
Proceedings of the Edinburgh Mathematical Society: page 1 of 15

doi:10.1017/S001309152400018X

ANNIHILATORS AND DECOMPOSITIONS OF
SINGULARITY CATEGORIES
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1. Introduction

Hilbert’s syzygy theorem is one of the most beautiful theorems in commutative algebra
and algebraic geometry. It is considered to be the introduction of homological methods
into this area. In today’s language, Hilbert’s theorem states that over a polynomial ring
with n variables over a field, any finitely generated module is quasi-isomorphic to a
perfect complex of length at most n. During the first half of the twentieth century, the
goal was to answer this question for other rings: over which rings can we say that any
finitely generated module is quasi-isomorphic to a perfect complex? And during the second
half of the century, with the language and the rising importance of derived categories,
the question became: over which rings can we say that any bounded complex of finitely
generated modules is quasi-isomorphic to a perfect complex? This question motivates the
definition of the singularity category (or the stabilized derived category) of a Noetherian
ring which is defined as the Verdier quotient of the bounded derived category of finitely
generated modules by the (full) subcategory of perfect complexes. Note that this quotient
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vanishes if and only if every bounded complex of finitely generated modules is quasi-
isomorphic to a perfect complex. The name singularity category suggests that there is a
geometric connection. Indeed, due to the work of Auslander, Buchsbaum and Serre, we
know that the singularity category Dsg(R) of a commutative Noetherian ring R vanishes
if and only if R is regular. Thus, it provides a measure of the singularities of the affine
space Spec(R).
The goal of this paper is to further our understanding of the structure of the singularity

category of a commutative Noetherian ring R. Our approach uses the annihilators of the
singularity category and our main observation is the following: for any x, y ∈ R, we have

C(xy) = smd(C(x) ∗ C(y)). (1.0.1)

Let us explain the notation. For each r ∈ R we denote by C(r) the subcategory of

Dsg(R) consisting of objects X such that the morphism X
r−→ X in Dsg(R) given by

the multiplication by r is zero. The subcategory C(x) ∗ C(y) consists of all objects E
that fit into an exact triangle X → E → Y → X[1] in Dsg(R) with X ∈ C(x) and
Y ∈ C(y). Finally, by smd(C(x)∗C(y)), we denote the subcategory consisting of all direct
summands of objects belonging to C(x) ∗C(y). This observation is motivated by a result
of Dugas and Leuschke [8] who proved the special case C(zm+n) = smd(C(zm) ∗ C(zn))
where R = S/(f + zk) is the k -fold branched cover of a hypersurface singularity S/(f).
We note that if C(xy) = Dsg(R), then (1.0.1) gives a decomposition of the singularity
category. This is the first part of our main theorem. In fact, using the associativity of the
∗ operator, we have the following.

Theorem A. Let x1, . . . , xn be elements of a commutative Noetherian ring R such
that the product x1 · · ·xn belongs to annDsg(R). Then

Dsg(R) = smd(C(x1) ∗ · · · ∗ C(xn)).

The second part of our main theorem concerns the dimension of the singularity category
of a commutative Noetherian ring. Recall that the (Rouquier) dimension dim T of a
triangulated category T is an invariant which measures how much it costs to build it
from a single object using the “free” operations of finite direct sums, direct summands
and shift and the cone operation which costs “1 unit” each time it is applied.

Theorem B. Let x1, . . . , xn be elements of a commutative Noetherian ring R such
that the product x1 · · ·xn belongs to annDsg(R). If no xi is a unit or a zerodivisor, then
there is an inequality:

dimDsg(R) ≤
n∑

i=1

dimDsg(R/xiR) + n− 1.

In these theorems, annDsg(R) is the annihilator of the singularity category which is
defined as the ideal of R consisting of elements r such that C(r) = Dsg(R). We prove
these theorems in § 2 after providing the necessary background and preliminaries. It is
worth comparing them with similar results shown in [10, 15].
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In § 3, we consider the case of a sequence elements. After proving a weaker version of
Theorem A, we prove the following.

Theorem C. Let x = x1, . . . , xn a regular sequence on R such that
x
m1
1 , . . . , xmn

n ∈ annDsg(R) for some positive integers m1, . . . ,mn. Assume that
a1, · · · , an are non-negative integers such that x

a1
1 · · ·xan

n ∈ annDsg(R). Put ω =

m1 · · ·mn

(
a1
m1

+ · · ·+ an
mn

)
. Then, we have

dimDsg(R) ≤ ω (dimDsg(R/xR) + 1)− 1.

