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RUMMER'S AND IWASAWA'S VERSION OF 
LEOPOLDT'S CONJECTURE 

BY 

JONATHAN W. SANDS 

ABSTRACT. We present a refinement of Iwasawa's approach to 
Leopoldt's conjecture on the non-vanishing of the /?-adic regulator of 
an algebraic number field K. As an application, the conjecture for K 
implies the conjecture for a solvable extension L of degree g over K if 
g is relatively prime to p — 1 and p does not divide g, the discrimi
nant of K, and the quotient of class numbers h(L(Çp) )/h(K(Çp)), 
where f is a primitive pth root of unity. This can be viewed as 
generalizing a theorem of Kummer on cyclotomic units. 

1. Introduction. In 1847, Kummer rather precociously proved Leopoldt's 
conjecture for the field K = Q(Çp + Ç~l) and the regular prime p (Xp = 
elm/p). In fact, Kummer's theorem that a unit of K congruent to a rational 
integer (mod p) is a pih power anticipated an especially simple statement of the 
conjecture (cf. 2.2). Using this statement and basic class field theory, Iwasawa 
[10] developed a new approach to Leopoldt's conjecture which does not seem to 
be well known. Here we present a refinement and an application of this 
approach, seeking to show the insight available from classical notions. 

Our application concerns the question of "going up": if Leopoldt's conjecture 
holds for a fixed prime p and field K (e.g. K absolutely abelian and p arbitrary 
[4] ), does it hold for a cyclic extension JT of Kl Miki and Sato [12], [13] have 
studied this situation when [Jf:K] = p; we restrict attention to the case of 
[Jf:K] prime to p. Primarily, our result says that Leopoldt's conjecture holds for 
JT and p =£ 2 if the p-part of the class number is the same for JT(f ) as 
for K(£p\ and (e.g.) p is unramified in X. It should be remarked that another 
proof of this result arises from work of Gras [8] concerning the maximal abelian 
/>-ramified pro-/?-extension of K. 

In studying the connection between Leopoldt's conjecture and class numbers, 
we take the opportunity to note a direct proof of a motivating result (3.1) which 
has appeared in various forms before [2], [3], [6], [7]. An appendix supplies 
proofs of "well-known" results for which there seems to be no adequate 
reference. 
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I am indebted to my colleagues Warren Sinnott, Bob Gold, and Karl Rubin 
at Ohio State for ideas on these matters, but especially to K. Iwasawa for 
considerable direction during my stay in Princeton. The hospitality of the 
Institute for Advanced Study and funding from the National Science 
Foundation are most appreciated for making this stay possible. 

2. Rummer's version of Leopoldt's conjecture. Let K be a fixed algebraic 
number field and EK be its group of units. We fix a prime number p and for 
each positive integer m we let EK(pm) be the group of units of K which are 
congruent to 1 (mod pm). Leopoldt's conjecture may be stated as follows. 

2.1 CONJECTURE. LC(X, p). Given any positive integer a, there exists a positive 
integer m such that EK(pm) c EP

K. 

In A.3 of the appendix, 2.1 is shown to be equivalent to a perhaps more 
familiar statement of Leopoldt's conjecture. 

Henceforth we take p to be an odd prime. Now let J be a /?th root of unity 
and K0 = K(Ç ) . The next two propositions originate from Iwasawa [10]. 

2.2 PROPOSITION. Assume that no divisor of p splits completely in K0/K. Then 
LC(X, p) holds if and only if EK(pm) c Ep

Kfor some positive integer m. 

PROOF. The "only if" statement follows directly from 2.1. 
Assume then that m is fixed so that EK(pm) c EP

K. Given a positive integer 
a, we show that EK(pmpU) c E%. SO suppose e e EK(pmp\ First e e 
EK(pm) c EP

K, so that € = t\p in EK. Let v be a normalized valuation of K0 

with p(p) = 1. Then v(\ — -qp) = v(l — e) ^ mpa. Factoring 1 — T\P = 
HPiZo 0 ~ &)> w e s e e t h a t Kl ~ Sv) = rnpa~x for some £ - ?p. By as
sumption, there exists an element a of the Galois group Gai(K0/K) such that a 
fixes v and has order d ¥= \. Then v(l — farj) ^ mpa~~l for each i. The sum 

(i - ?i?) + fro - TT?) + f1 +V(i - r\) + . . . 

telescopes to 1 - f1+a+"-+a</" V- But f1+0+ +a^ ' is a /?th root of unity in an 
extension of K strictly smaller than K(Ç ) , hence it must be 1. Each parenthe
sized term in the sum has valuation ^mpa~ , so v{\ — TJ ) S mpa~ . 

