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Regular completions of

uniform convergence spaces

R.J. Gazik, D.C. Kent, and G.D. Richardson

A regular completion with universal property is obtained for each
member of the class of wu-embedded uniform convergence spaces, a
class which includes the Hausdorff uniform spaces. This
completion is obtained by embedding each u-embedded uniform
convergence space (X, I) into the dual space of a complete
function algebra composed of the uniformly continuous functions

from (X, I) into the real line.

1. Introduction

Let (X, I) be a uniform convergence space as defined by Cook and
Fischer in [2], and let U(X) ©be the set of all uniformly continuous
functions from (X, I) into (R, U) , where R denotes the real line and
U the usual uniformity. We wish to assign to U(X) the coarsest uniform
convergence structure J relative to which the evaluation map
w: (v(x), J) x (X, I) > (R, U) , defined by w(f, z) = flz) , is uniformly
continuous. Unfortunately, U will not exist in the class of uniform
convergence spaces as that concept is defined in [Z?]. However Wyler, [6],
has introduced an axiom system for uniform convergence spaces which is
precisely suited to our needs. Wyler's definition of a uniform convergence
space, which is given in the next paragraph, will be used throughout the

remainder of this paper.

A uniform convergence space (X, I) is a set X along with a set I

of filters on X X X which satisfy the following conditions:

Received 14 August 197h.
413

https://doi.org/10.1017/5S000497270004404X Published online by Cambridge University Press


https://doi.org/10.1017/S000497270004404X

414 R.J. Gazik, D.C. Kent, and G.D. Richardson

(1) z'xx” €I for each z € X

~1

(2) &~ €I wvhenever & €I ;

(3) ®AY €I wvhenever &, ¥ €I ;
() ¥ €I vhenever ® <Y and o €I ;

(5) ®oVY €I whenever ¢, ¥ and the composition ¢ ° ¥ is a
filter.

Compositions and inverses of filters are defined in the natural way.
For any point x in a set X , xz' denotes the fixed ultrafilter
generated by {x} . Let A= {{x, z) : x € X} be the diagonal of X x X ,
and let A° be the filter on X X X consisting of all oversets of A .
The definition of "uniform convergence space" given sbove differs from that
of [2] only in Conditicn (1) which, in [2], is replaced by the stronger
condition: A® € I . Virtually all of the theorems of [2] appear to be
valid using the weaker dkiom system of Wyler.

' will be used both for "uniform convergence

The abbreviation "u.c.s.'
space" and "uniform convergence structure”; it should be obvious from the

context which meaning is intended.
For any convergence space X , let "ch" be the closure operator for

X , and A the topological modification of X . A u.c.s. (X, I) is
said to be regular if chxX® € I whenever & € I ., The goal of this

paper is to obtain a regular completion for a class of u.c.s.'s. A summary

of our results follows.

Let (X, I) be a u.c.s., U(X) the set of all uniformly continuous
functions from (X, I) to (R, U) , and J the coarsest u.c.s. on U(X)
relative to which the evaluation map w (defined above) is uniformly

continuous. In Section 2, we show that (U(X), J) is a complete u.c.s.

Let (U2(X), J2) be the dual space obtained by a repetition of the
previous construction; for notational convenience, we will sometimes use

the symbol "D" for dual space, especially in conjunction with the closure

operator. If the natural map < : (X, I) -+ (Uz(X), J2) , defined by
{x)(f) = f(x) for all f € U(X) , is a uniform embedding, then (X, I)

is said to be wu-embedded. The u-embedded spaces form a productive and
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hereditary class of u.c.s.'s which include, as a subclass, the Hausdorff

uniform spaces. Some other interesting facts asbout this class are:
(a) wu-embedded spaces are regular and Hausdorff;
(v) (W(X), J) is always u-embedded;
(¢) a totally bounded wu-embedded space is a ﬁnifprm space;
(d) a wu-embedded space can be non-topological.