In particular, dimDsg(R) ≤ m (dimDsg(R/xR) + 1)− 1, where m = m1 · · ·mn.

We dedicate § 4 to examples and applications of these theorems. We compute several
examples and discuss the case of isolated singularitie s: When dimDsg(R) is finite, the
vanishing locus of annDsg(R) is the singular locus of R. In particular, if (R,m) is a
local ring with an isolated singularity for which dimDsg(R) <∞, then annDsg(R) is m-
primary. In this case, for any x ∈ m, we have xn ∈ annDsg(R) for some positive integer
n. If we define α(x) = min{n | xn ∈ annDsg(R)}, then we have the following corollary.

Corollary D. Let (R,m) be a commutative Noetherian local ring with an isolated
singularity. If dimDsg(R) <∞, then

dimDsg(R) ≤ inf{α(x)(dimDsg(R/xR) + 1)− 1},

where x runs over the non-zerodivisors in m. In particular, if dimDsg(R/xR) = 0 for
some non-zerodivisor x ∈ m, then dimDsg(R) ≤ α(x)− 1.

2. Proof of the main theorem

In this section, we introduce and prove preliminaries about the subcategories which
appear in our main observation 1.0.1. Let us start with the conventions and the definitions
that we will use.

Convention 2.1. Throughout the rest of this section, let R be a commutative
Noetherian ring. Denote by modR the category of finitely generated R-modules. Denote
by Db(R) the bounded derived category of modR. Let Dsg(R) stand for the singularity cat-
egory of R, which is by definition the Verdier quotient of Db(R) by the perfect complexes.
We assume that all R-modules are finitely generated and all subcategories are strictly full.
We may omit subscripts/superscripts unless there is a danger of confusion.

Definition 2.2.

(1) For an element x ∈ R, we denote by C(x) the subcategory of Dsg(R) consisting of

objects X such that the morphism X
x−→ X in Dsg(R) given by the multiplication by

x is zero. Note that C(x) is closed under finite direct sums, direct summands and
shifts.
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(2) Let A be an additive category. For a subcategory X of A, we denote by smdA X the
subcategory of A consisting of direct summands of objects in X .

(3) Let T be a triangulated category. For subcategories X ,Y of T , we denote by X ∗Y the
subcategory of T consisting of objects E ∈ T such that there exists an exact triangle
X → E → Y → X[1] in T with X ∈ X and Y ∈ Y. Using the octahedral axiom,
one easily sees that −∗− is associative: the equality (X ∗Y)∗Z = X ∗ (Y ∗Z) holds
for subcategories X ,Y,Z of T . Hence there is no confusion in writing X1 ∗ · · · ∗ Xn

for subcategories X1, . . . ,Xn of T .
(4) For a sequence x = x1, . . . , xn of elements of R, we denote by K(x) the Koszul

complex of x over R.

Remark 2.3. Let T ∈ Db(R). In general, taking derived tensor product T ⊗L
R − does

not preserve an isomorphism in Dsg(R), but it does if T is isomorphic to a perfect complex.

To be precise, let P be a perfect complex over R. Let (X
s←− Z

f−→ Y ) be a morphism in
Dsg(R), that is, s and f are morphisms in Db(R) such that the mapping cone cone(s) of

s is isomorphic to a perfect complex. Then (P ⊗L
R X

P⊗L
Rs

←−−−− P ⊗L
R Z

P⊗L
Rf

−−−−→ P ⊗L
R Y )

is a morphism in Dsg(R), since cone(P ⊗L
R s) is isomorphic to a perfect complex. One

sees that the functor P ⊗L
R − : Db(R) → Db(R) induces a functor Dsg(R) → Dsg(R). In

particular, the implication:

X ∼= Y in Dsg(R) =⇒ K(x)⊗X ∼= K(x)⊗ Y in Dsg(R),

holds for any objects X,Y of Dsg(R) and any sequence x = x1, . . . , xn in R.

The first part of the following lemma shows us the role that the Koszul complex plays
in the rest of the section.

Lemma 2.4.

(1) Let x ∈ R. Then C(x) = smd{K(x)⊗X | X ∈ Dsg(R)}.
(2) Let x, y ∈ R. Let A → B → C → A[1] be an exact triangle in Dsg(R). If A ∈ C(x)

and C ∈ C(y), then B ∈ C(xy).

Proof.

