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A comprehensive perturbation theorem for estimating magnitudes
of roots of polynomials

M. Pakdemirli and G. Sarı

Abstract

A comprehensive new perturbation theorem is posed and proven to estimate the magnitudes of
roots of polynomials. The theorem successfully determines the magnitudes of roots for arbitrary
degree of polynomial equations with no restrictions on the coefficients. In the previous papers
‘Pakdemirli and Elmas, Appl. Math. Comput. 216 (2010) 1645–1651’ and ‘Pakdemirli and
Yurtsever, Appl. Math. Comput. 188 (2007) 2025–2028’, the given theorems were valid only for
some restricted coefficients. The given theorem in this work is a generalization and unification of
the past theorems and valid for arbitrary coefficients. Numerical applications of the theorem are
presented as examples. It is shown that the theorem produces good estimates for the magnitudes
of roots of polynomial equations of arbitrary order and unrestricted coefficients.

1. Introduction

Concepts of perturbation theory [2, 4] have been successfully applied to polynomial equations
to estimate the magnitudes of roots without solving the equations exactly. Pakdemirli and
Yurtsever [9] presented two theorems to estimate roots of polynomials with arbitrary degrees.
In the first theorem, it is proven that the magnitudes of roots are always order 1 (O(1)) if
all coefficients are of the same order of magnitude. The second theorem is for a polynomial
equation having one relatively large coefficient with all other coefficients being of O(1).
Pakdemirli and Elmas [8] posed two additional theorems for estimating magnitudes of roots.
One of the theorems is for a polynomial equation with one relatively small coefficient with all
other coefficients being of the same order of magnitude. The other theorem determines the
magnitudes of roots for a polynomial equation with two relatively large coefficients.

As can be seen from the past work, all theorems posed are valid under some restrictions
of the coefficients. A unification and generalization of the past theorems is achieved in this
study and the new theorem is valid for arbitrary coefficients. The theorem is first proven and
then tested via numerical examples. It is found that the theorem predicts well the magnitudes
of roots approximately. This theorem can be integrated to the root finding algorithms as an
initial step since those algorithms need a good initial guess for convergence to a root.

In a related group of study, the link between perturbation theorems and root finding
algorithms were also exploited recently [5–7]. Using perturbation theory and Taylor series
expansions, well known root finding algorithms as well as new ones were systematically derived.
A discussion of root finding algorithms and review of the vast literature published is beyond the
scope of this work. For preliminaries of root finding algorithms, see [1, 3, 10] for example. The
algorithm developed in this work may be integrated to the root finding algorithms presented
in [1, 3, 5–7, 10].

2. Previous theorems

In perturbation theory, the magnitudes of terms are ordered with respect to a small parameter
usually expressed as ε, ε being a much smaller quantity than 1 (ε� 1). Therefore a term
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of order 1/ε, denoted by O(1/ε) is much bigger than 1. Depending on the magnitudes of
coefficients of polynomials, four special theorems were posed and proven previously [8, 9].

2.1. Polynomial with all coefficients the same order of magnitude

The theorem below was given in [9].

Theorem 2.1. For the polynomial equation

anxn + an−1x
n−1 + an−2x

n−2 + . . . + a1x + a0 = 0 (2.1)

if all coefficients ai (i = 0 . . . n) are of the same order of magnitude, then the magnitudes of
roots are of O(1).

Proof. See [9] for details. 2

2.2. Polynomial with one relatively large coefficient

For a polynomial equation in which one coefficient is substantially larger than the others with
all the remaining coefficients being of order 1, the theorem below was given in [9].

Theorem 2.2. For the polynomial equation

anxn + an−1x
n−1 + . . . + amxm + . . . + a1x + a0 = 0 (2.2)

if am ∼O(1/εk) (k > 0) with all other coefficients being of O(1) then the possible roots may
be of either O(εk/m) (m 6= 0 case) or O(1/εk/(n−m)) (m 6= n case).

Proof. See [9] for details. 2

2.3. Polynomial with one relatively small coefficient

If one of the coefficients of a polynomial equation is much smaller than the others which are
of the same order, the following theorem is stated.