A regular completion of a u-embedded space (X, I) is obtained by

forming X* = ClADiX 3 the latter set, being a closed subspace of the

complete space D , is complete. This completion is shown to have the
universal property relative to the class of u-embedded u.c.s.'s, and is
equivalent to the usual uniform completion if (X, I) is a Hausdorff
uniform space. Conseguently, the standard completion of a Hausdorff

uniform space is unique in the larger class of all u-embedded u.c.s.'s.

It should be noted that in the completion described above, <X 1is
dense in X* relative to MAX* , not relative to X* itself. This does

not appear to be a serious flaw, and we conjecture that chiX = ClADiX

for any u-embedded space (X, I) . A similar completion theory for Cauchy

spaces has been obtained by two of the authors (see [4]).

One of the more interesting features of the construction described
above is that it yields a natural external completion of a Hausdorff
uniform space which could not be obtained without introducing, as an

intermediate step, the concept of a uniform convergence space.

2. The space Uu(x)

Throughout this section, it will be assumed that (X, I) is an
arbitrary u.c.s. For basic definitions and other information about

u.c.s.'s not already provided in the Introduction, see £21.

If ACU(X) x U(X) and FC X x X , then A(F) denotes the set
{(fiz), g(y)) : (Ff, g) €4, (z,y) €F} . It & is a filter on
U(x) x U(X) , F a filter on X x X , then &(F) designates the filter
generated by {A(F) : A € &, F ¢ F} . Let J be the collection of filters
on U(X) X U(X) defined by: @ € J if and only if, for each F € I ,

®(F) 2 U, where U is the usual uniformity on R .
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THEOREM 2.1. (U(X), J) 18 a u.c.s.

Proof. Let f € U(X) and F €I . Since (fXfF=2U, (f, f) ¢J ,
and (1) is established. Condition (5) can be obtained with the help of the
following inequality: (®o¥)(F) = &(F) o ¥(FoF) , for any symmetric filter
F on X x X . The proofs for Conditions (2), (3), and (4) are trivial.

The following example shows that (U(X), J) may fail to be a u.c.s.
in the sense of [Z].

EXAMPLE 2.2, Let X =R, and let I be the usual u.c.s. for R .
Let Al be the diagonal in U(X) x U(X) , and let f be any member of

U(X) such that f(0) # f(1) . For any positive real number %k , let kf
be the scalar multiple of f . Note that (kf, kf) € Al for all k>0,
so it is clear that 'Ai(U) i U . Thus Ai fJ , and (U(X), J] is not a
u.c.s. as defined in [2].

For any product space X XY , we will use Pl : X xY>X and

P2 : X xY > Y as the two projection maps. If F and G are two filters

on the same set; the coarsest filter finer than F and G (if it exists)

is denoted by F v G .

- . THEOREM 2.3. J <is the coarsest u.c.s. on U(X) relative to which
the evaluation map w <18 continuous.

Proof. A basic element in the product u.c.s. on (U(X), J) x (X, I)
is of the forn (P xP)) 70 o (P,Py)'F = A, where ® €J and F €I,
But (wxw)A = &(F) 2 U , and so w is uniformly continuous relative to
(vx), J) . If Jl is another admissible u.c.s. on U(X) , then &(F)
must be finer than U whenever ¢ € Jl and F €I ,so & €J and

J_<_J1.

THEOREM 2.4. U(X) is complete.

Proof. Let G be a Cauchy filter on U(X) ; that is, G x G € J .
For each =z € X , ' x €I , and G(x') is a Cauchy filter on R . Let
f(z) be the limit of G(x’') in R .

First we show that f € U(X) . Let F €I ; then (GxG)F=U . If
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VeU, thenlet G €G, A €F be such that (GXG)Ac V . It suffices
to show that (fxf)4 c cleRV . Let (x,y) €4 ; then

e1,(6(=)) x e1,(6(y) & Ly, (GXGIA < el .V .

Since f(x) € clRG(x) s (flz), fly)) € clp gV » and so f eux) .

Finally, we show that G x f* € J (that is, G+ F in U(X) ). For
Fer, velU, there are sets G in G and F in F such that
(6xG)F <V . Then (GX{f}1)FcC clp gV follows as in the preceding

paragraph, and the proof is complete.