(1) The chain map K(x)
x−→ K(x) given by multiplication by x is null-homotopic by

[3, Proposition 1.6.5(a)], which shows the inclusion (⊇). To show the inclusion (⊆),
pick an object Y ∈ C(x). There is an exact triangle R

x−→ R → K(x) → R[1] in
Db(R). Tensoring the complex Y, we get an exact triangle:

Y
x−→ Y → K(x)⊗ Y → Y [1], (2.4.1)

in Db(R). Since (Y
x−→ Y ) = 0 in Dsg(R), the image of (2.4.1) in Dsg(R) yields an

isomorphism:

K(x)⊗ Y ∼= Y ⊕ Y [1], (2.4.2)

in Dsg(R).
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(2) The argument given in [10, Remark 2.6] shows the assertion.

�

Before proving our main observation, we need one more technical lemma. This lemma
is standard and a proof can be found in [2, Lemma 2.2.1].

Lemma 2.5. Let T be a triangulated category. Let X ,Y be subcategories of T . Then,
there are equalities:

smd((smdX ) ∗ Y) = smd(X ∗ Y) = smd(X ∗ (smdY)).

Now we are ready to prove our main observation. We note once again that this
observation works in the generality of all commutative Noetherian rings.

Proposition 2.6. Let x1, . . . , xn ∈ R. Then there is an equality

C(x1 · · ·xn) = smd(C(x1) ∗ · · · ∗ C(xn)).

Proof. In view of Lemma 2.5, it suffices to show that C(xy) = smd(C(x) ∗ C(y)) for
x, y ∈ R. Indeed, if we have done it and if C(x1 · · ·xn−1) = smd(C(x1) ∗ · · · ∗ C(xn−1)),
then we will have:

C(x1 · · ·xn) = C((x1 · · ·xn−1)xn) = smd(C(x1 · · ·xn−1) ∗ C(xn))

= smd(smd(C(x1) ∗ · · · ∗ C(xn−1)) ∗ C(xn)) = smd(C(x1) ∗ · · · ∗ C(xn−1) ∗ C(xn)).

Let us show the inclusion C(xy) ⊆ smd(C(x) ∗ C(y)). Pick an object A ∈ C(xy).
Applying the octahedral axiom, we get a commutative diagram:

A
x �� A ��

y

��

K(x) ⊗ A ��

��

A[1]

A
xy

0
��

��

A �� B ��

��

A[1]

��
A

y ��

��

A ��

��

K(y) ⊗ A �� A[1]

��
K(x) ⊗ A �� B �� K(y) ⊗ A �� (K(x) ⊗ A)[1]

in Dsg(R) whose rows are exact triangles. The second row implies B ∼= A⊕A[1], while the
bottom row shows B ∈ C(x)∗C(y) by Lemma 2.4(1). Therefore, A belongs to smd(C(x)∗
C(y)).
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Let us show the inclusion C(xy) ⊇ smd(C(x) ∗ C(y)). Pick A ∈ smd(C(x) ∗ C(y)).
Then A ⊕ B ∈ C(x) ∗ C(y) for some B ∈ Dsg(R), and there exists an exact triangle
C → A ⊕ B → D → C[1] in Dsg(R) such that C ∈ C(x) and D ∈ C(y). Lemma 2.4(2)
says that A⊕B is in C(xy), and so is its direct summand A. �

We are interested in the situation where the left hand side of the equality in the
preceding proposition is the entire singularity category. That is, we would like to consider
the case where for any object in the bounded derived category, multiplication by x1 · · ·xn

factors through a perfect complex. Let us make this more precise and introduce notation
with the following definition.

Definition 2.7. We introduce two kinds of annihilators as follows.

(1) The annihilator of an object X ∈ Dsg(R) is defined by:

annDsg(R) X = {a ∈ R | (X a−→ X) = 0 in Dsg(R)}
= {a ∈ R | X ∈ C(a)} = annR(EndDsg(R)(X)).

(2) The annihilator annDsg(R) of the category Dsg(R) is defined by:

annDsg(R) = {a ∈ R | (X a−→ X) = 0 for all X ∈ Dsg(R)}

= {a ∈ R | C(a) = Dsg(R)} =
⋂

X∈Dsg(R)

annDsg(R)X.

Note that both of the annihilators annDsg(R)X and annDsg(R) are ideals of R.

Now we recall the definition of the dimension of a triangulated category.

Definition 2.8. Let T be a triangulated category.

(1) Let X be a subcategory of T . We denote by 〈X 〉 the additive closure:

add{X[i] | X ∈ X , i ∈ Z},

in T , that is, the smallest subcategory of T containing X and closed under finite
direct sums, direct summands and shifts. We set 〈X 〉T0 = 0 and define 〈X 〉Tn =
〈〈X 〉Tn−1 ∗〈X 〉〉 by induction for any n ≥ 1. Note that 〈X 〉1 = 〈X 〉. When X consists
of a single object T, we simply write 〈T 〉n instead of 〈X 〉n.

