Regular completions of uniform convergence spaces

R.J. Gazik, D.C. Kent, and G.D. Richardson

A regular completion with universal property is obtained for each member of the class of u-embedded uniform convergence spaces, a class which includes the Hausdorff uniform spaces. This completion is obtained by embedding each u-embedded uniform convergence space (X, I) into the dual space of a complete function algebra composed of the uniformly continuous functions from (X, I) into the real line.

1. Introduction

Let (X, I) be a uniform convergence space as defined by Cook and Fischer in [2], and let $U(X)$ be the set of all uniformly continuous functions from (X, I) into (R, U), where R denotes the real line and U the usual uniformity. We wish to assign to $U(X)$ the coarsest uniform convergence structure J relative to which the evaluation map $\omega:(U(X), J) \times(X, I) \rightarrow(R, U)$, defined by $\omega(f, x)=f(x)$, is uniformly continuous. Unfortunately, U will not exist in the class of uniform convergence spaces as that concept is defined in [2]. However Wyler, [6], has introduced an axiom system for uniform convergence spaces which is precisely suited to our needs. Wyler's definition of a uniform convergence space, which is given in the next paragraph, will be used throughout the remainder of this paper.

A uniform convergence space (X, I) is a set X along with a set I of filters on $X \times X$ which satisfy the following conditions:

Received 14 August 1974.
(1) $x^{0} \times x^{0} \in I$ for each $x \in X$;
(2) $\Phi^{-1} \in I$ whenever $\Phi \in I$;
(3) $\Phi \wedge \Psi \in I$ whenever $\Phi, \Psi \in I$;
(4) $\Psi \in I$ whenever $\Phi \leq \Psi$ and $\Phi \in I$;
(5) $\Phi \circ \Psi \in I$ whenever Φ, Ψ and the composition $\Phi \circ \Psi$ is a filter.

Compositions and inverses of filters are defined in the natural way. For any point x in a set $X, x^{\text {b }}$ denotes the fixed ultrafilter generated by $\{x\}$. Let $\Delta=\{(x, x): x \in X\}$ be the diagonal of $X \times X$, and let Δ° be the filter on $X \times X$ consisting of all oversets of Δ. The definition of "uniform convergence space" given above differs from that of [2] only in Condition (1) which, in [2], is replaced by the stronger condition: $\Delta^{*} \in I$. Virtually all of the theorems of [2] appear to be valid using the weaker axiom system of Wyler.

The abbreviation "u.c.s." will be used both for "uniform convergence space" and "uniform convergence structure"; it should be obvious from the context which meaning is intended.

For any convergence space X, let " ${ }^{\prime} l_{X}$ " be the closure operator for X, and λX the topological modification of X. A u.c.s. (X, I) is said to be regular if ${ }^{c l_{X \times X}}{ }^{\Phi} \in I$ whenever $\Phi \in I$. The goal of this paper is to obtain a regular completion for a class of u.c.s.'s. A surmary of our results follows.

Let (X, I) be a u.c.s., $U(X)$ the set of all uniformly continuous functions from (X, I) to (R, U), and J the coarsest u.c.s. on $U(X)$ relative to which the evaluation map ω (defined above) is uniformly continuous. In Section 2, we show that $(U(X), J)$ is a complete u.c.s. Let $\left(U^{2}(X), J^{2}\right)$ be the dual space obtained by a repetition of the previous construction; for notational convenience, we will sometimes use the symbol " D " for dual space, especially in conjunction with the closure operator. If the natural map $i:(X, I) \rightarrow\left(U^{2}(X), J^{2}\right)$, defined by $i(x)(f)=f(x)$ for all $f \in U(X)$, is a uniform embedding, then (X, I) is said to be u-embedded. The u-embedded spaces form a productive and
hereditary class of u.c.s.'s which include, as a subclass, the Hausdorff uniform spaces. Some other interesting facts about this class are:
(a) u-embedded spaces are regular and Hausdorff;
(b) $(U(X), J)$ is always u-embedded;
(c) a totally bounded u-embedded space is a uniform space;
(d) a u-embedded space can be non-topological.