Theorem 2.3. For the polynomial equation

anxn + an−1x
n−1 + . . . + amxm + . . . + a1x + a0 = 0 (2.3)

if all coefficients are O(1) except am which is much smaller, that is, am ∼O(εk), ε� 1, k > 0
then the magnitudes of roots are:

(i) x∼O(1) for m arbitrary;
(ii) x∼O(1/εk) if m = n;
(iii) x∼O(εk) if m = 0.

Proof. See [8] for details. 2

2.4. Polynomial with two relatively large coefficients

If two of the coefficients of a polynomial equation are much bigger than the others which are
of the same order, the following theorem is stated.

Theorem 2.4. For the polynomial equation

anxn + an−1x
n−1 + . . . + amxm + . . . + apx

p + . . . + a1x + a0 = 0 (2.4)

if am ∼O(1/εk1), ap ∼O(1/εk2), ε� 1, m > p, k1 > 0, k2 > 0 and all remaining coefficients are
O(1), then the magnitudes of roots are:
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(i) x∼O(1) if k1 = k2;
(ii) x∼O(εk2/p) if k2/p > (k1 − k2)/(m− p), a0 6= 0, p 6= 0;

(iii) x∼O(εk1/m) if k1/m 6 (k1 − k2)/(m− p), a0 6= 0, m 6= 0;
(iv) x∼O(ε(k1−k2)/(m−p)) if k1/m > (k1 − k2)/(m− p), k2/p > (k1 − k2)/(m− p), k1 > k2;
(v) x∼O(1/εk1/(n−m)) if k1/(n−m) > (k2 − k1)/(m− p), m 6= n;
(vi) x∼O(1/εk2/(n−p)) if k2/(n− p) 6 (k2 − k1)/(m− p), p 6= n;
(vii) x∼O(1/ε(k2−k1)/(m−p)) if k1/(n−m) > (k2 − k1)/(m− p),

k2/(n− p) > (k2 − k1)/(m− p), k2 > k1.

Proof. See [8] for details. 2

3. A comprehensive theorem

Theorems previously developed all contain some restrictions on the coefficients. A theorem
which can be applied to any arbitrary polynomial equation is needed for unification of the
results.

Theorem 3.1. For the polynomial equation

xn + an−1x
n−1 + . . . + amxm + . . . + apx

p + . . . + a1x + a0 = 0 (3.1)

assume ak ∼O(1/εmk) where mk may be a positive or a negative real number (note that
mn = 0). Then the magnitudes of roots are:

(i) x∼O(1) if at least two mk and mp are equal and positive with all remaining mi < mk;
(ii) x∼O(1) if at least one mk = 0 and all other mi < 0;

(iii) x∼O(εr) r = (mk −mp)/(k − p) where the kth and pth terms are selected such that
rk −mk = rp−mp and rk −mk, rp−mp are smallest compared to any other ri−mi.

Proof. Two distinct cases for magnitudes of roots should be investigated separately. Roots
may be either of O(1) or O(εr) where r may be positive or negative. The steps of proof will
also outline the algorithm for such problems.

(i) The case when x∼O(1). If x is of order 1, then each term in equation (3.1) can be
written in its order of magnitude

O(1) + O(1/εmn−1)O(1) + O(1/εmn−2)O(1) + . . . + O(1/εm1)O(1) + O(1/εm0) = 0.

If all mi are negative, all terms are small compared to the leading term and hence balancing of
the leading term is impossible and the root cannot be O(1). If only one of the mi is positive,
again this term cannot be balanced. If some of the mi > 0 and no mk = mp for arbitrary k
and p, balancing of the terms is again impossible. If at least for two terms mk = mp where
mk > 0, mp > 0 and all other mi are smaller than mk, balancing is always possible and we
have a root of O(1). This is case (i) in the theorem. If at least one mk = 0 (k 6= n), and all
remaining terms mi < 0, then we can balance the leading term with the kth term or terms, all
other terms being neglected compared to the balanced terms. This is case (ii) in the theorem.
Note that theorem 2.1 is a very special case where after dividing the equation with the leading
coefficient, all coefficients are O(1) and hence all mi = 0.

(ii) The case when x∼O(εr). If the root is not O(1), then it may be a large (r < 0) or small
(r > 0) quantity. One then substitutes for magnitude of the root as O(εr) to equation (3.1),
the order of terms can be written as

O(εr n) + O(εr(n−1)−mn−1) + . . . + O(εri−mi) + . . . + O(εr−m1) + O(ε−m0) = 0.