(2) The (Rouquier) dimension of T is defined by:

dim T = inf{n ≥ 0 | 〈G〉n+1 = T for some G ∈ T }.

We are now ready to give the main application of our main observation.
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Theorem 2.9. Let x1, . . . , xn be elements of R such that the product x1 · · ·xn belongs
to annDsg(R). Then

Dsg(R) = smd(C(x1) ∗ · · · ∗ C(xn)).

If no xi is a unit or a zerodivisor, then there is an inequality:

dimDsg(R) ≤
n∑

i=1

dimDsg(R/xiR) + n− 1.

Proof. It immediately follows from Proposition 2.6 that: Dsg(R) = smd(C(x1) ∗ · · · ∗
C(xn)). Let us show the dimension inequality. Since each xi is a non-unit, R/xiR is not a
zero ring. We may assume dimDsg(R/xiR) =: di <∞ for each i. There exists an object

Gi ∈ Dsg(R/xiR) such that Dsg(R/xiR) = 〈Gi〉
Dsg(R/xiR)

di+1 . Since xi is a non-zerodivisor,

we have

C(xi) = smd{K(xi)⊗X | X ∈ Dsg(R)} = smd{R/xiR⊗L
R X | X ∈ Dsg(R)},

by Lemma 2.4(1), and

R/xiR⊗L
R X ∈ Dsg(R/xiR) = 〈Gi〉

Dsg(R/xiR)

di+1 . (2.9.1)

As a perfect R/xiR-complex is quasi-isomorphic to a perfect R-complex, the natural
surjection R → R/xiR induces an exact functor Dsg(R/xiR) → Dsg(R). Applying this

functor to (2.9.1), we observe that there is an inclusion C(xi) ⊆ 〈Gi〉
Dsg(R)

di+1 . It follows

that:

Dsg(R) = smd(C(x1) ∗ · · · ∗ C(xn)) ⊆ smd(〈G1〉d1+1 ∗ · · · ∗ 〈Gn〉dn+1)

⊆ 〈G1 ⊕ · · · ⊕Gn〉(d1+1)+···+(dn+1) ⊆ Dsg(R).

Hence the equality Dsg(R) = 〈G1 ⊕ · · · ⊕ Gn〉(d1+···+dn)+n holds, which yields the
inequality dimDsg(R) ≤ (d1 + · · ·+ dn) + n− 1. �

We should compare the above theorem with [10, Theorem 1.1 and Corollary 2.12],
which have similar flavours.

3. The case of a sequence of elements

In the previous section, we considered the full subcategory of objects in the singularity
category of a commutative Noetherian ring that are annihilated by a given ring element.
In this section, we are going to further investigate such subcategories by considering their
intersections. That is, we will consider the full subcategory of objects that are annihilated
by a given sequence of ring elements.
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Definition 3.1.

(1) For a sequence x = x1, . . . , xn of elements of R, set C(x) =
⋂n

i=1 C(xi). Namely,

C(x) is the subcategory of Dsg(R) consisting of all objects X with (X
xi−→ X) = 0 in

Dsg(R) for all i.
(2) For an ideal I of R, we set C(I) =

⋂
a∈I C(a). This is the subcategory of Dsg(R)

consisting of those objects X which satisfy (X
a−→ X) = 0 in Dsg(R) for all a ∈ I.

Note that for any ideals I, J of R, if I ⊆ J , then C(I) ⊇ C(J).

The second assertion of the following proposition is a generalization of Lemma 2.4(1).

Proposition 3.2.

(1) Let I be an ideal of R. Let x = x1, . . . , xn be a system of generators of I. Then
C(I) = C(x). In particular, the implication:

(a) = (b) =⇒ C(a) = C(b),

holds for sequences of elements a = a1, . . . , ar and b = b1, . . . , bs in R.
(2) Let x = x1, . . . , xn be a sequence of elements of R. Then every object C ∈ C(x)

satisfies:

K(x)⊗ C ∼=
n⊕

i=0

(C[i])⊕(
n
i),

in Dsg(R). In particular, it holds that C(x) = smd{K(x)⊗X | X ∈ Dsg(R)}.

Proof.

(1) It is clear that C(I) is contained in C(x). To show the opposite inclusion, let X ∈
C(x). Take any a ∈ I. Then a =

∑n
i=1 aixi for some a1, . . . , an ∈ R. Note that

x1, . . . , xn are in annDsg(R)X. Since annDsg(R)X is an ideal of R, the element a is
also in annDsg(R)X. Hence X belongs to C(I).

