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Regular completions of

uniform convergence spaces

R.J. Gazik, D.C. Kent, and G.D. Richardson

A regular completion with universal property is obtained for each

member of the class of M-embedded uniform convergence spaces, a

class which includes the Hausdorff uniform spaces. This

completion is obtained by embedding each M-embedded uniform

convergence space (X, I) into the dual space of a complete

function algebra composed of the uniformly continuous functions

from {X, I) into the rea l l i ne .

1 . Introduction

Let (X, I) be a uniform convergence space as defined by Cook and

Fischer in [2], and let U(X) be the set of all uniformly continuous

functions from (X, I) into (R, U) , where R denotes the real line and

U the usual uniformity. We wish to assign to U(X) the coarsest uniform

convergence structure J relative to which the evaluation map

(i) : [U(X), j) x (X, I) •* (i?, U) , defined by a)(/, a;) = f(x) , is uniformly

continuous. Unfortunately, U will not exist in the class of uniform

convergence spaces as that concept is defined in [2]. However Wyler, [6],

has introduced an axiom system for uniform convergence spaces which is

precisely suited to our needs. Wyler's definition of a uniform convergence

space, which is given in the next paragraph, will be used throughout the

remainder of this paper.

A uniform convergence apace (X, I) is a set X along with a set I

of filters on X x X which satisfy the following conditions:
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(1) x'xx' 6 / for each x € X ;

(2) $~1 € I whenever <b £ I ;

(3) H ! E I whenever $, 41 € I ;

(It) ¥ € J whenever $ 5 ¥ and $ € I ;

(5) $ o V € J whenever $, ¥ and the composition $ ° V is a

filter.

Compositions and inverses of filters are defined in the natural way.

For any point x in a set X , x' denotes the fixed ultrafilter

generated by {x} . Let A = {(x, x) : x € X) be the diagonal of X x X ,

and let A* be the filter on X x X consisting of all oversets of A .

The definition of "uniform convergence space" given above differs from that

of [2] only in Condition (l) which, in [2], is replaced by the stronger

condition: A" € J . Virtually all of the theorems of [2] appear to be

valid using the weaker Aiom system of Wyler.

The abbreviation "u.c.s." will be used both for "uniform convergence

space" and "uniform convergence structure"; it should be obvious from the

context which meaning is intended.

For any convergence space X , let "cly" *>e the closure operator for

X , and \X the topologioal modification of X . A u.c.s. {X, I) is

said to be regular if clv v$ € I whenever $ € I . The goal of this

paper is to obtain a regular completion for a class of u.c.s.'s. A summary

of our results follows.

Let (X, I) be a u.c.s., U(X) the set of all uniformly continuous

functions from {X, I) to (i?, U) , and J the coarsest u.c.s. on U(X)

relative to which the evaluation map u (defined above) is uniformly

continuous. In Section 2, we show that [U(X), J) is a complete u.c.s.

Let [u (X), d) be the dual space obtained by a repetition of the

previous construction; for notational convenience, we will sometimes use

the symbol "D" for dual space, especially in conjunction with the closure

operator. If the natural map i : (X, I) •*• [u{X), <T~) , defined by

i(x)(f) = fix) for all / € V(X) , is a uniform embedding, then [X, I)

is said to be u-erribedded. The u-embedded spaces form a productive and
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hereditary class of u . c . s . ' s which include, as a subclass, the Hausdorff

uniform spaces. Some other interest ing facts about th i s class are:

(a) M-embedded spaces are regular and Hausdorff;

(b) [U(X), j) i s always M-embedded;

(c) a to t a l ly bounded M-embedded space i s a uniform space;

(d) a M-embedded space can be non-topological.

A regular completion of a M-embedded space (X, I) i s obtained by

forming X* = c l , iX ; the latter- se t , being a closed subspace of the

complete space D , i s complete. This completion is shown to have the

universal property re la t ive to the class of M-embedded u . c . s . ' s , and is

equivalent to the usual uniform completion i f (X, I) i s a Hausdorff

uniform space. Consequently, the standard completion of a Hausdorff

uniform space is unique in the larger class of a l l M-embedded u . c . s . ' s .

