A NONABELIAN FROBENIUS-WIELANDT COMPLEMENT

by ALBERTO ESPUELAS

(Received 9th May 1986)

We recall the following definition (see [1]):

A finite group G is said to be a *Frobenius-Wielandt* group provided that there exists a proper subgroup H of G and a proper normal subgroup N of H such that $H \cap H^{\theta} \leq N$ if $g \in G - H$. Then H/N is said to be the *complement* of (G, H, N) (see [1] for more details and notation).

An important particular case of this situation is the following:

The finite group H acts faithfully on a vector space V over a finite field and the elements of H-N act fixed point freely on V.

In this case let G be the semidirect product of V by H. Now (G, H, N) is an F-W group. This particular situation was first considered by Lou and Passman in [2]. With their notation the group $H/\langle C_H(v)|0\neq v\in V\rangle$ is said to be the generalized Frobenius complement, GFC, in short.

Recently, in his thesis at the University of Chicago, C. M. Scoppola showed that GFCs for abelian-by-cyclic p-groups of odd order are abelian (see Theorem B of [4]). As he points out the result is false for p=2, the quaternion group being a counterexample.

The purpose of this note is to construct a metabelian p-group for p odd having a nonabelian generalized Frobenius complement (in particular, a nonabelian F-W complement). Furthermore our example is an extension of an abelian p-group by the elementary abelian p-group of order p^2 . Thus Scoppola's result is best possible in some sense.

Example. Let p be an odd prime. There exists a p-group P with the following properties:

- (i) P is an extension of an abelian group A by the elementary abelian group of order p^2 , $C_p \times C_p$. In particular, P is metabelian.
- (ii) $P/\Omega_1(A)$ is extraspecial of order p^3 and exponent p^2 , where $\Omega_1(A) = \langle x \in A | x^p = 1 \rangle$.
- (iii) There exists a faithful irreducible KP-module V, K being a finite field, such that the elements of $P \Omega_1(A)$ act f.p.f. on V.

Thus the GFC of P with respect to V is nonabelian.

Proof. We start with the elementary abelian p-group

$$A_0 = \langle a_{i,j} | 1 \le i \le p-1, 1 \le j \le p, (i,j) \ne (p-1,p) \rangle \times \langle z \rangle \simeq C_p^{p(p-1)-1+1} = C_p^{(p-1)p}.$$

Consider $\langle x \rangle \simeq C_{p^3}$ acting on A as follows:

$$a_{i,j}^x = a_{i,j+1}, \quad z^x = z,$$

where, by definition, $a_{i,p+1} = a_{i,1}$ if i < p-1 and $a_{p-1,p} = a_{p-1,1}^{-1} \dots a_{p-1,p-1}^{-1} z^{-1}$. Observe that the image of $a_{p-1,p}$ under x is $a_{p-1,1}$. Hence, for each i, the group $\langle x \rangle$ permutes the set $\{a_{i,j} | 1 \le j \le p\}$ cyclically. Observe equally that x^p centralizes A_0 . Let $\langle x \rangle A_0$ be the natural semidirect product of A_0 by $\langle x \rangle$. Consider $B = \langle x \rangle A_0 / \langle z^{-1} x^{p^2} \rangle$. Identify the elements of $\langle x \rangle A_0$ with their images in B.

Take $\langle y \rangle \simeq C_{p^2}$ acting on B as follows:

$$a_{i,j}^{y} = \begin{cases} a_{i,j} a_{i+1,j} & \text{if } i \neq p-1. \\ a_{p-1,j} & \text{if } i = p-1. \end{cases}$$
$$x^{y} = x^{1+p} a_{1,1}, \quad z^{y} = z.$$

We show that this action is well defined. We must prove that the image of a^y under x^y is equal to the image of a^x under y for all $a \in A_0$. As $\langle x^p, A_0 \rangle$ is abelian then the image of a^y under x^y is equal to the image of a^y under x. Thus we will prove that $a^{xy} = a^{yx}$ for all $a \in A_0$. As this is clear for z we may suppose that $a = a_{i,j}$ for some i, j.

If
$$i \neq p-1$$
 then $a_{i,j}^{x,y} = a_{i,j+1}^y = a_{i,j+1} a_{i+1,j+1}$ and $a_{i,j}^{y,x} = (a_{i,j}a_{i+1,j})^x = a_{i,j+1}a_{i+1,j+1}$.