(2) The last assertion follows from the first assertion and the fact by Lemma 2.4(1)
that:

K(x)⊗X ∼= K(xi)⊗ (K(x1, . . . , xi−1, xi+1, . . . , xn)⊗X) ∈ C(xi),

for each 1 ≤ i ≤ n. To prove the first assertion, we use induction on n. The case
n =0 is obvious. Let n > 0. The induction hypothesis gives rise to an isomorphism

K(x1, . . . , xn−1) ⊗ C ∼=
⊕n−1

i=0 C[i]⊕(
n−1
i ) in Dsg(R). Tensoring with K(xn), we get

isomorphisms:

K(x)⊗ C ∼= K(xn)⊗ (K(x1, . . . , xn−1)⊗ C) ∼= K(xn)⊗ (
⊕n−1

i=0 C[i]⊕(
n−1
i ))

∼=
⊕n−1

i=0 (K(xn)⊗ C)[i]⊕(
n−1
i ) ∼=

⊕n−1
i=0 (C ⊕ C[1])[i]⊕(

n−1
i )
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∼=
⊕n−1

i=0 (C[i]⊕ C[i+ 1])⊕(
n−1
i ) ∼=

⊕n−1
i=0 (C[i]⊕(

n−1
i ) ⊕ C[i+ 1]⊕(

n−1
i ))

∼= C ⊕ (
⊕n−1

i=1 C[i]⊕(
n−1
i ))⊕ (

⊕n−2
i=0 C[i+ 1](

n−1
i ))⊕ C[n]

∼= C ⊕
⊕n−1

i=1 C[i]⊕(
n−1
i )+(n−1

i−1) ⊕ C[n] ∼=
⊕n

i=0(C[i])⊕(
n
i),

where the fourth isomorphism follows from (2.4.2), and the last isomorphism holds
since

(
n−1
i

)
+
(
n−1
i−1

)
=

(
n
i

)
. �

The following proposition is a weaker version of Proposition 2.6 for this setting.

Proposition 3.3. For any elements x1, . . . , xn, y, z ∈ R with n ≥ 0 one has:

C(x1, . . . , xn, yz) ⊆ smd(C(x1, . . . , xn, y) ∗ C(x1, . . . , xn, z)).

Proof. Put x = x1, . . . , xn. Let X ∈ C(x, yz). Applying the octahedral axiom, we get
a commutative diagram:

R
y �� R ��

z

��

K(y) ��

��

R[1]

R
yz ��

��

R �� K(yz) ��

��

R[1]

��
R

z ��

��

R ��

��

K(z) �� R[1]

��
K(y) �� K(yz) �� K(z) �� K(y)[1]

in Db(R) whose rows are exact triangles. Tensoring K(x)⊗X with the bottom row induces
an exact triangle:

K(x, y)⊗X → K(x, yz)⊗X → K(x, z)⊗X → (K(x, y)⊗X)[1]. (3.3.1)

It follows from Proposition 3.2(2) that X is a direct summand in Dsg(R) of K(x, yz)⊗X,
and the latter object belongs to C(x, y)∗C(x, z) by (3.3.1). Therefore, X is in smd(C(x, y)∗
C(x, z)). �

The following proposition is an immediate consequence of Proposition 3.3.

Lemma 3.4. Let x1, . . . , xn ∈ R and assume that m1, . . . ,mn are non-negative
integers. Then, we have

C(x
m1
1 , . . . , xmn

n ) ⊆ 〈C(x1, . . . , xn)〉m,
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where m = m1 · · ·mn.

Proof. If mi = 0 for some 1 ≤ i ≤ n, then C(x
m1
1 , . . . , xmn

n ) =
⋂n

j=1 C(x
mj
j ) ⊆

C(x
mi
i ) = C(1) = 0, and the assertion obviously holds. Assume that m1, . . . ,mn are all

positive. By induction on mn, it follows from Proposition 3.3 and Lemma 2.5 that we
should have C(x

m1
1 , . . . , xmn

n ) ⊆ 〈C(xm1
1 , . . . , x

mn−1
n−1 , xn)〉mn . Then, the proof is finished

by induction on n. �

As an application of Lemma 3.4, we get the following.

Lemma 3.5. Let x1, . . . , xn ∈ R and assume that m1, . . . ,mn are such that

x
m1
1 , . . . , xmn

n ∈ annDsg(R). Let m = m1 · · ·mn and put ωi =
m

mi
ai where ai is a

non-negative integer and 1 ≤ i ≤ n. Then, we have

C(x
ai
i ) ⊆ 〈C(x1, . . . , xn)〉ωi .