I t should be noted that in the completion described above, iX i s

dense in X* re la t ive to XX* , not re la t ive to X* i t s e l f . This does

not appear to be a serious flaw, and we conjecture that cl_iX = cl,_£X

for any M-embedded space (X, I) . A similar completion theory for Cauchy

spaces has been obtained by two of the authors (see [4 ] ) .

One of the more interest ing features of the construction described

above i s that i t yields a natural external completion of a Hausdorff

uniform space which could not be obtained without introducing, as an

intermediate s tep, the concept of a uniform convergence space.

2. The space U{X)

Throughout this section, it will be assumed that (X, I) is an

arbitrary u.c.s. For basic definitions and other information about

u.c.s.'s not already provided in the Introduction, see [2].

If A c U(x) x u(X) and F c x x X , then A(F) denotes the set

{(/(*), g(y)) •• (/, 9) * A, (X, y) € F} . If $ is a filter on

U(X) x U(X) , F a filter on X * X , then *(F) designates the filter

generated by {A(F) : A € $, F € F} . Let J be the collection of filters

on V(X) x V(X) defined by: $ £ J if and only if, for each F € I ,

$(F) > U , where U is the usual uniformity on R .
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THEOREM 2 . 1 . (u(X), j) is a u.o.s.

Proof. Let / € U(X) and F € I . Since (/x/)F > U , ( / , / ) € J ,

and ( l ) i s established. Condition (5) can be obtained with the help of the

following inequal i ty: ($°4")(F) > $(F) o <F(FoF) , for any symmetric f i l t e r

F on X x X . The proofs for Conditions (2) , (3) , and (k) are t r i v i a l .

The following example shows that (u(X), j) may f a i l to be a u . c . s .

in the sense of [ 2 ] ,

EXAMPLE 2.2. Let X = R , and le t I be the usual u . c . s . for R .

Let A be the diagonal in U(X) x U(X) , and le t / be any member of

U{X) such that / ( 0 ) # / ( I ) . For any positive real number fe , l e t kf

be the scalar multiple of / . Note that (kf, kf) € A for a l l k > 0 ,

so i t i s clear that ' A'(U) ^ U . Thus A' If. J , and [U(X), j) i s not a

u . c . s . as defined in L21.

For any product space X x Y , we wil l use P. : X x y -»- x and

P : X x Y •*• Y as the two projection maps. If F and G are two f i l t e r s

on the same se t j the coarsest f i l t e r finer than F and G (if i t exis ts)

i s denoted by F v G .

-, THEOREM 2 . 3 . J is the coarsest u.o.s. on V(x) relative to which

the evaluation map o> is continuous.

Proof. A basic element in the product u . c . s . on (U(X), J] x (x, I)

i s of the form (P^xP^)'1® ° (P2xP2)"1F = A , where $ € J and F e J .

But (o)Xo))A = $(F) 2 U , and so to i s uniformly continuous re la t ive to

(U(X), J) . If J i s another admissible u . c . s . on U(X) , then $(F)

must be finer than U whenever $ € J and F € I , so $ 6 J and

J 2 J1 .

THEOREM 2.4. U(X) is complete.

Proof. Let G be a Cauchy f i l t e r on U(X) ; that i s , G x G € J .

For each x € X , x' xx" € J , and G(x') i s a Cauchy f i l t e r on R . Let

f(x) be the l imit of G(x') in R .

Firs t we show tha t / € U(X) . Let F € J ; then (GxG)F 2: U . If
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V € U , then l e t G € G , A € F be such that (G*G)A c V . I t suffices

to show that (f*f)A c cl^J? . Let (x, y) i A ; then

clR{G{x)) x c l ^

Since /(x) € c l ^ x ) , (/(*), f(z/)) € e l ^ V , and so f € £/(*) . .

Final ly, we show that G x f € j (that i s , C ->- F in £/(#) ) . For

F € I , V € U , there are sets G in G and F in F such that

(Cx(?)F c y . Then (Gx{/})Fc cl^ 7 follows as in the preceding

paragraph, and the proof i s complete.

Let aX toe the space consisting of the set X supplied with the weak

topology induced by the set of functions U(X) . Thus a? i s a completely

regular topological space whose topology i s coarser than the convergence

structure which I induces on X .

THEOREM 2.5. U(X) separates points and aX-olosed subsets of X .