A regular completion of a u-embedded space (X, I) is obtained by forming $X^{*}={ }^{c} l_{\lambda D^{i X}}$; the latter set, being a closed subspace of the complete space D, is complete. This completion is shown to have the universal property relative to the class of u-embedded u.c.s.'s, and is equivalent to the usual uniform completion if (X, I) is a Hausdorff uniform space. Consequently, the standard completion of a Hausdorff uniform space is unique in the larger class of all u-embedded u.c.s.'s.

It should be noted that in the completion described above, $i X$ is dense in X^{*} relative to λX^{*}, not relative to X^{*} itself. This does not appear to be a serious flaw, and we conjecture that ${ }_{c l} l_{D} i X={ }^{c} l_{\lambda D} i X$ for any u-embedded space (X, I) . A similar completion theory for Cauchy spaces has been obtained by two of the authors (see [4]).

One of the more interesting features of the construction described above is that it yields a natural external completion of a Hausdorff uniform space which could not be obtained without introducing, as an intermediate step, the concept of a uniform convergence space.

2. The space $U(X)$

Throughout this section, it will be assumed that (X, I) is an arbitrary u.c.s. For basic definitions and other information about u.c.s.'s not already provided in the Introduction, see [2].

If $A \subset U(X) \times U(X)$ and $F \subset X \times X$, then $A(F)$ denotes the set $\{(f(x), g(y)):(f, g) \in A,(x, y) \in F\}$. If Φ is a filter on $U(X) \times U(X), F$ a filter on $X \times X$, then $\Phi(F)$ designates the filter generated by $\{A(F): A \in \Phi, F \in F\}$. Let J be the collection of filters on $U(X) \times U(X)$ defined by: $\Phi \in J$ if and only if, for each $F \in I$, $\Phi(F) \geq U$, where U is the usual uniformity on R.

THEOREM 2.1. $(U(X), J)$ is a u.c.s.
Proof. Let $f \in U(X)$ and $F \in I$. Since $(f \times f) F \geq U,(f, f) \in J$, and (1) is established. Condition (5) can be obtained with the help of the following inequality: $(\Phi \circ \Psi)(F) \geq \Phi(F) \circ \Psi(F \circ F)$, for any symmetric filter F on $X \times X$. The proofs for Conditions (2), (3), and (4) are trivial.

The following example shows that $(U(X), J)$ may fail to be a u.c.s. in the sense of [2].

EXAMPLE 2.2. Let $X=R$, and let I be the usual u.c.s. for R. Let Δ_{1} be the diagonal in $U(X) \times U(X)$, and let f be any member of $U(X)$ such that $f(0) \neq f(1)$. For any positive real number k, let $k f$ be the scalar multiple of f. Note that $(k f, k f) \in \Delta_{1}$ for all $k>0$, so it is clear that $\Delta_{i}^{\cdot}(U) \neq U$. Thus $\Delta_{i}^{*} F^{\prime} J$, and $(U(X), J)$ is not a u.c.s. as defined in [2].

For any product space $X \times Y$, we will use $P_{1}: X \times Y \rightarrow X$ and $P_{2}: X \times Y \rightarrow Y$ as the two projection maps. If F and G are two filters on the same set; the coarsest filter finer than F and G (if it exists) is denoted by $F \vee G$.
: THEOREM 2.3. J is the coarsest u.c.s. on $U(X)$ relative to which the evaluation map ω is continuous.