If i=p-1 then $a_{p-1,j}^{xy}=a_{p-1,j+1}=a_{p-1,j}^{yx}$. It is easy to see that y centralizes x^{p^2} . Thus the action of $\langle y \rangle$ on B is well defined. Consider the semidirect product $\langle y \rangle B$ of B by $\langle y \rangle$. We will prove the following relation:

$$u^{y^{p-1}+\cdots+y+1}=1 \quad \text{if} \quad u \in \langle x^p, A_0 \rangle. \tag{*}$$

Once (*) is proven it is clear that y^p centralizes $\langle x^p, A_0 \rangle$. Furthermore $x^y = xu$ for $u \in \langle x^p, A_0 \rangle$ and then $x^{y^p} = xuu^y \dots u^{y^{p-1}} = x$ and y^p is central in $\langle y \rangle B$. Consider $P = \langle y \rangle B/\langle y^p z^{-1} \rangle$. We identify the elements of $\langle y \rangle B$ with their images in P. Let A be the subgroup of P generated by x^p and A_0 . Then A is abelian and $A_0 = \Omega_1(A)$. Observe that Z(P) is generated by z.

Assuming that (*) is true we show that if $t \in P - A_0$ then t has a nontrivial power in Z(P). Clearly P/A_0 is extraspecial of order p^3 and exponent p^2 . As p is odd then if $t \in P - A \langle y \rangle$ we have that $t^p \in A - A_0$ and t^{p^2} is a nontrivial element of Z(P). If $t \in A - A_0$ then t^p is nontrivial and central. Now (*) assures that $(yu)^p = y^p = z$ if $u \in A$ and thus our claim is verified.

To prove (*) consider y as a linear map of A_0 . Then y acts on each $A_j = \langle a_{i,j} | 1 \le i \le p-1 \rangle$. As $|A_j| = p^{p-1}$ it is clear that the minimum polynomial of y on A_j divides $(X-1)^{p-1}$. Thus (*) is proven for $u \in A_0$. As A is abelian and it is generated by x^p and A_0 it only remains to check that (*) is true for x^p . But $(x^p)^y = (x^y)^p = (x^{1+p}a_{1,1})^p = x^pza_{1,1} \dots a_{1,p}$. Put $b_i = \prod_{j=1}^p a_{i,j}$, $1 \le i \le p-1$. Observe that $b_{p-1} = z^{-1}$ by the definition of $a_{p-1,p}$. Now

$$(x^p)^y = x^p b_1 z$$
, $b_1^y = b_1 b_2$, ..., $b_{p-2}^y = b_{p-2} z^{-1}$.

Put $\overline{b}_1 = b_1 z$ and $\overline{b}_i = b_i$ for i > 1. Then we have that $(x^p)^y = x^p \overline{b}_1$ and the remaining relations are valid replacing b_i by \overline{b}_i . By induction on i it is easy to see that

$$(x^p)^{y^i} = x^p \overline{b}_1^{\binom{i}{1}} \dots \overline{b}_i^{\binom{i}{i}}, \text{ for } i > 0.$$

Now the exponent of \bar{b}_j in the first member of (*) is $\sum_{i=j}^{p-1} \binom{i}{j}$. This number equals $\binom{p}{j+1}$ and hence it is divisible by p if j < p-1. As $\bar{b}_{p-1} = z^{-1}$ and $x^{p^2} = z$ then (*) is valid for x^p also.

Hence our claim is verified and every element of $P-A_0$ has a nontrivial power in Z(P). Let α be a faithful irreducible representation of Z(P) over a finite field K, $\operatorname{char}(K) \neq p$, and put $\rho = \alpha^P$. It is clear that every element of $P-A_0$ acts f.p.f. under ρ since z does. Furthermore, as A_0 is elementary abelian, we have that A_0 is the subgroup of P generated by the elements having nontrivial fixed points under ρ . Thus P/A_0 is a nonabelian GFC for P and the proof is finished.

REFERENCES

- 1. A. ESPUELAS, The complement of a Frobenius-Wielandt group, *Proc. London Math. Soc.* (3) 48 (1984), 564-576.
- 2. B. Lou and D. S. Passman, Generalized Frobenius Complements, *Proc. Amer. Math. Soc.* 17 (1966), 1166-1172.
- 3. C. M. Scoppola, On Generalized Frobenius Complements, *Proceedings of Groups-St. Andrews 1985*, (Eds., E. F. Robertson and C. M. Campbell, Cambridge University Press, Cambridge, 1986), 305–306.
- 4. C. M. Scoppola, Abelian Generalized Frobenius Complements for p-groups and the Hughes problem, submitted.

DEPARTAMENTO DE ALGEBRA FACULTAD DE CIENCIAS UNIVERSIDAD DE ZARAGOZA ZARAGOZA, SPAIN