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FREE FIBONACCI ALGEBRAS
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Fibonacci varieties were introduced by one of us in 1978 and a natural generalisation
was studied shortly afterwards. We carry this investigation one stage further by giving a
description of the free objects in these varieties. This is done in terms of the n-abelian
groups of Levi.

0. INTRODUCTION

We are concerned with the variety V(ro) of universal algebras G of the following
kind : G is a group equipped with a unary operation </> that is an automorphism of G
and satisfies the one-variable law

(1) xxcf>... xcf)™-1 = x<t>m,

where m is a positive integer and any occurrence of <j> or one of its powers is understood
to apply only to the symbol immediately preceding it. It seems natural to call such
objects Fibonacci algebras, or <f>-algebraa for short, in contradistinction to Fibonacci
groups [2]. Note that we omit the condition in [4] that 0 have some specified finite
order, and hope to extend our results to this "modular" case in a future article. Our
chief aim is to prove the following

THEOREM. The free object of rank d in V(m) is given by

vd(m) = zx<-m~1)d x F/(F' n r n Fm-1)(F' n F™-1 n Fm-2) ,

where the first factor is the free abelian group of rank (m — \)d and, in the second,

F = Fd is the (absolutely) free group of rank d, F' is its derived group, and Fm the

subgroup generated by all mth powers.
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1. PRELIMINARIES

We begin with a brief review of the main results of [4].

By evaluating the product xx<f>... x4>m~1x<j>m in two different ways, we obtain the
one-variable law

(2) xx<t>m+1 = x<f>mx</>m.

Next, apply (1) to xy:

x<$>my<T = {xy)4>m = xy(xy)<f> ...

= xyz<t>y<t>...

= x{yx<t>)(j>mx~1(j>m, applying (1) to yx(f>,

= xy<t>mx(j>m+1x-1<i>m

= xycj>mx-lx<j>m, by (2).

Thus, x~1x<f>m commutes with y<f>m and so is central. But

x^x^™ = x<f>m+1x-l<j>m = (x^x-1)^"1

by (2), and we have the following central result.

PROPOSITION 1. For all x e G, x~xx4> is central.

It follows easily that the set

/ / = {x-1*^ | x e G}

is closed under multiplication, inverses, and the action of <f>, so that G/H € V(m) and
admits the trivial </>-action. It is thus the largest (^-trivial factor-algebra G* of G.

If we let GQ denote the largest (^-trivial subalgebra of G, then Proposition 1 can be
restated as follows.

COROLLARY 1. The mapping 6 : G —» G, x i—> x~1x<j>, is a homomorphism into

Z(G) with Ker0 = G^ and (Joker0 = G*.

Since (^-trivial groups have exponent dividing m - 1 , it follows that G"1"1 ^ Im^ ^

Z(G), and we have

COROLLARY 2. The law [ K " 1 - 1 , ^ = l holds in G.

This is (1.4) in Theorem 3 of [4], and it follows that the algebras in V(2) are all
commutative, which is the Lemma in [3].

By applying Proposition 1 to x, x<j>, x<j>2, ... in turn, it follows that x~1x<f>k is
central for all k 6 N, whence the images of x under all integral powers of <f> commute
in pairs, which yields Theorem 1 of [4]:
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COROLLARY 3. T i e monogenic free algebra in V(m) is commutative.

Next, apply (1) to xy as above to obtain:

xx<f>... z < l > m l l 1 1

Since the terms x, x(j>, ..., x 0 m - 1 each appear once on both sides and are congruent
to x modulo Z(G), they can all be replaced by x. Similarly, each of y, y(j>, . . . , y^"1"1

can be replaced by y.

COROLLARY 4. The law xmym = {xy)m holds in G.

This law defines the variety A(m) of m-abelian groups introduced in [5] and clas-
sified in [1]. In view of the fact that any two of the laws

(3) [z m - \y ] = l, xmym={xy)m, x ^ y " - 1 = (xy)"1"1

imply the third (easy exercise), Corollaries 2 and 4 can be combined into

COROLLARY 5. V(m) ^ A{m) C\A{m - 1).

It follows that the algebras of V(3) are commutative, which is Theorem 2 of [4].