Let aX be the space consisting of the set X supplied with the weak
topology induced by the set of functions U(X) . Thus oX is a completely
regular topological space whose topology is coarser than the convergence

structure which I induces on X .

THEOREM 2.5. U(X) separates pointe and aX-closed subsets of X .

Proof. Let AC X be oX-closed, and x € A . Then there is a basic
open set V = ﬂ{f_zl (V,L) t 1 =1, s.., n} containing x and contained in
X - A , vwhere Vi is a subbasic open set in R of the form (ai, °°] or
(-°°, bi) . Indeed, if fi is replaced by -fi whenever necessary, we can
assume with no loss of generality that each Vi is of the form (ai, w)
for =1, ..., n . Letting g,(z) = sup{fi(x)-ai, 0} for all =z € X,

1

we obtain that V = n{gT (0, ®) : £ =1, ..., n} . Finally, let g be the

1

product function g,g, ... g, - Then g ¢ u(x) , glz) #0 , and

g{4) = {0} , which establishes the desired result.

3. u-embedded spaces

There is a close analogy between the function algebra C(X) with the
continuous convergence structure, which is studied in [7], and the space
(U(X), J] . Also, the notion of a c-embedded space, [1], corresponds to
our "u-embedded space" in an obvious way. Some of the theorems of [1]
pertaining to c-embedded spaces extend without difficulty to wu-embedded

spaces. In particular, Theorems 3.1 and 3.2 below have proofs which are
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similar to those of Lemma 16 and Satz 21, respectively of [7]; the proofs

of the former theorems will therefore be omitted.
THEOREM 3.1. For any u.c.s. (X, I), (U(X), J) is u-embedded.
THEOREM 3.2. (a) A product of wu-embedded spaées i8 u-embedded.
(b) A subspace of a wu-embedded space i8 u-embedded.

From Theorem 3.1 and Example 2.2, we conclude that a wu-embedded space
may fail to be a "uniform convergence space" according to the definition of
that term in [2].

Recall the notation oX (introduced in Section 2) for the wesak
topological space on the set X generated by the set of functions U(X) .
For notational convenience, let Y =aX XxaX . A u.c.s. (X, I) is said

to be a-regular if clyF € I vhenever F € I . An a-regular u.c.s. is
clearly regular. Also, the underlying convergence space of an a-regular

u.c.s. has the property: claXF + x vhenever F -+ x .

THEOREM 3.3. A u-embedded space (X, I) 48 Hausdorff and
a-regular.

Proof. The map < : X ~+ UQ(X) is injective if and only if U(X)
separates points of X . Thus a wu-embedded space X has the property
that oX is Hausdorff, and hence X is also Hausdorff.

To show that X is oa-regular, let F € I . Since (X, I) is
u-embedded, it is sufficient to show that &{cl,F) 2 U for all ¢ €J .

Given & € J , let U be a closed entourage in U , and choose A € & and
F € F such that A(F)cU . If (=, y) € clYF , then there is a filter

G+ (x,y) in Y such that F € G . For any pair (f, g) €4,
(fxg)G » (f(:n), g{y)) in R , and (fxg)G contains U . But U is
closed, and so A(clYF] C U . This establishes that @(clYF) =U.

A u.c.s. (X, I) will be called a pseudo-uniformity if F €I
whenever G € I for each ultrafilter G = F .
THEOREM 3.4, A wu-embedded space (X, I) is a pseudo-uniformity.

Proof. Let F be a filter on X X X such that G € I for each
ultrafilter G = F . Let & be an arbitrary member of J . Since X is
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u-embedded, it is sufficient to show that &(F) =2 U . We will do this by
showing that if A is an ultrafilter on R such that A = ¢(F) , then
there is an ultrafilter G = F such that A = &(G) .

Let Z={H:H a filteron X xX, A=0(H), H=F} ., I contains
F , and so is non-empty. By Zorn's Lemma, Z contains a maximal element
G . One can show by a straightforward argument that G is an ultrafilter,

which completes the proof.
Let (X, I) ana ({x, Il] be arbitrary u.c.s.'s, and
¢ : (x, I) ~ (X , Il) a uniformly continuous function. The function
o) U(Xl) + U(X) , defined by ¢ (f) = f° ¢ , will be called the
transpose map of ¢ . It is easy to show that ¢l us uniformly continuous

vhenever ¢ is. Let ¢2 : U2(X) - Uz(Xl) denote the transpose of ¢1 .