Now 1 - nd = r i ( l - &ï) and 1 - &? = (1 - ij) + 7,(1 - &), with 
Kl - 7?) > 0, *>0?) = 0, and v(\ - ?d) = 0 unless & = 1, since d\p - 1. 
Hence *>(1 — Cljq) = 0 for Çd ¥= 1, and from *>(1 — T]J) ^ mpa~x we see 
that p(l — TJ) â mpa~l. This holds for each *> with v(p) = 1, therefore 
1, e E^p^'1). Hence e e E^p^'Y or ^ ( ^ c £*(/>"*"">. By 
iteration, EK(pmp") c EK(pmY c # £ . 

We call 2.2 "Kummer's version of Leopoldt's conjecture," because the 

https://doi.org/10.4153/CMB-1988-049-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1988-049-0


340 J. W. SANDS [September 

assumption holds when K = Q(f + f ~~ ), for which Kummer proved that 
EK(p) c £ £ when /? is a regular prime; thus Leopoldt's conjecture holds in this 
case. 

The assumption in 2.2 has appeared often enough in the literature [7], [12]. 
Note that it is satisfied if 2 ¥= p\dK, the discriminant of K, or, more generally, if 
(as in [7] ) p — 1 does not divide the ramification index of p in K/Q. Our next 
proposition involves a similarly familiar simplifying assumption. 

2.3 PROPOSITION. Assume K = K0 and only one prime of K divides p. Then 
LC(AT, p) holds if and only if EK(pm) c Ep

Kfor some positive integer m. 

PROOF. The "only if" statement follows directly from 2.1. 
Assume that m is fixed so that EK(pm) c EP

K. Given a positive integer a, 
we again show that EK(pmpû) c E$. Suppose then that e <E EK(pmpU). Then 
€ e EK(pm) c EP

K, and e = r\p, 77 e EK. Let v be a valuation of K such that 
v(p) = 1. From v(\ - e) ^ mpa, 1 - e = HfJQ

l (1 - ^T?), we see that 
v{\ — f'77) ^ mpa~ for some /. Replace 17 by f'r/ to have *>(1 — 77) ^ 
m / - 1 , o r î ) e EK(pmpaX). Thus EK(pmpû) c EK(pmpa~~X), and the proof 
concludes as in 2.2. 

3. The connection with class groups. Let S = S(K0) be the set of primes of 
K0 dividing p, and let CK s be the "S-ideal class group" of K0, i.e., the quotient 
of the ideal class group CK by the subgroup generated by those ideal classes 
containing elements of S. We define hK s, the 5-class number, to be the order 
of CK s. Clearly hK s divides the class number hK . Finally put pCK s = 
CK S/CK S. Via class field theory, CK s corresponds to the maximal abelian 
unramified extension of K0 in which all primes in S split completely, and CK s 

corresponds to the maximal such elementary /^-extension. 
There is a natural action of A = Gal(X0/AT) on the modified class groups we 

have just defined. On the isomorphic Galois groups (Artin isomorphism of class 
field theory), the compatible action is induced by conjugation. Since CK s is an 
abelian /?-group, it is a Z -module, where Z denotes the /?-adic integers. 
Further, it is then a Z [A]-module and hence decomposes via the idempotents of 
Z^[A], which we now describe. 

Let <o:A -> Z^ be the character such that Ç° = Çfa) for each o G A. If the 
order of A is d = |A|, then an orthogonal system of idempotents of Z^[A] is 

U = ^ 2 J(o}o-x:i = 1,...,A 
l d <j€=A ) 

ei has the property that ac- = ool(o)ei for each o in A. 
It is interesting to discover how classical a proof one can give for the 

following proposition, cases of which are found in [2], [3], [6], [7]. The full 
proposition is also a corollary of [8, Théorème 1.2]. 
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3.1 PROPOSITION. Assume that no prime dividing p splits completely in K0/K 
or that K0 = K and only one prime of K divides p. If t\(pCK s) is trivial, then 
LC(K, p) holds. 