Balancing needs at least two large terms compared to other terms. Assume that for any
arbitrary k and p terms, rk −mk is equal to rp−mp and rk −mk = rp−mp is smaller than
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all remaining ri−mi, then they are the largest terms and others are neglected compared to
these terms. Solving r from the equality yields r = (mk −mp)/(k − p). It may happen that
more than two terms hold a similar equality, but this would not change the result. Hence, the
root is of O(εr) where r may be a negative or positive real number (r = (mk −mp)/(k − p)).
This is case (iii) in the theorem and hence the proof is completed

2

4. Numerical examples

In this section several numerical examples for Theorem 3.1 will be given. The algorithm starts
with calculating the orders of magnitudes of coefficients. If

ak =
1

εmk
(4.1)

then solving mk yields

mk =
ln |1/ak|

ln ε
. (4.2)

The small parameter ε is assumed to be 0.1. Other numerical values can be assigned as long as
ε� 1. The same numerical value of ε should be used for consistency. For ε = 0.1 a term of order
1/ε is expected to be near 10 and that of order 1/ε2 to be near 100. There are intermediate
orderings also such as

√
ε≈ 0.3162 or 1/

√
ε≈ 3.162. Note that the theorems are universal and

independent of the selection of the parameter ε as long as this parameter is much smaller
than 1.

Theorem 3.1 will be outlined in two worked examples in detail and then the final results will
be given for many other polynomials in Table 1.

4.1. Sample problem 1

Consider the polynomial equation

x3 − 305x2 + 200x− 1 = 0.

First, from the coefficients, mk are calculated using equation (4.2)

m0 = 0, m1
∼= 2.3, m2

∼= 2.5, m3 = 0.

Note that in calculating mk, only one decimal is retained for simplicity. The first and second
cases of Theorem 3.1 are not met for this specific problem, so one concludes that an O(1) root
is impossible. Then one seeks an O(εr) root. The orders of each term are

O(ε3r) + O(ε2r−2.5) + O(εr−2.3) + O(1) = 0.

Balancing the first and second terms yields r =−2.5 for which the above ordering becomes

O(ε−7.5) + O(ε−7.5) + O(ε−4.8) + O(1) = 0.

The first two terms can be balanced with all other terms neglected, hence this choice is an
admissible choice. Balancing the first and third term yields r =−1.15 for which the orders of
terms are

O(ε−3.45) + O(ε−4.8) + O(ε−3.45) + O(1) = 0.

The second term is the largest which cannot be balanced with others, so this choice is discarded.
Balancing the first and last term yields r = 0 which makes the second term largest and this
term cannot be balanced with others, so this case is also discarded. Now balancing the second
and third term yields r = 0.2 for which the orders of terms are

O(ε0.6) + O(ε−2.1) + O(ε−2.1) + O(1) = 0.
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Neglecting the first and last terms, the middle terms can be balanced hence this is an admissible
choice. Balancing the second and last term yields r = 1.25 for which

O(ε3.75) + O(1) + O(ε−1.05) + O(1) = 0.

The largest term is the third term which cannot be balanced with other terms and this case is
also discarded. Finally balancing the third and last term yields r = 2.3 for which

O(ε6.9) + O(ε2.1) + O(1) + O(1) = 0.

The largest terms are the last two terms which can be balanced, hence this is also an admissible
choice. In conclusion, one expects three roots of orders O(1/ε2.5), O(ε0.2), O(ε2.3). For ε = 0.1,
the magnitudes of roots are estimated to be 316.227, 0.63 and 0.0050. On the other hand, the
real roots are 304.3429, 0.6521 and 0.0050. Hence, a good estimate of the magnitudes can be
achieved using the theorem.

4.2. Sample problem 2

Consider the polynomial equation

x3 + 0.1x2 − 106x + 0.01 = 0.

First, from the coefficients, mk are calculated using equation (4.2)

m0 =−2.0, m1 = 2.0, m2 =−1.0.

Note that in calculating mk, only one decimal is retained for simplicity. The first and second
cases of Theorem 3.1 are not met for this specific problem, so one concludes that an O(1) root
is impossible. Then one seeks an O(εr) root. The orders of each term are

O(ε3r) + O(ε2r+1) + O(εr−2) + O(ε2) = 0.

Balancing the first and second terms yields r = 1 for which the above ordering becomes

O(ε3) + O(ε3) + O(ε−1) + O(ε2) = 0.