Proof. A basic element in the product u.c.s. on $(U(X), J) \times(X, I)$ is of the form $\left(P_{1} \times P_{1}\right)^{-1} \Phi \circ\left(P_{2} \times P_{2}\right)^{-1} F=A$, where $\Phi \in J$ and $F \in I$. But $(\omega \times \omega) A=\Phi(F) \geq U$, and so ω is uniformly continuous relative to $(U(X), J)$. If J_{1} is another admissible u.c.s. on $U(X)$, then $\Phi(F)$ must be finer than U whenever $\Phi \in J_{1}$ and $F \in I$, so $\Phi \in J$ and $J \leq J_{1}$.

THEOREM 2.4. $U(X)$ is complete.
Proof. Let G be a Cauchy filter on $U(X)$; that is, $G \times G \in J$. For each $x \in X, x^{*} \times x^{*} \in I$, and $G\left(x^{*}\right)$ is a Cauchy filter on R. Let $f(x)$ be the limit of $\mathrm{G}\left(x^{\cdot}\right)$ in R.

First we show that $f \in U(X)$. Let $F \in I$; then $(G \times G) F \geq U$. If
$V \in U$, then let $G \in G, A \in F$ be such that $(G \times G) A \subset V$. It suffices to show that $(f \times f) A \subset \mathrm{cl}_{R \times R} V$. Let $(x, y) \in A$; then

$$
\mathrm{cl}_{R}(G(x)) \times c l_{R}(G(y)) \subset c l_{R \times R}(G \times G) A \subset c l_{R \times R} V .
$$

Since $f(x) \in \mathrm{cl}_{R} G(x),(f(x), f(y)) \in \mathrm{cl}_{R \times R} V$, and so $f \in U(X)$.
Finally, we show that $G \times f^{\cdot} \in J$ (that is, $G \rightarrow F$ in $U(X)$). For $F \in I, V \in U$, there are sets G in G and F in F such that $(G \times G) F \subset V$. Then $(G \times\{f\}) F \subset c l_{R \times R} V$ follows as in the preceding paragraph, and the proof is complete.

Let αX be the space consisting of the set X supplied with the weak topology induced by the set of functions $U(X)$. Thus αX is a completely regular topological space whose topology is coarser than the convergence structure which I induces on X.

THEOREM 2.5. $U(X)$ separates points and αX-closed subsets of X.
Proof. Let $A \subset X$ be αX-closed, and $x \in A$. Then there is a basic open set $V=n\left\{f_{i}^{-1}\left(V_{i}\right): i=1, \ldots, n\right\}$ containing x and contained in $X-A$, where V_{i} is a subbasic open set in R of the form $\left(a_{i}, \infty\right)$ or $\left(-\infty, b_{i}\right)$. Indeed, if f_{i} is replaced by $-f_{i}$ whenever necessary, we can assume with no loss of generality that each V_{i} is of the form $\left(a_{i}, \infty\right)$ for $i=1, \ldots, n$. Letting $g_{i}(x)=\sup \left\{f_{i}(x)-a_{i}, 0\right\}$ for all $x \in X$, we obtain that $V=\cap\left\{g_{i}^{-1}(0, \infty): i=1, \ldots, n\right\}$. Finally, let g be the product function $g_{1} g_{2} \cdots g_{n}$. Then $g \in U(X), g(x) \neq 0$, and $g(A)=\{0\}$, which establishes the desired result.

3. u-embedded spaces

There is a close analogy between the function algebra $C(X)$ with the continuous convergence structure, which is studied in [1], and the space $(U(X), J)$. Also, the notion of a c-embedded space, [1], corresponds to our "u-embedded space" in an obvious way. Some of the theorems of [1] pertaining to c-embedded spaces extend without difficulty to u-embedded spaces. In particular, Theorems 3.1 and 3.2 below have proofs which are
similar to those of Lemma 16 and Satz 21, respectively of [1]; the proofs of the former theorems will therefore be omitted.

THEOREM 3.1. For any u.c.s. $(X, I),(U(X), J)$ is u-embedded.
THEOREM 3.2. (a) A product of u-embedded spaces is u-embedded.
(b) A subspace of a u-embedded space is u-embedded.