PROOF. Hecke [9, p. 136] shows that if c e EK(p3\ then in K0(e
l/p)/K0, every 

divisor of p splits completely. The extension is abelian and no other finite 
primes ramify, by Kummer theory. No infinite primes ramify because p is odd. 
By class field theory, K0(e

l/p) corresponds to a quotient of pCK s. Since e e K, 
one in fact finds that K0(e

l/p) corresponds to a quotient of t\(pCK s). This last 
group is trivial by assumption, so we have € e EP

K . As the degree [K0:K] is 
prime to p, taking the norm to K shows that € e EP

K. Now € is arbitrary, so 
EK(p ) c EP

K, and the proof concludes with an application of 2.2 or 2.3. 

4. Iwasawa's version of Leopoldt's conjecture. This section refines ideas of 
Iwasawa in [10]. With p and K as before, let q be a prime ideal of the ring 
of integers 0K of K, q not containing p. First we motivate the key concept of a 
q-field for K and p. 

4.1 LEMMA. Let L be a finite abelian extension of K, and I be the inertia group 
of q for L/K. If I is the p-Sylow subgroup of I, then I is isomorphic to a sub
group of (0^/q) X , hence is cyclic of order dividing Nq — 1. 

PROOF. [11, p. 94] or [15, p. 67]. 

Let e(q, L/K) denote the ramification index of q in L/K. If N is an integer, we 
will write N for the highest power of p dividing N. So e(q, L/K) = \I |, and we 
put e(q) = (Nq - 1),, e(q)d(q) = Nq - 1. 

4.2 COROLLARY. For any finite abelian extension L of K, e(q, L/K) divides 

e(q). 

4.3 DEFINITION. A number field L is called a weak q-field for K (and p) if it 
satisfies these two conditions: 

(a) L is a finite abelian extension of K, unramified at each infinite prime and 
each finite prime other than q and the divisors of p. 

(b) e(q, LIK)p > 1 if e(q) > 1. 
(L is called a q-field for K if L is a weak q-field and e(q, L/K) = e(q).) 

Let Kq be the completion of K at q, and Uq be the group of units of Kq. 

4.4 LEMMA (Iwasawa). A weak q-field exists for K if and only if EK(pm) c 
Up for some positive integer m. 

PROOF. Note that if p\ (Nq — 1), then the /?th power map is an isomorphism 
on (0K/q)X, and xp — e has a root (mod q) for each e in EK. So EK c Up

q by 
Hensel's lemma, and our lemma holds. We now assume that p\ (Nq — 1). 

For non-negative integers m and n, let Km n be the ray class field of K (mod 
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pmqn). If L is a weak q-field, then L c Kmn for some m and n. But /?{[A^m /2:^m x] 
since />|Nq, and we may assume L c X" ]. In fact, KmX is then a weak q-field 
and we will use L = KmX. Then e(q, L / A ^ = e(q, KmX/K)p = [Km{:Km0]p. 
Clearly KmX is a weak q-field if and only if p\ [KmX:Km0]p. 

Fix m and let ,4 = {a e X x : a is prime to /?q and a = 1 mod x /?m} and 
5 = {a G A: a = 1 mod x q}, while (̂ 4) and (B) denote the groups of 
ideals they generate. Then by class field theory, Ga\(KmX/Km0) = (A)/(B) = 
A/B - (A n EK) = A/B - EK(pm). So it suffices to consider whether p divides 
the order \A/B • EK(pm) |. Now A/B = (&K/q)X is cyclic of order divisible 
by p, hence Ap BIB is the maximal subgroup of index divisible by p. We see 
that p divides \A/B • £^(/?m) | if and only if EK(pm) a Ap • B. 

