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A MEAN VALUE THEOREM FOR EXPONENTIAL SUMS
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Abstract

The exponential sum S(x) = ^2e(f{m + x)) has mean square size O(M), when m runs through M
consecutive integers, f(x) satisfies bounds on the second and third derivatives, and x runs from 0 to 1.
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Let f(x) be a real function satisfying

(1) l/<r)(*)l < BrT/Mr

in the range M < x < 2M, for suitable parameters B and T(> M). The exponential
sum problem (see Graham and Kolesnik [2]) is to find sufficient conditions on f(x)
to ensure that the exponential sum

2M-1

S = y^ e{f{m))

(where e(x) = exp2nix) has order of magnitude 5 = O(Ml/2Te) for any € > 0; the
order of magnitude constant may depend on B and on e. It is well-known that 5 has
root mean square size \f~M, in the sense that for a > 1,

provided that \f'(x)\ > T/BM; the error term may be improved to 0(M2/aT) using
a theorem of Montgomery and Vaughan [ 1 ]. In this note we prove another mean value
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theorem. We write S(x) = Y?M~X e(f(m + x ) ) - This s u m *s approximately periodic,
since if we write more generally

a+N-i

S(a,N,x)= ]P e(f(m + x)),
m=a

then there is a 'Weyl shift' identity for integers a and b:

(3) S(a, N,x + b) = S(a + b, N, x) = S(a, N, x) + S(a + N, b, x) - S(a, b, x).

In particular, S(x + 1) = S(x) + 0(1). The Fourier expansion of the periodic
function which equals S(x) for 0 < x < 1 gives the Poisson summation formula for
the original sum S.

THEOREM. Let f(x) satisfy (I) for r = 2 and 3, and suppose that f"(x) and
fO)(x) do not change sign, and that \f"(x)\ > T/B2M2,for M < x < 2M. Then

1 , (B2M2 log M B9MA

\S(x)\2 dx = M + O I ^ - + —

PROOF. We expand and integrate term by term. We have

I \S{x)\2dx= [
Jo Jo

The terms with m = n each give 1. For m ^ n,

. _,_ , ,, ^ u . f e(f(m + x)-f(n+x)) ] '
jn + ,) - fin + x))dx = [2jTi{f(m+x)_fl{n+x))\o

i/ e(f(m +x)- f(n + x)Kf"(m + x) - f"{n + x))
2jti(f'(m+x)-f(n+x))2

e(f(m) - f(n))

+

2ni(f'(m + 1) - /'(« + 1)) 2ni(f'(m) - /'(«))

+ JC) - /(« + JC))(/"(IH + x) - /"(« + x))1(27r/)2(/'(m+x)-/'(n+^))3

fle(f(m+x)-f(n+x)) /3(f"(m+x)-f"(n+x))2 f(3\m+x)-f°Kn+x)\

70 (2TT/)2 V (/'(w+x)-/'(n+x))4 ~(/'(m+Jr)-/'(«+Jc))V X'

Since

/<r)(w +x)- f(r\n +x) = {m- «)/(r+1)(£)
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for some f between M and 2M, the absolute value of the integrand on the right of (4)
is

4TT2 V lJ '' f'(m+x)-f'(n

-—— max|/(3) | max

<

An2 [J 'o<,<i \f'(m+x)- f'(n+x)\
B3T

47T2M3

1

dx\f'(m+x)-f'(n+x)\3 max

Since / " and fO)(x) do not change sign, we see that \f'(m + x) — / ' (« + x)\ 3 is
monotone in x, and we may integrate over x to

B3T \m-n\ B9M3

< _ max2TT2M3 O<*<I \f'(m +x)- / ' (« + x)|3

The sum over distinct m and n of l/(/n - n)2 is O(M). The second set of integrated
terms on the right of (4) has the same order of magnitude.

The first set of integrated terms cancels when summed over m and n, except for
terms with m = M,n = M,m + \= 2M or n + 1 = 2M. The uncancelled terms are

'(«) - f'(M)\ \f'(2M) - / '

which completes the proof.

For M close to 7\ the bound becomes trivial. However, for M = O(Tl~e) we
can deduce /J \S(x)\2dx = ( l + o ( l ) ) M b y a n interative method, which actually
establishes, for b and N positive integers less than M,

(5) j \S(a, N, x)\2dx = (1 + o(\))bN + O (bM j°g M V

The orders of magnitude of the error terms depend on B and on e. The method of the
theorem gives (5) for large integers b. For smaller integers b we take a multiple d of
the integer ft, so large that (5) is true with d in place of ft. We use the Weyl shift (3)
to relate the integral from 0 to ft to the integral from eft to (c + l)ft, for each c from
0 to d/b — 1. The two short correction sums in (3) are themselves estimated in mean
square using the theorem or its generalisation (5). We find that (5) holds for a shorter
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range of b. This process of taking integer multiples of the length b can be iterated
until we extend the validity of (5) to all integers b > 1.

A different way to extend the theorem is to assume further differentiability, and
integrate by parts several times. This reduces the error term O(M4/T2).

Although (2) holds with arbitrary bounded coefficients in the terms of the sum,
our theorem can be generalised only to coefficients g(m) which are values of a
differentiable function satisfying conditions analogous to (1), like the weight functions
g(x) which are of practical use in the Poisson summation formula.

It seems difficult to replace the range of integration 0 to 1 by a shorter range.
The method above only gives a non-trivial estimate for the Fourier coefficient
f0 \S(x)\2e(hx)dx when the integer h is small.

It is a pleasure to thank the Tata Institute of Fundamental Research for the invitation
to lecture on exponential sums which led me to consider this mean value.

References

[1] H. L. Montgomery and R. C. Vaughan, 'Hilbert's inequality', / . London Math. Soc. (2) 8 (1974),
73-82.

[2] S. W. Graham and G. Kolesnik, Van der Corput's method of exponential sums, London Math. Soc.
Lecture Note Ser. 126 (Cambridge Univ. Press, Cambridge, 1991).

School of Mathematics
University of Wales College of Cardiff
23 Senghenydd Road
Cardiff, Wales CF2 4YH
UK

https://doi.org/10.1017/S1446788700037204 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700037204