From Theorem 3.1 and Example 2.2, we conclude that a u-embedded space may fail to be a "uniform convergence space" according to the definition of that term in [2].

Recall the notation αX (introduced in Section 2) for the weak topological space on the set X generated by the set of functions $U(X)$. For notational convenience, let $Y=\alpha X \times \alpha X$. A u.c.s. (X, I) is said to be α-regular if $\mathrm{cl}_{Y} F \in I$ whenever $F \in I$. An α-regular u.c.s. is clearly regular. Also, the underlying convergence space of an α-regular u.c.s. has the property: ${ }_{\mathrm{cl}}^{\alpha X}$ $\mathrm{F} \rightarrow x$ whenever $\mathrm{F} \rightarrow x$.

THEOREM 3.3. A u-embedded space (X, I) is Hausdorff and α-regular.

Proof. The map $i: X \rightarrow U^{2}(X)$ is injective if and only if $U(X)$ separates points of X. Thus a u-embedded space X has the property that αX is Hausdorff, and hence X is also Hausdorff.

To show that X is α-regular, let $\mathcal{F} \in I$. Since (X, I) is u-embedded, it is sufficient to show that $\Phi\left(\mathrm{cl}_{Y} \mathrm{~F}\right) \geq \mathrm{U}$ for all $\Phi \in J$. Given $\Phi \in J$, let U be a closed entourage in U, and choose $A \in \Phi$ and $F \in \mathrm{~F}$ such that $A(F) \subset U$. If $(x, y) \in \mathrm{cl}_{Y} F$, then there is a filter $\mathbf{G} \rightarrow(x, y)$ in Y such that $F \in \mathbf{G}$. For any pair $(f, g) \in A$, $(f \times g) G \rightarrow(f(x), g(y))$ in R, and ($f \times g) G$ contains U. But U is closed, and so $A\left(\mathrm{cl}_{Y} F\right) \subset U$. This establishes that $\Phi\left(\mathrm{cl}_{Y} \mathrm{~F}\right) \geq U$.

A u.c.s. (X, I) will be called a pseudo-uniformity if $F \in I$ whenever $G \in I$ for each uitrafilter $G \geq F$.

THEOREM 3.4. A u-embedded space (X, I) is a pseudo-voniformity.
Proof. Let F be a filter on $X \times X$ such that $G \in I$ for each ultrafilter $G \geq F$. Let Φ be an arbitrary member of J. Since X is
u-embedded, it is sufficient to show that $\Phi(F) \geq U$. We will do this by showing that if A is an ultrafilter on R such that $A \geq \Phi(F)$, then there is an ultrafilter $G \geq F$ such that $A \geq \Phi(G)$.

Let $Z=\{H: H$ a filter on $X \times X, A \geq \Phi(H), H \geq F\}$. Z contains F, and so is non-empty. By Zorn's Lemma, Z contains a maximal element G. One can show by a straightforward argument that G is an ultrafilter, which completes the proof.

Let (X, I) and $\left(X_{1}, I_{1}\right)$ be arbitrary u.c.s.'s, and $\phi:(X, I) \rightarrow\left(X_{1}, I_{1}\right)$ a uniformly continuous function. The function $\phi_{1}: U\left(X_{1}\right) \rightarrow U(X)$, defined by $\phi_{1}(f)=f \circ \phi$, will be called the transpose map of ϕ. It is easy to show that ϕ_{1} us uniformly continuous whenever ϕ is. Let $\phi_{2}: U^{2}(X) \rightarrow V^{2}\left(X_{1}\right)$ denote the transpose of ϕ_{1}. The following diagram is easily seen to be commutative;

We now obtain a completion for an arbitrary u.c.s. (X, I) . Recall the notation $D=U^{2}(X)$ for the dual space. Let $X^{*}={ }^{c}{ }_{\lambda} D^{i X}$, and assume that X^{*} has the u.c.s. I^{*} inherited from $\left(U^{2}(X), J^{2}\right)$.