The following diagram is easily seen to be commutative;
X -——HL* X

i i
P (x) e, 7 (x,)

We now obtain a completion for an arbitrary u.c.s. (X, I) . Recall

the notation D = U2(X) for the dual space. Let X* = CIADiX , and assume

that X* has the u.c.s. I* inherited from (UQ(X), J2] .

THEOREM 3.5. For any u-embedded space (X, I) , the space
(x*, I*) , along with the natural injection i , is a Hausdorff,
a-regular, pseudo-uniform completion of (X, I) . If (X;» Il) is any
complete u-embedded epace, and ¢ : (X, I) » (X, Ii] ig wniformly

continuous, then ¢ has a unique extension ¢* : (X*, I*) » (Xl, Il) .
Proof. By assumption, < 1is an embedding. (X*, I*) is a closed
subspace of a complete space, and hence complete. <(X) is dense in X*

in the weak sense mentioned in the introduction (that is, the closure is

taken with respect to AX* rather than X* itself).
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To establish the universal property, first note that, since (X . Il)
is complete, (X*, If) is uniformly isomorphic to (Xl, Il) under the

natural injection < Thus the diagram

1

x 2 x
i

¥

1
* *
X* — Xl
is commutative, where we is the restriction of ¢2 to X* , and il is

a uniform isomorphism. We obtain the desired extension by setting

p* = i;l o \p2 . The uniqueness of the extension is clear.

4, Uniform and topological u-embedded spaces

It was shown in Example 2.2 that a wu-embedded space can fail to
satisfy the most basic property of a uniform space. In this section we
show that all Hausdorff uniform spaces are uU-embedded, and that all
totally bounded u-embedded spaces are uniform. We also obtain a
characterization of those u.c.s.'s (X, I) for which the underlying
convergence structure of (U(X), J) is topological. This leads to an
example of a non-topological u-embedded space.

THEOREM 4.1. A4 Hausdorff wniform space is u-embedded.

Proof. Let (X, W) be a Hausdorff uniform space. It is clear that

U(X) separates points, and so % : X =+ IIZ(X) is injective. Since 1 is

always uniformly continuous, it remains to show that 1:-1 is uniformly -

continuous. Assume the contrary; that is, there is a filter F on X x X

such that (ZxZ)F € 72 ,but F % W . Then among the pseudo-metrics that
generate W , there is a pseudo-metric d and a positive real number ¢

such that V_ = {(z, y) : dz,y) <€} § F. For each F € F , choose an

element (:cF, yF) € F - VE . Let G denote the filter associated with the

net (z,, yF)FGF . Then 6= F , and so (ZxZ)G € 7.
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For each F € F , define fF : X+ R as follows: f, (2) = d(z T 2)
for all z €X . Then fp(¥;) =0, md foly) ze. 1If

Vg = {(z, y) : d(x, y) < 8} , then
(fofF)VG c{(r, 8) € RXR: |rs| <8}

and so fF € U(X) . Moreover, if ¢ denotes the filter associated with

the net [fF, fF)F€F , then ¢ € J . Hence ¢(G) = U , which contradicts
lfF(xF]-fF(yF)l >¢ , for each F € F .
Recall that a u.c.s. is totally bounded if each ultrafilter is Cauchy.

THEOREM 4.2. A Hausdorff, totally bounded u.c.s. is u-embedded if
and only if it ie a uniformity.

Proof. Let (X, I) be a Hausdorff, totally bounded u.c.s. which is
u-embedded, Let G be an ultrafilter finer than W =N{F : F € I} and

let Gl=(1:x1:)G. Assume GfI;_then GlEJz.

Let X'= chiX be a subspace of UZ(X) 3 we will first show that
X' is compact. lLet K be an ultrafilter containing X' . By Lemma 2.1,

[5], there is an ultrafilter M containing <X such that K = clpM .