Proof. Note that for any 1 ≤ j ≤ n, we have C(x
mj
j ) = Dsg(R) as x

mj
j ∈ annDsg(R).

Therefore, we have C(x
ai
i ) = C(x

m1
1 , . . . , x

mi−1
i−1 , x

ai
i , x

mi+1
i+1 , . . . , xmn

n ). Then, the result
follows from Lemma 3.4. �

Combining our results, we have the following proposition.

Proposition 3.6. Let x1, . . . , xn ∈ R and assume that a1, . . . , an are non-negative
integers. Let ω1, . . . , ωn be as in Lemma 3.5. Then, we have

C(x
a1
1 · · ·xan

n ) ⊆ 〈C(x1, . . . , xn)〉ω1+···+ωn .

In particular, if a1, . . . , an are such that x
a1
1 · · ·xan

n ∈ annDsg(R), then we have

Dsg(R) = 〈C(x1, . . . , xn)〉ω1+···+ωn .

Proof. Applying Proposition 2.6, we have C(x
a1
1 · · ·xan

n ) = smd(C(x
a1
1 )∗ · · · ∗C(xan

n )).
It follows from Lemma 3.5 that C(x

ai
i ) ⊆ 〈C(x1, . . . , xn)〉ωi for each 1 ≤ i ≤ n. Therefore,

C(x
a1
1 · · ·xan

n ) ⊆ 〈C(x1, . . . , xn)〉ω1+···+ωn . �

We are now ready to state our main theorem in this section. We should compare it
with Theorem 2.9. Indeed, the second part of the theorem can be proved by induction
using Theorem 2.9.

Theorem 3.7. Let x = x1, . . . , xn a regular sequence on R such that x
m1
1 , . . . , xmn

n ∈
annDsg(R) for some positive integers m1, . . . ,mn. Assume that a1, . . . , an are non-
negative integers such that x

a1
1 · · ·xan

n ∈ annDsg(R).

(1) There is an inequality

dimDsg(R) ≤ ω (dimDsg(R/xR) + 1)− 1,

where ω = m1 · · ·mn(
a1
m1

+ · · ·+ an
mn

).
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(2) There is an inequality

dimDsg(R) ≤ m (dimDsg(R/xR) + 1)− 1,

where m = m1 · · ·mn.

Proof. The second assertion follows from the first by letting a1 = m1 and a2 =
· · · = an = 0. In the following, we show the first assertion. The proof is similar to the
proof of Theorem 2.9; we use Proposition 3.2(2) instead of Lemma 2.4(1). Let us assume
that dimDsg(R/xR) = d < ∞. Then, there exists an object G ∈ Dsg(R/xR) such that

Dsg(R/xR) = 〈G〉Dsg(R/xR)

d+1 . Since x is a regular sequence, we have:

C(x) = smd{K(x)⊗X | X ∈ Dsg(R)} = smd{R/xR⊗L
R X | X ∈ Dsg(R)},

and

R/xR⊗L
R X ∈ Dsg(R/xR) = 〈G〉Dsg(R/xR)

d+1 .

By applying the exact functor Dsg(R/xR) → Dsg(R) induced by the natural projection

R → R/xR, we see that there is an inclusion C(x) ⊆ 〈G〉Dsg(R)

d+1 . Combining this with
Proposition 3.6, we see that Dsg(R) = 〈G〉ω(d+1) which finishes the proof. �

Remark 3.8. If we have a regular sequence x1, x2 on R of length 2 such that
x1x2, x

m1
1 , x

m2
2 ∈ annDsg(R), then Theorem 3.7 gives us:

dimDsg(R) ≤ (m1 +m2) dimDsg(R/(x1, x2)R+ 1)− 1,

as opposed to

dimDsg(R) ≤ m1m2 dimDsg(R/(x1, x2)R+ 1)− 1,

which we would get by successive applications of Theorem 2.9. By using m1+m2 instead
of m1m2, Theorem 3.7 helps us reduce the dimension even further than simply using
induction and Theorem 2.9. We illustrate this in Example 4.5.

4. Applications

In this section, we provide some applications of Theorems 2.9 and 3.7. These two results
prove useful when the singularity categories of the quotients on the right hand side are
in fact of dimension zero. We begin with recalling some definitions.

Definition 4.1.

(1) Suppose that R is a Gorenstein local ring. By MCM(R) we denote the category
of maximal Cohen–Macaulay modules and by MCM(R) the corresponding stable

https://doi.org/10.1017/S001309152400018X Published online by Cambridge University Press

https://doi.org/10.1017/S001309152400018X
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category. The celebrated theorem due to Buchweitz [4, Theorem 4.4.1] asserts that
the assignment M 7→M gives a triangle equivalence:

∆ : MCM(R)
∼=−→ Dsg(R).