THEOREM 3.5. For any u-embedded space (X, I), the space (X^{*}, I^{*}), along with the natural injection i, is a Hausdorff, α-regular, pseudo-uniform completion of (X, I). If $\left(X_{1}, I_{1}\right)$ is any complete u-embedded space, and $\phi:(X, I) \rightarrow\left(X_{1}, I_{1}\right)$ is uniformly continuous, then ϕ has a unique extension $\phi^{*}:\left(X^{*}, I^{*}\right) \rightarrow\left(X_{1}, I_{1}\right)$.

Proof. By assumption, i is an embedding. (X^{*}, I^{*}) is a closed subspace of a complete space, and hence complete. $i(X)$ is dense in X^{*} in the weak sense mentioned in the introduction (that is, the closure is taken with respect to λX^{*} rather than X^{*} itself).

To establish the universal property, first note that, since (X_{1}, I_{1}) is complete, $\left(X_{1}^{*}, I_{1}^{*}\right)$ is uniformly isomorphic to $\left(X_{1}, I_{1}\right)$ under the natural injection i_{1}. Thus the diagram

is commatative, where ψ_{2} is the restriction of ϕ_{2} to X^{*}, and i_{1} is a uniform isomorphism. We obtain the desired extension by setting $\phi^{*}=i_{1}^{-1} \circ \psi_{2}$. The uniqueness of the extension is clear.

4. Uniform and topological u-embedded spaces

It was shown in Example 2.2 that a u-embedded space can fail to satisfy the most basic property of a uniform space. In this section we show that all Hausdorff uniform spaces are u-embedded, and that all totally bounded u-embedded spaces are uniform. We also obtain a characterization of those u.c.s.'s (X, I) for which the underlying convergence structure of $(U(X), J)$ is topological. This leads to an example of a non-topological u-embedded space.

THEOREM 4.1. A Hausdorff uniform space is u-embedded.
Proof. Let (X, W) be a Hausdorff uniform space. It is clear that $U(X)$ separates points, and so $i: X \rightarrow U^{2}(X)$ is injective. Since i is always uniformly continuous, it remains to show that i^{-1} is uniformly. continuous. Assume the contraxy; that is, there is a filter F on $X \times X$ such that $(i \times i) F \in \mathcal{J}^{2}$, but $F \neq W$. Then among the pseudo-metrics that generate W, there is a pseudo-metric d and a positive real number ε such that $V_{\varepsilon}=\{(x, y): d(x, y)<\varepsilon\} \notin F$. For each $F \in F$, choose an element $\left(x_{F}, y_{F}\right) \in F-V_{E}$. Let G denote the filter associated with the net $\left(x_{F}, y_{F}\right)_{F \in F}$. Then $G \geq F$, and so $(i \times i) G \in J^{2}$.

For each $F \in F$, define $f_{F}: X \rightarrow R$ as follows: $f_{F}(z)=d\left(x_{F}, z\right)$ for all $a \in X$. Then $f_{F}\left(x_{F}\right)=0$, and $f_{F}\left(y_{F}\right) \geq \varepsilon$. If $v_{\delta}=\{(x, y): d(x, y)<\delta\}$, then

$$
\left(f_{F} \times f_{F}\right) V_{\delta} \subset\{(r, s) \in R \times R:|r-s|<\delta\},
$$

and so $f_{F} \in U(X)$. Moreover, if Φ denotes the filter associated with the net $\left(f_{F}, f_{F}\right)_{F \in F}$, then $\Phi \in J$. Hence $\Phi(G) \geq U$, which contradicts $\left|f_{F}\left(x_{F}\right)-f_{F}\left(y_{F}\right)\right| \geq \varepsilon$, for each $F \in F$.