Proof. Let A c X be aX-closed, and x € A . Then there i s a basic

open set V = fi|/T [v.) : i = 1, , n\ containing x and contained in

X - A , where V. i s a subbasic open set in R of the form [a., °°) or

(-00, i>.) . Indeed, i f / . i s replaced by -f. whenever necessary, we can

assume with no loss of generality that each V. i s of the form (a . , =°)

for i = l , . . . , n . Letting g.{x) = sup{/ . (x) -a . , o} for a l l x € X ,

we obtain that V = n|^T1(o, °°) : i = 1, . . . , n\ . Final ly , l e t g be the

p r o d u c t f u n c t i o n a-,9o ••• 9 • Tb-en 9 € U(X) , g(x) / 0 , and

g(A) = {o} , which establishes the desired result.

3. M-embedded spaces

There i s a close analogy between the function algebra C(X) with the

continuous convergence s t ruc ture , which i s studied in [7 ] , and the space

(U(.X), j) . Also, the notion of a c-embedded space, [ / ] , corresponds to

our "u-embedded space" in an obvious way. Some of the theorems of [/]

pertaining to e-embedded spaces extend without diff icul ty to w-embedded

spaces. In par t i cu la r , Theorems 3.1 and 3-2 below have proofs which are
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similar to those of Lemma 16 and Satz 21 , respectively of [ J ] ; the proofs

of the former theorems wi l l therefore be omitted.

THEOREM 3 .1 . For any u.o.s. U , I) , [U(X), j) is u-embedded.

THEOREM 3.2. (a) A product of u-embedded spaces is u-embedded.

(b) A eubspaee of a u-enibedded space is u-enbedded.

From Theorem 3.1 and Example 2 .2 , we conclude that a M-embedded space

may f a i l t o be a "uniform convergence space" according to the definition of

tha t term in [ 2 ] .

Recall the notation aX (introduced in Section 2) for the weak

topological space on the set X generated by the set of functions U(X) .

For notational convenience, l e t 1 = aX x aJC . A u . c . s . (X, I) i s said

t o be a-regular i f cl_F € I whenever F € I . An ct-regular u . c . s . i s

c lear ly regular . Also, the underlying convergence space of an a-regular

u . c . s . has the property: c l F ->- x whenever F •+ x .

THEOREM 3 .3 . A u-enbedded space (X, I) is Hausdorff and

a-regular.

Proof. The map i : X -*• 1?{X) is injective i f and only i f U(X)

separates points of X . Thus a w-embedded space X has the property

tha t aX i s Hausdorff, and hence X i s also Hausdorff.

To show that X i s a-regular, l e t F € J . Since (X, I) i s

u-embedded, i t i s sufficient to show that $(clyF) > U for a l l $ € J .

Given $ € J , l e t U be a closed entourage in U , and choose A € $ and

F € F such tha t A(F) <= U . If (x, y) € cl^F , then there is a f i l t e r

G •* (x, y) in Y such tha t F € G . For any pair ( / , g) € A ,

(fxg)& •* [f(x), g{y)} in R , and ( ^ ) G contains U . But U i s

closed, and so A (cl^f) C U . This establishes that ^(clJ7) > U .

A u . c . s . (X, I) w i l l be called a pseudo-uniformity i f F € J

whenever G € J for each u l t r a f i l t e r G > F .

THEOREM 3.4. A u-embedded space (X, I) is a pseudo-uniformity.

Proof. Let F be a f i l t e r on X x X such that G € J for each

u l t r a f i l t e r 6 2 F . Let $ be an arbi trary member of J . Since X i s
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u-embedded, i t is sufficient to show that *(F) » U . We will do this by

shoving that if A is an ul t raf i l ter on S such that A > $(F) , then

there is an ul t raf i l te r G > F such that A 2 $(G) .

Let Z = {H : H a f i l te r on X x X , A > $(H), H > F} . Z contains

F , and so is non-empty. By Zorn's Lemma, Z contains a maximal element

G . One can show by a straightforward argument that G is an u l t ra f i l te r ,

which completes the proof.

Let {X, I) and {x , I ) be arbitrary u . c . s . ' s , and

<j> : {X, I) -*• [x , I ) a uniformly continuous function. The function

^ : V[X^) •* U(X) , defined by (f^/) = / ° <f> , will be called the

transpose map of <[> . I t i s easy t o show t h a t <J> us uniformly continuous

whenever (j) i s . Let <J> : ll(X) -*• IT (x ) denote the t r anspose of ((). .

