fetch CPU instructions from memory, which, when executed,

2. read the function body from template memory and

3. construct an instance of the function body in graph memory.
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The G-machine eliminates Step 2 by compiling each function to an instruction

stream that constructs the body directly without having to traverse template memory.

The Reduceron eliminates Step 1 by reading directly from template memory without

having to execute any instructions. Ward (2000) proposes, in essence, to eliminate

both Steps 1 and 2 by compiling functions into FPGA logic that directly instantiates

the function body in graph memory. A potential attraction of this approach is that

different functions can be executed at the same time. However, since every function

definition requires its own connection to a single graph memory, an arbiter is needed

to serialise memory accesses. And as the number of functions in a program grows,

so too does the number of sites from which graph memory is accessed. It might

be possible to split graph memory into independent units that can be accessed in

parallel, but doing this effectively seems challenging. Ward’s work did not progress

beyond preliminary experiments.

6.13 The PilGRIM

A much more recent paper describes work on a processor design called PilGRIM

for executing lazy functional languages (Boeijink et al., 2011). The PilGRIM authors

aim to explore a design that differs in two main ways from the Reduceron: (1) Use

of an assembly-level instruction-set as opposed to template instantiation; and (2)

use of hardware pipelining techniques to permit high clock frequencies. The authors

write that ‘with the extensive use of pipelining the PilGRIM targets a high clock

frequency, however this comes with a great increase in the complexity of the design’.

In Boeijink et al. (2011), the PilGRIM instruction set and a compiler from a

simple core functional language are presented. An actual synthesisable hardware

description of the PilGRIM has not yet been produced; however, an instruction set

simulator has been developed to gauge performance.

The performance of the PilGRIM is measured by counting the number of

instructions needed to execute each program in the Reduceron benchmark suite.

Across all the benchmarks, the PilGRIM instruction counts are very close to the

Reduceron clock-cycle counts. So the performance of the PilGRIM would be similar

to the Reduceron if it executed one instruction per cycle and clocked at 100 MHz.

However, the PilGRIM authors are aiming for hardware which clocks at 1 GHz and

executes one instruction every two clock-cycles on average. At the time of writing,

to achieve such high clock frequencies would not be possible on an FPGA, so the

PilGRIM authors are looking beyond FPGA-based hardware designs.

6.14 The statically allocated functional language

A quite different approach to running functional programs on FPGAs is taken in

Mycroft and Sharp (2000). This paper presents the Statically Allocated Functional

Language (SAFL), and shows how it can be compiled to FPGA. “Statically

allocated” means that functions are restricted to be first-order, strict and tail-

recursive (or not recursive at all). The motivation for compiling functional programs
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to hardware is that they contain a lot of fine-grained implicit parallelism. To

illustrate, consider the following SAFL program:

fun mult(x, y, acc) =

if (x = 0 or y = 0) then acc

else mult(x<<1, y>>1, if y[0] then acc+x else acc)

Here x and y are the inputs to be multiplied, acc is an accumulator and the

return value is the result of the multiplication. Each parameter in the recursive call

to mult is evaluated in parallel and so too is each disjunct in the or expression.

The static-allocation restriction is quite prohibitive for general-purpose program-

ming, and rules out a large class of idiomatic functional programs. However, pure

SAFL extended with channels and mutable arrays is sufficient to express a Data

Encryption Standard encryption/decryption circuit (Sharp, 2002). Frankau (2004)

extends SAFL with similar features, but in a purely functional manner through lazy

lists and linear-type arrays. Both static allocation and purity are enforced using a

linear type system.

7 Conclusions and future work

Considering their relatively low clocking frequencies, FPGA applications must

exploit significant parallelism to achieve high performance. In the context of

sequential graph-reduction, we have taken this idea to its natural limit: Each

reduction rule is performed in one clock-cycle. Furthermore, an FPGA circuit

synthesised from our design achieves a respectable clock frequency compared to

similar FPGA circuits for the same device. It is therefore quite hard to see how the

Reduceron’s reduction rules could be performed more quickly on an FPGA.

On the other hand, there is a lot of scope to reduce the number of reductions

performed in a given program run. To this end, update avoidance and speculative

evaluation of primitive redexes are both effective, making use of simple and precise

dynamic analyses. These dynamic analyses would have a prohibitive run-time

overhead in compiler-generated code running on a conventional machine, but have

no such overhead in the Reduceron.

Our FPGA implementation of the Reduceron is on average 4–5 times slower than

conventionally-compiled code running on a desktop PC (which has a 30 times higher

clock frequency), but is 5–10 times faster than conventionally-compiled code running

on a standard RISC processor on the same FPGA.

Future work. The main limitation of the current Reduceron implementation is the

small amount of heap memory it provides. Could the heap be implemented using

a larger, off-chip memory unit? We believe it could, without loss of performance,

and without significant modification to the existing design. Two possible options are

(1) the use of low-latency memory technologies such as RLDRAM, ZBT RAM or

QDR SRAM, commonly used by FPGA applications that require access to large

amounts of memory; and (2) the use of buffers or caches, implemented using on-chip

block RAM.
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Functional languages offer much scope for parallel evaluation of expressions.

On conventional architectures there is a high cost for operations such as locking

and releasing expressions under evaluation, so the benefits of parallel evaluation

are offset by significant communication overheads. It would be interesting to see

if special-purpose hardware could be used to overcome such overheads. Multiple

Reducerons could be synthesised to FPGA, coordinated for parallel graph reduction.

One of the main features of FPGAs that we are not exploiting is that they can be

configured on a per-program basis. One option would be to allow programmers to

express, as part of their program, custom FPGA logic that accelerates execution of

that program. Such logic would act as a co-processor to the Reduceron, and could

itself be suitably described in the functional source language.

The future development and competitiveness of special-purpose processors for

graph reduction remains questionable. But within a few years, just as plug-in GPU

cards are already used for high-performance graphics, we would like to see FPU

cards for high-performance applications of functional languages. We hope our work

on the Reduceron makes a small advance in that direction.
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