Recall that a u.c.s. is totally bounded if each ultrafilter is Cauchy.
THEOREM 4.2. A Hausdorff, totally bounded u.c.s. is u-embedded if and only if it is a uniformity.

Proof. Let (X, I) be a Hausdorff, totally bounded u.c.s. which is u-embedded. Let G be an ultrafilter finer than $W=\cap\{F: F \in I\}$ and let $G_{1}=(i \times i) G$. Assume $G \& I$; then $G_{1} \vDash J^{2}$.

Let $X^{\prime}={ }^{c l} D^{i X}$ be a subspace of $V^{2}(X)$; we will first show that X^{\prime} is compact. Let K be an ultrafilter containing X^{\prime}. By Lemma 2.1, [5], there is an uitrafilter M containing $i X$ such that $K \geq c_{D} M$.
Since $i X$ is totally bounded and $V^{2}(X)$ is complete, M converges to an element of X^{\prime}. But D is regular, and so K converges to the same element. Thus X^{\prime} is compact; indeed, it is easy to see that $X^{\prime}=X^{*}$, the completion space of Theorem 3.5.

From the results of the preceding paragraph, there are elements $r, s \in X^{\prime}$ such thet $G_{1} \rightarrow(r, s)$ in $X^{\prime} \times X^{\prime}$. Since $G_{1} \not \mathcal{J}^{2}, r \neq s$. (For otherwise, $P_{1} G_{1} \times r^{*} \in \mathcal{J}^{2}$ and $r^{*} \times P_{2} G_{1} \in \mathcal{J}^{2}$, which would imply $\left.G_{1} \geq\left(P_{1} G_{1} \times r^{\circ}\right) \circ\left(r^{\cdot} \times P_{2} G_{1}\right) \in J^{2}.\right)$ Since $r \neq s$, there is $g \in U\left(X^{\prime}\right)$ such that $g(r) \neq g(s)$; let $f \in U(X)$ be given by $f=g \circ i$. Then, $(f \times f) G \geq \cap\{(f \times f) F: F \in I\} \geq U$, which contradicts the previous assertion that $g(x) \neq g(s)$. Thus $G \in I$, and since I is a pseudo-umiformity by Theorem 3.4, it follows that $W \in I$. Thus I is generated by a single
filter, and by Theorem 6, [2], I is a uniformity.
Let (X, I) be a u.c.s., S a cover of X. S will be called a uniform cover if for each $F \in I$, there is $A \in F$ such that $P_{1} A \in S$. (Recall that P_{1} is the first projection map.) A subset A of X is said to be α-bounded if each uniform cover of X contains a finite subcollection $\left\{A_{i}\right\}$ such that $A \subset \operatorname{cl}_{Y}\left(U A_{i}\right)$.

THEOREM 4.3. Let (X, I) be a u.c.s. Then J induces a topology on $U(X)$ if and only if, for each $F \in I, P_{1} F$ contains an α-bounded subset of X.

Proof. First, note that $\Phi \rightarrow 0$ in $U(X)$ if and only if $\Phi\left(P_{1} F\right) \rightarrow 0$ in R for each $F \in I$.

Assume that $(U(X), J)$ is topological, and let $F \in I$. Let W_{0} be an open neighborhood of ${ }^{\circ} 0$ in R not containing l, and let U_{0} be a neighborhood of 0 in $U(X)$, and $F_{0} \in F$ such that $U_{0}\left(P_{1} F_{0}\right) \subset W_{0}$. Given a uniform cover S of X, let $(B, W)=\{f \in U(X): f(B) \subset W\}$, where $B \in S$, and W is an open neighborhood of 0 in R. Let ψ be the filter on $U(X)$ generated by sets of the form (B, W) as described above. Then $\psi \rightarrow 0$ in $U(X)$, and there exists a set of the form $U_{1}=\left(K, W_{1}\right) \subset U_{0}$, where $K=U\left\{B_{i}: i=1, \ldots, n\right\}$, each $B_{i} \in S$, and W_{1} is an open neighborhood of 0 in R. If $x \in P_{1} F_{0}-\mathrm{cl}_{Y} K$, then by Theorem 2.5 there exists $f \in U(X)$ such that $f(x)=1$ and $f\left(\mathrm{cl}_{Y} K\right)=\{0\}$. Thus $f \in U_{1} \subset U_{0}$, which contradicts the assertion that $U_{0}\left(P_{1} F_{0}\right) \subset W_{0}$. Therefore, $P_{1} F_{0}$ is α-bounded.