Since <X is totally bounded and Uz(X) is complete, M converges to an
element of X' . But D is regular, and so K converges to the seme
element. Thus X' is compact; indeed, it is easy to see that X' = x* ,
the completion space of Theorem 3.5.

From the results of the preceding paragraph, there are elements

r, 8 € X' such that Gl-*(r,s) in X' x X' . Since Glsz , rt 8.
(For otherwise, P1Gl x p° € J2 eand r° x P261 € , which would imply

& 2 (P6xr7) o (»xP,G) €J%.) Since r#6 , there is g € U(x')

such that g(r) # g(s) ; let f € U(X) be given by f =g o i . Then,
(rxf)6 = N{(f*f)F : F € I} =2 U , which contradicts the previous assertion
that g(r) # g(e) . Thus G € I , and since I is a pseudo-uniformity by
Theorem 3.4, it follows that W € I . Thus I is generated by a single
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filter, and by Theorem 6, [2], I is a uniformity.

Let (X, I) be au.c.s., S acoverof X . S will be called a
uniform cover if for each F € I , there is 4 € F such that PlA €S .

(Recall that P, 1is the first projection map.] A subset A4 of X is

1
said to be o-bounded if each uniform cover of X contains a finite

subcollection {AL} such that 4 c CIY(UAi) .

THEOREM 4.3. Let (X, I) be a u.c.s. Then J induces a topology on
U(X) if and only <if, for each F € I , PlF contains an a-bounded subset

of X.

Proof. First, note that ¢ >0 in U(X) if and only if ¢(P,F) +0
in R for each F €I .

Assume that (U(X), J) is topological, and let F € I . Let WO be
an open neighborhood of '0 in R not containing 1 , and let Uo be a

neighborhood of 0 in U(X) , and FO € F such that Uo [PlFo) c WO .

Given a uniform cover S of X, let (B, W) = {f € U(X) : f(B) c W} ,
where B € S , and W is an open neighborhood of 0 in R . Let ¢ be
the filter on U(X) generated by sets of the form (B, W) as described
above. Then P - 0 in U(X) , and there exists a set of the form

Ul= (K, Wl)CUO , where K=U{B1::i=l, ...,n} , each Bi €S, and

Wl is an open neighborhood of 0 in R . If =x € PlFO - clYK , then by

Theorem 2.5 there exists f € U(X) such that f(x) =1 and
f(clYK) = {0} . Thus f € Ul c UO , which contradicts the assertion that

c i - .
UO(PlFO) Wo . Therefore, PlFo is oa-bounded

Conversely, let & = 0 in U(X) , let F € I , and assume that there
is Fo € F such that PlFo is oa-bounded. Let W be any closed neigh-

borhood of O in R . For each G € I , there are sets G € G and
AG € & such that AG(PlG) CW . Let S denote the collection of all such

sets PIG . Then S is a uniform covering of X . Using the fact that

PlFO is o-bounded, it follows that there is some A<I> € ¢ such that
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AQ(PlFO) C W . Since ¢ is arbitrary, N{® : & + 0} also converges to O

in U(X) . Thus U(X) is a pretopology (or principal convergence space).
But U(X) is also a convergence group (it is easy to verify that the group
operations on U(X) are continuous). It is shown in [3] (Satz 5, III.3,
p. 294) that a pretopological convergence group is a topology, and the

proof is complete.

If (X, I) is a u.c.s. and A" € I , then each wiform cover of X
contains X . Consequently, X is a-bounded, and we obtain the following

corollary.

COROLLARY 4.4, ret (X, I) be a u.c.s. such that A € I (that is,
a u.c.s. in the sense of Cook and Fischer, [21). Then (U(X), J) 1is
topological.

We conclude with an example which, along with Theorem 3.1, shows that
u-embedded spaces can be non-topological.

EXAMPLE 4.5. let X =R , and for each 6 > 0 1let
Fg = {(x, ) : £ <8} . Let F be the filter on X X X generated by
{FG : 8§ >0} . Let I be the u.c.s. on X generated by

{F, <" : x € X} . Since PlF contains no o-bounded subset, Theorem

4.3 implies that (U(X), J) is non-topological.
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