The lemma will be established once we show that EK(pm) c Ap • B if and 
only if EK(pm) c t/£ First, £ c Up

q by Hensel's lemma, so that ^ • £ c t/£ 
and one implication is clear. Suppose then that EK{pm) c £/£, and 
c e EK(pm). Then c = up for some w e £/ and we choose a E i 4 such that 
a = u (mod q). Then da? = 1 mod x pm% so c/a77 e £ and c e ^ • £; 
therefore £^(/?m) c ^ B. 

4.5 REMARK. Similarly, one can prove that a q-field exists for K if and only if 
EK(pm)d^ c £^(q) for some positive integer m. 

Let D = Z)^ = {w G £^: each prime of S splits completely in K0(u
Vp)/K0). 

Then Z) is a subgroup of EK, D z> £"£. 

4.6 THEOREM. Suppose that for each u in D, there exists a prime ideal q0 of K0 

satisfying two conditions: 
(a) q0 is inert in K0(u

]/p) 
(b) a weak q-field exists for K, where q = q0 Pi K. 
Then EK(pm) c EP

K for some positive integer m. Conversely, if EK(pm) c EP
K 

for some m, then a weak q-field exists for each prime ideal q of K. 

PROOF (After Iwasawa [10], Chevalley [5] ). Let {uf.i = 1, . . . , r} be a full set 
of representatives for the finite group D/EP

K. Then for each /, let q ^ satisfy (a) 
and (b). By 4.4, EK(pm) c Up«) for some m ^ 1. We may clearly assume that 
the same m applies for each /, and that m ^ 3. If e e EK(pm), then each prime 
of S splits completely in K0(€

Vp)/K0 [9, p. 136]. Hence € e 2), and K0(e
l/p) must 

be one of the KQ(U]/P). However, € €E EK(pm) c Iff^n. Consequently, each q^ 
splits completely in K0(e

l/p) while q(^ remains inert in K0(u
l/P). We conclude 

that K0(e
Up) = K0, so e e E^. Taking the norm to K shows that ep~l e EP

K, 
and thus e <= EP

K. For the converse, simply note that EP
K c L^ for each q. 

Lemma 4.4 completes the proof. 

4.7 REMARK. Similarly [10], one can prove that LQX, p) holds if and only if 
a q-field exists for each q of K. 
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4.8 THEOREM. Suppose LQX, p) holds. LetJfbe a cyclic Galois extension of K 
with JT n ^ 0 = K and [Jf:K] = g prime to p. Assume that no prime dividing p 
splits completely in Jf0/J^ or that Jf0 = JT and only one prime of JT divides p. 
Identify Gal(J^/Jf) with Gal(K0/K) = A, and let y be the set of primes of Jè^ 
dividing p. If ex(pCKoS) ^ *i(/>0,y>), then LQX, p) holds. 

4.9 REMARK. Since (g, p) = 1, we always have for any j: e Z that £j(pCK s) 

is isomorphic to a subgroup of eA C^ y) via extension of ideals. Likewise 

PCK0
 c pQr0-

4.10 REMARK. pJ \ ^\{pC^Qts^'^pCK0is) ) f o r J = l **for J = o r d e r o f P ( m o d S ) 
(cf. [14, Ch. IV]). 

PROOF OF 4.8. Let u in D^ represent an arbitrary nontrivial element of 
D^/E^r. We will find a prime ideal =20 of Jf0 satisfying (a) and (b) of 4.6. 

By class field theory, our assumption on class groups implies that every 
unramified, cyclic, degree p extension of Jt0 in which 5? splits completely and A 
acts via co arises by composition from such an extension of K0. Jf0(u

 /p) fits this 
description, so Jf0(u

l/p) = Jf0 • M, with M/K0 cyclic of degree p. Also 
Gal(jro/K0) = Gsi(Jf/K) is cyclic of degree g, since J f n K0 = K. Hence 
Jf0(u

l/p)/K0 is cyclic of degree pg, as (/?, g) = 1. Thus (Tchebotarev density) we 
can choose a first degree prime q0 of K0 which is inert in Jf0(u

 /p). Then 
^o = Qo^jr *s m e r t in Jf0(u

i/p), so (a) of 4.6 is satisfied. 
Putting J = =20 n J f and q = q0 n iC, we know that q0 has residue degree 1 

over q, since it is a first degree prime. Asi?0 over q0 has residue degree g, it is an 
easy exercise in decomposition groups to discover that Q over q has residue 
degree g, or q(9^ = J . By the assumption of LC(K, p) and by 4.6 (converse 
part), a weak q-field L exists for K and p. But then L • J f becomes a weak 
qQjf = cS-field for Jf* and p, so (b) of 4.6 is satisfied. Since u e Dx was 
arbitrary, this all implies that E^pm) c Ej#-, for some m, and LC(X/?) holds 
by 2.2 and 2.3. 