Conversely, let $\Phi \rightarrow 0$ in $U(X)$, let $F \in I$, and assume that there is $F_{0} \in F$ such that $P_{1} F_{0}$ is α-bounded. Let W be any closed neighborhood of 0 in R. For each $G \in I$, there are sets $G \in G$ and $A_{\mathbf{G}} \in \Phi$ such that $A_{\mathbf{G}}\left(P_{1} G\right) \subset W$. Let S denote the collection of all such sets $P_{1} G$. Then S is a uniform covering of X. Using the fact that $P_{1} F_{0}$ is α-bounded, it follows that there is some $A_{\Phi} \in \Phi$ such that
$A_{\Phi}\left(P_{1} F_{0}\right) \subset W$. Since Φ is arbitrary, $\cap\{\Phi: \Phi \rightarrow 0\}$ also converges to 0 in $U(X)$. Thus $U(X)$ is a pretopology (or principal convergence space). But $U(X)$ is also a convergence group (it is easy to verify that the group operations on $U(X)$ are continuous). It is shown in [3] (Satz 5, III.3, p. 294) that a pretopological convergence group is a topology, and the proof is complete.

If (X, I) is a u.c.s. and $\Delta^{*} \in I$, then each uniform cover of X contains X. Consequently, X is α-bounded, and we obtain the following corollary.

COROLLARY 4.4. Let (X, I) be a u.c.s. such that $\Delta^{*} \in I$ (that is, a u.c.s. in the sense of Cook and Fischer, [2]). Then $(U(X), J)$ is topological.

We conclude with an example which, along with Theorem 3.1, shows that u-embedded spaces can be non-topological.

EXAMPLE 4.5. Let $X=R$, and for each $\delta>0$ let $F_{\delta}=\{(x, x): x<\delta\}$. Let F be the filter on $X \times X$ generated by $\left\{F_{\delta}: \delta>0\right\}$. Let I be the u.c.s. on X generated by $\left\{F, x^{\circ} x x^{\circ}: x \in X\right\}$. Since $P_{1} F$ contains no α-bounded subset, Theorem 4.3 implies that $(U(X), J)$ is non-topological.

References

[1] E, Binz, "Bemerkungen zu limitierten Funktionenalgebren", Math. Ann. 175 (1968), 169-184.
[2] C.H. Cook and H.R. Fischer, "Uniform convergence structures", Math. Ann. 173 (1967), 290-306.
[3] H.R. Fischer, "Limesräume", Math. Ann. 137 (1959), 269-303.
[4] R.J. Gazik and D.C. Kent, "Regular completions of Cauchy spaces via function algebras", BuZl. Austral. Math. Soc. 11 (1974), 77-88.
[5] Darrel! C. Kent and Gary D. Richardson, "The decomposition series of a convergence space", Czechoslovak J. Math. 23 (1973), 437-446.
[6] Oswald Wyler, "Filter space monads, regularity, completions", Carnegie-Mellon University Report 73-1 (1973). Proceedings of the Second Pittsburgh Intermational Conference on General Topology (to appear).

Department of Mathematics,
Arkansas State University,
State University,
Arkansas, USA;
Department of Pure and Applied Mathematics,
Washington State University,
Pullman,
Washington, USA;
Department of Mathematics,
East Carolina University,
Greenville,
North Carolina, USA.