The fol lowing diagram i s e a s i l y seen t o be commutative;

We now ob ta in a completion for an a r b i t r a r y u . c . s . (X, I) . Reca l l

the no ta t ion D = u{X) for the dual space . Let X* = ci-^d-X , and assume

t h a t X* has the u . c . s . I* i n h e r i t e d from [l?(X), J2) .

THEOREM 3.5. For any u-embedded space (X, i) , the space

{X*, I*) j along with the natural injection i , is a Hausdorff,

a-regular, pseudo-uniform completion of (x, i) . If (z^, J,) is any

complete u-embedded space, and <f> : (X, I) •*• [X , I ) is uniformly

continuous, then <)> has a unique extension (f>* : (X*, I*) •*• (x.., J.) .

Proof. By assumption, i is an embedding. (X*, J*) is a closed

subspace of a complete space, and hence complete. i(X) i s dense in X*

in the weak sense mentioned in the introduction (that i s , the closure is

taken with respect to XX* rather than X* i t s e l f ) .
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To establish the universal property, first note that, since (x, , I )

is complete, [X*t J*) is uniformly isomorphic to [x., J,) under the

natural injection •£.. . Thus the diagram

X - * - I,

X* ' X*

i s commutative, where iji i s the res t r i c t ion of <$>- t o X* , and i. i s

a uniform isomorphism. We obtain the desired extension by se t t ing

<J>* = •£ ° if/ . The uniqueness of the extension is c lear .

4. Uniform and topological n-embedded spaces

I t was shown in Example 2.2 that a M-embedded space can f a i l to

sat isfy the most basic property of a uniform space. In th i s section we

show that a l l Hausdorff uniform spaces are M-embedded, and that a l l

t o t a l l y bounded M-embedded spaces are uniform. We also obtain a

characterizat ion of those u . c . s . ' s (X, I) for which the underlying

convergence s t ructure of [U(X), j) i s topological. This leads to an

example of a non-topological M-embedded space.

THEOREM 4 . 1 . A Hausdorff uniform space is u-ewbedded.

Proof. Let (X, W) be a Hausdorff uniform space. I t i s clear that

U(X) separates po in t s , and so i : X •* u(X) i s in jec t ive . Since i i s

always uniformly continuous, i t remains to show that i i s uniformly

continuous. Assume the contrary; that i s , there i s a f i l t e r F on X x X

such that ( ixi)F € cT , but F ̂  W . Then among the pseudo-metrics that

generate W , there i s a pseudo-metric d and a posit ive rea l number e

such that V = i(x, y) : d(x, y) < E} {: F . For each F € F , choose an

element (x_, £/„) 6 F - V . Let G denote the f i l t e r associated with the

net [xp, yp)F^ • Then G > F , and so (ixi)G (. J2 .
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For each F € F , define f : X •*• R as follows: fp(z) = d[x , z]

for a l l a € X . Then fF{xp) = 0 , and fp[yF) > e . I f

V6 = {(x, y) : d(x, y) < 6} , then

[fF*fF)vs c {( r , s) € J? x S : | r _ s | < 6} ,

and so / „ € U(X) . Moreover, i f $ denotes the f i l t e r associated with

the net [f , f F ) F ^ » then * € J . Hence $(G) 2 U , which contradicts

\fF^p)-fF{yF) | £ e , for each F € F .

Recall that a u . c . s . i s totally bounded i f each u l t r a f i l t e r i s Cauchy.

THEOREM 4.2. A Hausdorff, totally bounded u.o.s. is u-embedded if

and only if it ie a uniformity.

Proof. Let (X, I) be a Hausdorff, t o t a l l y bounded u . c . s . which is

u-embedded. Let G be an u l t r a f i l t e r finer than W = fl{F : F € 1} and

le t Ĝ  = (ixi)G . Assume G f I ; then G1 £ J2 .

Let X' = cl iX be a subspace of IT{X) ; we wi l l f i r s t show that

X' i s compact. Let K be an u l t r a f i l t e r containing X' . By Lemma 2 . 1 ,

[5 ] , there i s an u l t r a f i l t e r M containing iX such that K > cl_M .

Since iX i s t o t a l ly bounded and u{X) i s complete, M converges to an

element of X' . But D i s regular , and so K converges to the same

element. Thus X' i s compact; indeed, i t i s easy to see that X' = X* ,

the completion space of Theorem 3.5.