4.11 COROLLARY. Supposep is odd and LC(K, p) holds. Let Jf/K be a Galois 
extension of degree g with (g, p — 1) = 1 and Gai(Jf/K) solvable. If p does not 
divide (the numerator of) (dK)(g)(hjf y/hK s), then LC(JC p) holds. 

PROOF. Since p is unramified in K and totally ramified in Q0, all primes in S 
ramify totally in K0/K, and [K0:K] = p — 1. 

Let K = M (1), . . . , M(n) = Jf be a sequence of fields such that M ( , '+ X)/M{l) 

is a cyclic extension for each i. Put S^ equal to the set of primes in M^ which 
divide p. As (g, p — 1) = 1, M ( ' + 1 ) n M ^ = M(z) for each /*, and all primes 
in S(i) ramify (totally) in M^ + 1 ) /M ( z + 1). From 4.9 and the assumption, 
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pCK0,s = PCJT0^
 a n d pCM$\sV = PCM$+1\S«+1)'

 T h e conclusion follows by 
application of 4.8 to AfC+^/AfW; / = 1, . . . , « - 1. 

As an application, we note a relation with a conjecture in Iwasawa theory. 
Fix a prime number / and let K^ denote the cyclotomic rLl-extension of the 

number field K0, with K^ denoting the nth layer (cf. [18, Chapter 13], for 
definitions). For p ^ /, Washington conjectured [16] (and proved for K 
absolutely abelian [17]) that there exists an integer TV > 0 such that 
p\ (^Kir^hK(N)) whenever n = N. Of course this implies that p\ (hK{n)s(n)/ 
hK<

b
N\s(N)) b y 4-9-

4.12 COROLLARY. Suppose p ^ 1 (mod /), p\2dKl, and the conjecture of 
Washington holds for K0 and p. Then either L Q X ' , p) is true for all n > 0 or it 
is false for all n = N. 

PROOF. If LC(K(N\ p) is true, we apply 4.11 and A.4. If LC(K{N\ p) is false, 
we apply the contrapositive of A.4. 

Appendix. Allow p to be 2, and in that case put q = 4, otherwise q = p. 
Then EK(q) is torsion free of Z-rank r = rK. We prove (A.3) that the statement 
2.1 of Leopoldt's conjecture is equivalent to the maximality of the (free) Z-rank 
of EK(q), the closure of EK(q) embedded diagonally in the product of 
completions of K at primes dividing p (cf. [18] ). The method leads to a simple 
proof (A.4) of the fundamental "going down" theorem for Leopoldt's 
conjecture. 

By the rank, rank^ M, of a finitely generated module M over an integral 
domain R, we mean the rank of the free module obtained as the quotient of the 
original modulo torsion. All other notation is that set out in section II. 

A. 1 LEMMA. Given a positive integer c, there exists a positive integer a such 
that 

EK(q) n E$ C EK(qY\ 

PROOF. By the Artin-Rees lemma [1, Chapter 10], there exists A ^ 0 such 
that 

EK(q) O ECC = (EK(q) n E£/ 

for all positive c. Given c, put a = A + c. 

A.2 LEMMA. LC(K, p) holds <^for each positive integer c there exists a positive 
integer m such that 

PROOF. (<=) Clear. 

(=») Given c, choose a as in A.l. Then (taking m ^ 2 when p = 2) 
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W) c &K =» EK(pm) c EK(q) n £ £ c ^ ( 4 / . 

A.3 PROPOSITION. LC(AT, /?) /w/ds <=> rankz 2^(#) = rankz EK(q) = r. 