The third term is the largest which cannot be balanced with others, so this choice is discarded.
Balancing the first and third terms yields r =−1 for which the orders of terms are

O(ε−3) + O(ε−1) + O(ε−3) + O(ε2) = 0.

The first and third terms can be balanced with all other terms neglected, hence this choice is
an admissible choice. Balancing the first and the last term yields r = 2/3 for which the orders
of terms are

O(ε2) + O(ε7/3) + O(ε−4/3) + O(ε2) = 0.

The third term is the largest which cannot be balanced with others, so this choice is discarded.
Balancing the second and third term yields r =−3 for which the orders of terms are

O(ε−9) + O(ε−5) + O(ε−5) + O(ε2) = 0.

The first term is the largest which cannot be balanced with others, so this choice is discarded.
Balancing the second and the last term yields r = 1/2 for which the orders of terms are

O(ε3/2) + O(ε2) + O(ε−3/2) + O(ε2) = 0.

The third term is the largest which cannot be balanced with others, so this choice is discarded.
Balancing the third and the last term yields r = 4 for which the orders of terms are

O(ε12) + O(ε9) + O(ε2) + O(ε2) = 0.
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Table 1. Comparison of magnitudes of roots and estimated magnitudes of roots by Theorem 3.1
(ε = 0.1).

Polynomial equation Roots Magnitudes of
roots

Estimated
magnitudes of roots

x3 − 305x2 + 200x − 1 = 0 304.3429
0.6521
0.0050

304.3429
0.6521
0.0050

316.227
0.63
0.0050

x3 + 0.1x2 − 106x + 0.01 = 0 −10.3458
10.2457
0.0001

10.3458
10.2457
0.0001

10
0.0001

x3 − 0.02x2 + 0.4x − 0.8 = 0 −0.3858 + 0.9284i
−0.3858 − 0.9284i

0.7915

1.0054
1.0054
0.7915

0.9261

x3 + 0.07x2 − 0.001x + 0.2 = 0 −0.6027
0.2698 + 0.5052i
0.2698 − 0.5052i

0.6027
0.5727
0.5727

0.5847

x5 + 50x4 + 200x3 − 100x2

+ 120x + 100 = 0
−45.5608

−4.9780
−0.4796

0.5092 + 0.8124i
0.5092 − 0.8124i

45.5608
4.9780
0.4796
0.9587
0.9587

48.977
3.98
0.7984

x5 + 0.1x4 − 200x3 + 0.01x2

+ 0.05x + 0.2 = 0
−14.1922
14.0922
0.1009

−0.0504 + 0.859i
−0.0504 − 0.859i

14.1922
14.0922
0.1009
0.8605
0.8605

14.125
0.1

x5 + 0.08x4 − 0.001x3

+ 0.01x2 + 0.02x + 0.5 = 0
−0.8839

−0.2879 + 0.8220i
−0.2879 − 0.8220i
0.6899 + 0.5193i
0.6899 − 0.5193i

0.8839
0.8709
0.8709
0.8635
0.8635

0.87

x8 + 11x7 − 5x6 − 0.001x5

+ 1062x4 + 10x3 + 0.8x2

− 0.9x + 3.4 = 0

−10.5757
−5.4843

2.5347 + 3.4476i
2.5347 − 3.4476i

−0.1700 + 0.1725i
−0.1700 − 0.1725i
0.1654 + 0.1650i
0.1654 − 0.1650i

10.5757
5.4843
4.2791
4.2791
0.2422
0.2422
0.2336
0.2336

10
4.6415
0.237

x9 + 1040x8 − 8x7 + 0.01x6

− 102x5 + 25x4 − 0.2x3

+ 11x2 + 2x − 0.0001 = 0

−1040
0.5 + 0.2i
0.5 − 0.2i

−0.4 + 0.4i
−0.4 − 0.4i

0.4i
−0.4i

−0.2
0

1040
0.5385
0.5385
0.5656
0.5656
0.4
0.4
0.2
0

1000
0.4641
0.1820
0.1925
0

x9 − 0.5x8 + 1224x6 − 80x5

− 5x4 + 0.0003x2 + 120 = 0
5.4947 + 9.2615i
5.4947 − 9.2615i

−10.5548
0.6003 + 0.3387i
0.6003 − 0.3387i
0.0108 + 0.6776i
0.0108 − 0.6776i

−0.5784 + 0.3389i
−0.5784 − 0.3389i

10.7688
10.7688
10.5548
0.6892
0.6892
0.6776
0.6776
0.6704
0.6704

10.7895
0.6823
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Table 1. (Continued.)