(2) Recall that the cohomology annihilator ideal ca(R) of a commutative Noetherian ring
R is defined as:

ca(R) =
∞⋃

n=0

{r ∈ R | r ∈ annRExt
i
R(M,N) for any i ≥ n and M,N ∈ mod R}.

When R is a Gorenstein local ring, it follows from [9] that:

ca(R) = annDsg(R).

More precisely, it is equal to the ideal consisting of those r ∈ R which annihilate
every Hom-set in the stable category of maximal Cohen–Macaulay modules.

Corollary 4.2. Let (R,m) be a Gorenstein local ring. Let x1, . . . , xn ∈ m be non-
zerodivisors such that the product x1 · · ·xn belongs to the cohomology annihilator ca(R).
Suppose that each R/xiR has finite CM-representation type. Then dimMCM(R) ≤ n−1.

Proof. There is an equality ca(R) = annDsg(R). Since each R/xiR has finite CM-
representation type, we have dimDsg(R/xiR) = dimMCM(R/xiR) ≤ 0. The assertion
now follows from Theorem 2.9. �

Let (S, n) be a regular local ring, and let R = S/(f), where 0 6= f ∈ n2. We say that
R is a simple singularity if there exist only finitely many ideals I of S such that f ∈ I2.
When R = k[[x1, . . . , xn]]/(f1, . . . , fm) with k a field, we denote by jacR the Jacobian
ideal of R, which is defined as the ideal of R generated by the h-minors of the Jacobian

matrix (
∂fi
∂xj

), where h is the height of the ideal (f1, . . . , fm) of the formal power series

ring k[[x1, . . . , xn]].

Corollary 4.3. Let d ≥ 1 and e ≥ 2 be integers. Let k be an algebraically closed field
whose characteristic is neither 2, 3, 5 nor divides e. Let f ∈ (x1, . . . , xd)

2k[[x1, . . . , xd]] be
such that k[[x1, . . . , xd]]/(f) is a simple singularity. Let R = k[[x0, . . . , xd]]/(x

e
0+f). Then

dimMCM(R) ≤ e− 2.

Proof. We have xe−1
0 = e−1(exe−1

0 ) ∈ jacR ⊆ ca(R) by [11, Example 2.7]. Also,
R/x0R = k[[x1, . . . , xd]]/(f) is a simple singularity, so that it has finite CM-representation
type by [12, Theorem 9.8]. By virtue of Corollary 4.2, we get dimMCM(R) ≤ (e−1)−1 =
e− 2. �

Let (R,m) be a local ring. We denote by `(R) the length of R as an R-module, and by
``(R) the Loewy length of R, that is, the infimum of integers n ≥ 0 such that mn = 0.
For an m-primary ideal I of R, we denote by e(I) the (Hilbert–Samuel) multiplicity of I,
i.e. e(I) = limn→∞

d!

nd
`(R/In+1) ∈ N, where d = dimR.
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Example 4.4. Let R = C[[x, y]]/(xa − yb) with 2 ≤ a ≤ b. Then it is easy to observe
that C[[y]]/(yb) is a simple singularity. Corollary 4.3 gives rise to the inequality:

dimMCM(R) ≤ a− 2. (4.4.1)

Let J = jacR be the Jacobian ideal of R. Then we have J = (xa−1, yb−1) and R/J =
C[[x, y]]/(xa−1, yb−1). We easily see that ``(R/J) = (a − 1) + (b − 1) − 1 = a + b − 3. It
follows from [1, Proposition 4.11] or [7, Corollary 1.3(1)] that

dimMCM(R) ≤ 2(a+ b− 3)− 1 = 2(a+ b)− 7 = (a− 2) + (a+ 2b− 5).

Take the parameter ideal Q = (xa−1) of R contained in J. We claim that Ja = QJa−1.
In fact, we have Ja = (xa−1, yb−1)a = ({(xa−1)i(yb−1)a−i}ai=1) + (y(b−1)a), and

(xa−1)i(yb−1)a−i = (xa)i−1xa−iy(b−1)(a−i) = (yb)i−1xa−iy(b−1)(a−i) = xa−iy(a−1)(b−1)yi−1.