From the resul ts of the preceding paragraph, there are elements

r , 8 € X' such that G1 •* (r, e) in X' x X' . Since G1 f J2 , r * 8 .

(For otherwise, P G x r' € «T and r" x p G € J 2 , which would imply

Ĝ  > (P1G1xr-) o (r 'xp G ) € J 2 .) Since r * 8 , there i s g € £/(X1)

such that g(r) * g(e) ; l e t / € y(AT) be given by f = g ° i . Then,

(fxf)G 2 n{(/x/)F : F € 1} 2 U , which contradicts the previous assertion

that g{?) ? g{8) . Thus G € I , and since J i s a pseudo-uniformity by

Theorem 3.U, i t follows that W € I . Thus I i s generated by a single
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f i l t e r , and by Theorem 6, [2] , I is a uniformity.

Let {X, I) be a u . c . s . , S a cover of X . S will be called a

vniform cover i f for each F € I , there is A € F such that PA € S .

(Recall that P., is the first projection map.) A subset A of X is

said to be a-bounded i f each uniform cover of X contains a finite

subcollection [A.) such that A <z cl^flM.) .

THEOREM 4.3 . Let (X, I) be a u.c.e. Then J induces a topology on

U(X) if and only if, for each F € I a P.. F contains an a-bounded subset

of X .

Proof. F i r s t , note that 4> ->• 0 in U(X) i f and only i f fc^F) •* 0

in R for each F € J .

Assume tha t [u(X), j) i s topological, and l e t F € J . Let (/ be

an open neighborhood of 0 in i? not containing 1 , and l e t UQ be a

neighborhood of 0 in U(X) , and F € F such that U [P F ) c W .

Given a uniform cover S of X , l e t (B, W) = {/ € U(X) : f{B) c W) ,

where B € S , and W i s an open neighborhood of 0 in R . Let i|> be

the f i l t e r on U(X) generated by sets of the form (5, W) as described

above. Then i|> •+• 0 in U{X) , and there exists a set of the form

U = (K, W ) c £/ , where K = Ufa. : i = 1, . . . , « } , each B. ( S , and

W i s an open neighborhood of 0 in R . I f x € P F - cl^f , then by

Theorem 2.5 there exis ts / € U(X) such that f(x) = 1 and

/(cl^X) = {0} . Thus / € U c U , which contradicts the assertion that

! / ( ? ? ) c y . Therefore, P F i s a-bounded.

Conversely, l e t $ -»• 0 in tf(JT) , l e t F € / , and assume that there

i s f € F such that P-i-f,-. i s a-bounded. Let W be any closed neigh-

borhood of 0 in R . For each G € I , there are sets 5 E G and

A~ € $ such tha t i4-(P (?) e 1/ . Let S denote the collection of a l l such

se ts P G . Then S i s a uniform covering of X . Using the fact that

P-.F i s a-bounded, i t follows that there i s some A^ € $ such that
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A.[PF) C W . Since $ i s a rb i t rary , D{$ : $ •* 0} also converges to 0

in U(X) . Thus U(X) i s a pretopology (or principal convergence space).

But U{X) i s also a convergence group ( i t i s easy to verify that the group

operations on U(X) are continuous). I t i s shown in [3] (Satz 5> HI-3»

p. 29*0 that a pretopological convergence group is a topology, and the

proof i s complete.

If (X, I) i s a u . c . s . and A' € I , then each uniform cover of X

contains X . Consequently, X i s a-bounded, and we obtain the following

corollary.

COROLLARY 4.4. Let (X, I) be a u.c.s. such that A' € J (that is,

a u.c.s. in the sense of Cook and Fischer, [Z]J. Then [u(X), j) is

topotogical.

We conclude with an example which, along with Theorem 3 .1 , shows that

w-embedded spaces can be non-topological.

EXAMPLE 4 .5 . Let X = B , and for each 6 > 0 l e t

F& = {(x, x) : x < 6} . Let F be the f i l t e r on X x x generated by

: 6 > O} . Let I be the u . c . s . on X generated by

x'xx" : x € X} . Since P..F contains no ex-

it.3 implies that [u(X), j) i s non-topological.

{F, x'xx" : x € X} . Since P.. F contains no a-bounded subset, Theorem
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