Polynomial equation Roots Magnitudes of
roots

Estimated
magnitudes of roots

x8 + 4428x7 − 42x6 + 0.05x4

− 2x3 + 0.0002x − 100 = 0
−4428

0.6
0.4 + 0.5i
0.4 − 0.5i

−0.1 + 0.6i
−0.1 − 0.6i
−0.5 + 0.3i
−0.5 − 0.3i

4428
0.6
0.64
0.64
0.608
0.608
0.583
0.583

5011.87
0.5717

x6 + 85x5 − 0.003x4 − 1000x3

+ 8x2 + x − 0.1 = 0
−84.8612

−3.5068
3.36

−0.0507
0.0293 + 0.0334i
0.0293 − 0.0334i

84.8612
3.5068
3.36
0.0507
0.0444
0.0444

79.43
3.5481
0.0464

x6 + 0.002x5 − 1025x3

+ 42x2 + 3 = 0
10.0683

−5.0556 + 8.7319i
−5.0556 − 8.7319i

0.1581
−0.0586 + 0.1228i
−0.0586 − 0.1228i

10.0683
10.089
10.089
0.1581
0.136
0.136

10
0.1469

x7 + 81x6 − 886x5 + 0.02x4

+ 10842x3 − 100x2 + 47x
− 0.0001 = 0

−90.7487
8.0861
4.7591

−3.1057
0.0046 + 0.0657i
0.0046 − 0.0657i

0

90.7487
8.0861
4.7591
3.1057
0.06586
0.06586
0

79.4328
10
3.1623
0.0708
0

x7 + 42x5 − 8x4 + 0.002x3

− 1002x2 + x − 0.3 = 0
0.1841 + 6.5045i
0.1841 − 6.5045i

−1.5726 + 2.46i
−1.5726 − 2.46i

2.776
0.0005 + 0.0173i
0.0005 − 0.0173i

6.5071
6.5071
2.9197
2.9197
2.776
0.0173
0.0173

6.31
2.9282
2.8183
0.0178

x7 + 105x6 − 0.001x5 + 0.2x4

+ 2x3 + 0.8x2 + 20x − 5 = 0
−105

−0.76
−0.26 + 0.69i
−0.26 − 0.69i
0.52 + 0.44i
0.52 − 0.44i

0.24

105
0.76
0.7374
0.7347
0.6812
0.6812
0.24

104.6574
0.7244
0.2512

x6 + 412x5 − 0.1x4 + 0.005x3

+ 8x2 − 55x − 7 = 0
−412
0.62

0.04 + 0.61i
0.04 − 0.61i

−0.58
−0.13

412
0.62
0.6113
0.6113
0.58
0.13

412.0026
0.6045
0.1273
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Neglecting the first and second terms, the last two terms can be balanced hence this is an
admissible choice. In conclusion, one expects three roots of orders O(1/ε), O(ε4). For ε = 0.1,
the magnitudes of roots are estimated to be 10, 0.0001. On the other hand, the real roots are
−10.3458, 10.2457, 0.0001. Hence, a good estimate of the magnitudes can be achieved using
the theorem.

In Table 1, many worked examples are given. As can be seen, the equations are of arbitrary
order with no restrictions on the coefficients. From the worked examples, one may conclude
that Theorem 3.1 estimates reasonably well the magnitudes of roots of polynomials of arbitrary
order and coefficients.

5. Concluding remarks

Based on this work and on the previous work [8, 9], the following conclusions can be made.
(1) Present analysis (Theorem 3.1) can successfully estimate magnitudes of roots for

arbitrary orders and coefficients of the polynomials.
(2) Previous theorems (Theorems 2.1–2.4 given in [8, 9]) are all special cases of Theorem

3.1.
(3) Results of Theorem 3.1 can be used as initial guesses for root finding algorithms, since

it is well know that if the initial estimate is not good enough, algorithms may diverge from the
root.

(4) Theorems may be employed for rough checking of the outputs of numerical results.
(5) Rough estimates are possible even just by inspecting the coefficients of the polynomial

equation.
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