PROOF. Since Z is a Noetherian ring, £^ is a finitely generated module, and 
Zp is compact, it is straightforward [1, Chapter 10] to check that one has a 
commutative diagram of commutative pro-/?-groups (all maps are continuous 
homomorphisms) and hence of Z modules: 

Zp®zEK(q)-
lim 

EK(q)/EK(qY 

P 

EK(q) 
lim „ , , 

-> V EK(q)/EK{p" + v) 

The vertical maps a and ft are surjective. 
Since rankz Zp ®z EK(q) = r, we have rankv EK(q) = r <=> a is a topolog

ical isomorphism <=> /? is a topological isomorphism <^> {EK(q)p : « = 1, 2, . . .} 
and { ^ ( ^ + 1): « = 1, 2, . . .} define the same topology on EK(q) «=> for each 
positive integer c, there exists a positive integer m such that EK(pm) c EK(q)p . 
(Given m, c = m — 1 always provides the reverse inclusion.) 

A.4 COROLLARY. If E is a subfield of K, then LC(K, p) => LC(F, /?). 

PROOF. We have the commutative diagram [1, Chapter 10] 

h ®Z EF{q) > Zp 0 Z EK(q) 

EF(q) EK(q) 

where the horizontal maps are injective. Then by the proof of A.3, LC(K, p) <=> 
a is injective => y is injective <=> LC(F, p) 

A.5 REMARK. A similar proof shows that LC(ÀT+, p) =̂> LQX, /?) when AT is a 
CM-field. 

REFERENCES 

1. M. F. Atiyah and I. G. McDonald, Introduction to Commutative Algebra, Addison-Wesley, 
Reading, Mass. 1969. 

2. J. Ax, On the units of an algebraic number field, Illinois J. Math. 9 (1965), pp. 584-589. 
3. F. Bertrandias and J. J. Pay an, T-extensions et invariants cyclotomiques, Ann. Scient. Ec. 

Norm. Sup. 4e ser. 5 (1972), pp. 517-543. 
4. A. Brumer, On the units of algebraic number fields, Mathematika 14 (1967), pp. 121-124. 

https://doi.org/10.4153/CMB-1988-049-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1988-049-0


346 J. W. SANDS 

5. C. Chevalley, Deux théorèmes d'arithmétique, J. Ma th . Soc. J a p a n 31 (1951), pp . 36-44. 

6. R. Gil lard, Formulations de la conjecture de Leopoldt et étude d'une condition sufissante, Abh . 

Math . Sem. Univ. H a m b u r g 48 (1979), pp . 125-138. 

7. G. Gras , Remarques sur la conjecture de Leopoldt, C.R. Acad. Se. Paris (A) 274 (1972), 

pp . 377-380. 

8. , Groupe de Galois de la p-extension abélienne p-ramifiée maximale d'un corps de 

nombres, J. Reine Angew. Ma th . 333 (1982), pp . 86-132. 

9. E. Hecke, Lectures on the Theory of Algebraic Numbers, Springer-Verlag, N e w York, 1981. 

10. K. Iwasawa, A simple remark on Leopoldt's conjecture, (in Japanese) , R. I .M.S. Kyo to U. 

(1984), pp . 45-54. 

11. R. Long, Algebraic Number Theory, Marcel Dekker , N e w York, 1977. 

12. H. Miki and H. Sato, Leopoldt's conjecture and Reiner's theorem, J. Math . Soc. J apan 361 

(1984), pp . 47-51. 

13. H. Miki, On the Leopoldt conjecture on the p-adic regulators, J. N u m b e r Theory 26 (1987), 

pp . 117-128. 

14. W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, P .W.N. Polish 

Scientific Publishers, Warsaw, 1973. 

15. J. P. Serre, Local Fields, Springer-Verlag, N e w York, 1979. 

16. L. Washington, Class numbers and Xp-extensions, Ma th . Ann . 214 (1975), pp . 177-193. 

17. , The non-p-part of the class number in a cyclotomic Z -extension, Inv. Math . 49 (1979), 

pp . 87-97. 

18. , Introduction to Cyclotomic Fields, Springer-Verlag, N e w York, 1982. 

U N I V E R S I T Y O F V E R M O N T 

B U R L I N G T O N , VT 05405 

https://doi.org/10.4153/CMB-1988-049-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1988-049-0