As a ≤ b, we have yb−1 ∈ (ya−1). There are equalities

Ja = y(a−1)(b−1)({xa−iyi−1}ai=1, y
b−1) = y(a−1)(b−1)(xa−1, xa−2y, . . . , xya−2, ya−1, yb−1)

= y(a−1)(b−1)(xa−1, xa−2y, . . . , xya−2, ya−1) = y(a−1)(b−1)(x, y)a−1.

Therefore, we get

QJa−1 = xa−1(xa−1, ya−1)a−1 = (x(xa−1, yb−1))a−1 = (xa, xyb−1)a−1

= (yb, xyb−1)a−1 = (yb−1(y, x))a−1 = y(a−1)(b−1)(x, y)a−1 = Ja.

This claim says that the parameter ideal Q is a reduction of J, and we obtain e(J) =
`(R/Q) = `(C[[x, y]]/(xa−1, yb)) = (a− 1)b. It follows from [7, Corollary 1.3(2)] that:

dimMCM(R) ≤ (a− 1)b− 1 = (a− 2) + (a− 1)(b− 1).

As a, b are at least 2, both of the integers a + 2b − 5 and (a − 1)(b − 1) are posi-
tive. Therefore, the upper bound (4.4.1) for the dimension of the triangulated category
MCM(R) produced by Corollary 4.3 is better than the upper bounds produced by [1,
7]. Furthermore, we should notice that when a =3 and b ≥ 6, the ring R is not of finite
CM-representation type by [16, Chapter 9], so that (4.4.1) and [14, Theorem 1.2] imply
dimMCM(R) = 1. This also says that the inequality (4.4.1) is the best possible.

We should also compare Corollaries 4.2, 4.3 and Example 4.4 with [15, Corollaries 1.2
and 1.3], which are stated in a similar context.
We present one more example, applying Theorem 3.7.

Example 4.5. Let R = C[[x, y, z, w]]/(f), where f = x3 + y3 + xyz + w2. Then, the
partial derivatives of f with respect to x, y and z are 3x2+yz, 3y2+xz and xy, respectively.

The equalities x3 =
1

3
x(3x2 + yz)− 1

3
z(xy) and y3 =

1

3
y(3y2 + xz)− 1

3
z(xy) hold in R.
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It follows from [11, Example 2.7] that x 3, y3 and xy are in ca(R). On the other hand,
note that x, y is a regular sequence on R and:

R/(x, y)R ∼= C[[z, w]]/(w2),

is a complete local hypersurface of countable CM-representation type by [5, Proposition
4.1] or [16, Example (6.5)] and thus dimMCM(R/(x, y)R) = 1 by [6, Propositions 2.4
and 2.7]. Therefore, by Theorem 3.7, we conclude that:

dimMCM(R) ≤ 3 · 3 ·
(
1

3
+

1

3

)
· (1 + 1)− 1 = 11.

Our results on the dimension of singularity categories require the condition that the
product of some non-zerodivisors belong to annDsg(R). Hence, it is reasonable to ask
whether this condition is too strong or when it happens. Now we recall a recent result
on the annihilation of singularity categories and formulate our results from this point of
view in the case of isolated singularities.

Theorem 4.6. [[13, Theorem 4.6]] Let R be a commutative Noetherian ring. If
dimDsg(R) <∞, then

Sing(R) = V(annDsg(R)).

Therefore, the annihilator of the singularity is not only a homological invariant, but
also plays a role geometrically. For instance, it tells us that when the dimension of the
singularity category of a commutative Noetherian ring is finite, then the singular locus
is a closed subset.
We start with the finiteness condition on dimDsg(R) in Liu’s theorem. To this end,

let us consider the following three conditions on a commutative Noetherian local ring
(R,m):

A: There exists a non-zerodivisor x ∈ m such that dimDsg(R/xR) < ∞ and xi ∈
annDsg(R) for some i > 0.

B: dimDsg(R) <∞.
C: For any x ∈ m, there is a positive integer `x such that x`x ∈ annDsg(R).

Then, Theorem 3.7 immediately tells us that A implies B. If, moreover, R has only
isolated singularities, then the above theorem due to Liu tells us that annDsg(R) is m-
primary, which tells us that B implies C. Note that the `x are bounded above by the
Loewy length ``(R/ annDsg(R)) of R/ annDsg(R).
For any non-zerodivisor x ∈ m, let `x be as above and put dx = dimDsg(R/xR). Then,

we have the following corollary of Theorem 3.7.

Corollary 4.7. Let (R,m) be an isolated singularity with dimDsg(R) <∞. Then, for
any non-zerodivisor x ∈ m, we have:

dimDsg(R) ≤ `x(dx + 1)− 1 ≤ ``(R/ annDsg(R))(dimDsg(R/xR) + 1)− 1.
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