2. A CRITERION

For every x in a </>-algebra G, the <£-subalgebra generated by x is abelian (Corol-
lary 1.3); we write it additively for the moment and work with the homomorphisms

(4) 0 : x •-> - x + x<j>, f i : ( m — l ) x ,

noting that Imp. < Im0 ^ Z(G). For each x € G and every k = 0, 1, 2, . . . , we have

x<f>k = se(l + 0 ) k ,

and (1) can be rewritten in the form

m-l

mx+ £*{(l+ff)*-l} = sB + i{(l + 0)ra-l}1

fc=o

that is,

(5) xp = xfm(0), where /,„(<) £ Z[l)

is a moiiic polynomial of degree TO with zero constant term. Since 0 is a homomor-
phism with Imfl C Z(G), the same is true of fm(0), and we have another proof of
Corollary 1.2. We also have the following characterisation of (^-algebras.
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PROPOSITION 2. Let G be any group, X a set of generators for G, and <f> an
automorphism of G such that :

(i) (1) holds for ail x e l ,
(ii) x-1x<f>£Z(G),WxeX,

(iii) t ie map /z : g i—» gm~1 is a homomorphism.

Then (1) holds for all x G G, that is, G is a (f>-algebra.

PROOF: Since <f> is a homomorphism, it follows from (ii) that g~1g<f> G Z(G) for
all g G G, and that 0 : g >-+ g~1g<j> is a homomorphism. Thus, using (i), (5) holds for
all x € X, and so for all x G G, by (iii). Since every x G G commutes with all the
s<£* , k £ N , (1) now follows from (5). D

COROLLARY 1. If G is an abelian group and <j> € Aut G satisfies (1) on a set of
generators of G, then (1) is a law in G.

COROLLARY 2. Let G be a group and 6 : G —> Z(G) a homomorphism such that

( m - l)g=gfm{0), V j e C ,

wiiere / m ( 0 £ Z[t] is given by

fm(t) = (1 + t)m ~ (1 + < f ~1 +(m- 1).

Then G is a (j>-algebra with respect to <j> : g >-* g(l + 6).

3. FREE OBJECTS IN V(m)ab

Decause of Corollary 2.2, the direct product of two (^-algebras is a ^-algebra in the
natural way. Moreover, when they are abelian, it is their free product in V(m)afc. Since
the free object of rank d in any variety is just the dih free power of the monogenic free
object, it suffices to describe the latter. Consider the group

(6) F(Tn) = («|ym,C>,

where X = {xi \ i G Z},

(7) Ym = {xiXi+1...Xi+m-ix^m | i G Z},

C = {[xi,Xj] \i,j GZ},

which is clearly free abelian of rank m. Now the map <j> : x; t-> XJ+J clearly extends to
an automorphism of F(m) satisfying (1) for all x G X. F(m) is thus a 0-algebra by
Corollary 2.1, and generated as such by x0 • Given any element y in any G in V(m)ab,
it is clear how to define a ^-homomorpliism from F(m) to G sending XQ to y. Thus
F(m) is the monogenic free object in V(m)alj.
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PROPOSITION 3. The free object of rank d in V(m)o6 is the <f>-algebra F(m)x ,

wiiere F(m) is defined by (6) and (7).

COROLLARY 1. F(m) is the monogenic free object in V(m).

v A.

COROLLARY 2. F{m) is the free object of rank d in V(m) when m = 2 or 3.

These axe consequences of Corollary 1.3 and the fact that ^-algebras are abelian
when m = 2 or 3, respectively.

For later use, we replace the basis {x̂  | 0 ̂  i < m — 1} of F(m) by

(8) x = x0, yi-xJ^Xi, l ^ i ^ m - 1 ;

then F{m)9 has basis a;"1"1, y{, 1 < i ^ m - 1.

4. FREE PRODUCTS IN V(m)

Given 0-algebras G and / / , out strategy is to factor out from their ordinary
free product F := G * H "just enough" extra relators to yield a 0-algebra G *$ H.

Specifically, let G and II be presented as groups by

G = (X\R), H = (Y\S),

so that

F=(X,Y\R,S).

Now <f> is defined on the generators A'UF; let v : F —> K be any group homomorphism
into a 0-algebra K that commutes with <j> on X \JY. Then v annihilates all [z#,2'],
z, z' £ X U Y, 6 as above. Moreover, if w — w(X U Y) is any word in (A', Y\ ) , then
w/i = wm~1 and w((X U Y)fi) have the same image under v. (The latter word is that
obtained from w by replacing each letter by its (m — l)th power.) Now hopefully put

(9) G u H = (A', Y\R, S, [X0, Y), [X, Y0], W),

where 0 is defined on X and Y as in (4), and

(10) W = {wm-1w{{XUY)n)~1 \we(X,Y\ )}.

From what has been said, any u of the above type factors through G*$H. Furthermore,
the group presented in (9) clearly satisfies all the conditions of Proposition 2. It is thus
the biggest <^-homoinorphic image of F, and as such is the free product of G and H

in V(m).
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PROPOSITION 4. The free product of groups G, II in V(m) is given by (9).

COROLLARY 1. The free object of rank d in V(m) is F(m)**d.

Now consider the result (G *</, H) of factoring G*$ H out by its central subgroup
(X9, Y9). The relators [X9, Y], [X, Y9\ become redundant and W reduces to

P={wm-1\wt(X,Y\ )},

as X/x CG8, Yfi C HO. It follows that (G *# / / )* has the presentation

(X,Y\R,S,X9,Y0,P) = G<t>*BH4',

where the right-hand side is the free product in the Burnside variety B(m — 1) of groups
of exponent m — 1. Because of the natural (^-homomorphism from G *$ H onto G x II,
it is clear that

(X6, Y9) = (G *4,11)9 = G9x H9.

COROLLARY 2. There is a centra/ extension

l^G9xH9^>G*^II -» G* *B H* -> 1.

COROLLARY 3. G *</, II is the result of factoring out G * H by the intersection of
the kernels of the natural maps onto G, II and G* *B H* •

COROLLARY 4. The free object Vj{rn) of rank d in V(m) is a central extension
of the corresponding object in B(m — 1) by a free abelian group of rank md.

Corollary 3 follows at once from Corollary 2, and Corollary 4 by induction on d
from Corollaries 1 and 2.

5. FREE OBJECTS IN V(m)

We conclude by describing the presentation of Vd(m) = F(m) * arrived at using
(9), where each <̂ -free factor is generated by a set of the form (8). We refer to these m
generators of the ith factor as i-generators, 1 ̂  i < d, and to the d generators x and
(m — l)t£ generators t/i, 1 ̂  i ̂  rn — 1, as ^-generators and y-generators respectively.
Letting Z denote the set of all such generators, the defining relators for F(m)** are

now of three types (corresponding respectively to R and 5 , [X0,y] and [X, Y9], W
respectively).

(1) the m t-generators commute along themselves, 1 ̂  i < d.
(2) the j/-generators are all central, and so are the (m — l)th powers of the

x-generators.
(3) to"1"1 = w{Zfi), for all u; e (Z\ ).
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Now the centrality of the y-generators asserted in (2) ensures that:

(i) the relators (1) are superfluous, and
(ii) only words w in the x-generators are needed in (3).

It follows that Vd(m) is the direct product of the subgroups C and A generated by
the x-generators and y-generators, respectively. Moreover, it follows from Corollary 4.2
that A is free abelian of rank (m — l)d, and that C is the free object Cd(m — 1) of
rank d in the variety C(m — 1) = A(m) n A{m - 1) defined by the laws (3).

PROPOSITION 5. Vd(m) s Cd(m - 1) x Z^m~^d.

The theorem is an immediate consequence of this, by a result of Alperin [1] wliich
asserts that the free object of rank d in A(m) is given by

A ( F

where F = Fd is the (absolutely) free group of rank d.

Examples. Since F° = {1}, F1 = F, and F2 D F', we read off

Cd(0) = F, Cd(l) = Cd{2) = F/F1, Cd(3) = F/F' n F3.

Putting d = 2 in the last case, it can be shown using Corollary 4.4 that

F/F1 n F3

y\ [x3,y] = [x,y3] = l,(xy)3 = x3y3, (xy-1)3 = * V
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