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ABSTRACT 

The paper deals with the acceleration of electrons at a nearly perpendicular curved shock wave and results are 
compared with the case of a plane shock wave. We formulate the equations of motion of an electron in adiabatic 
approximation and solve them in a special case. The results show that the energy gain of reflected electrons at a 
curved shock depends on the ratio of the radius of curvature to the shock thickness; for a low ratio the energy gain 
is significantly lower than at a plane shock, while the energy gain of transmitted electrons is approximately the 
same as at a plane shock. The analytical solution provides a tool for direct calculations of fluxes of accelerated 
electrons near the curved shock of given parameters. 

Subject headings: acceleration of particles — shock waves 

1. INTRODUCTION 

It is well-known that electrons at a nearly perpendicular 
shock are accelerated by the shock drift mechanism and this 
process is well understood in the case of a plane shock wave 
(Wu 1984; Leroy & Mangeney 1984; Vandas 1989). For the 
acceleration to be efficient a nearly perpendicular shock wave 
is necessary because of high electron velocities, i.e., the angle 
9Bn between the upstream magnetic field and the shock normal 
must be close to 90° (within several degrees). The energy gain 
of electrons is very sensitive to 8B„ so the curvature of the shock 
(always present in real shocks) will play a very important and 
limiting role. 

The present paper is a study and intercomparison of accelera­
tion of electrons by a nearly perpendicular plane (one-dimen­
sional case) and curved (two- and three-dimensional cases) 
shock waves. Krauss-Varban & Burgess (1991) firstly dealt 
with a curved shock in the electron acceleration problem. They 
used a simulated shock and calculated numerically the motion 
of electrons in it for the two-dimensional case. As a result they 
presented expected fluxes of accelerated electrons near the 
curved shock. Our approach differs in two ways: (1) we study 
separately a single interaction of an electron with the curved 
shock trying to understand the dependence of the electron en­
ergy gain on initial quantities and shock parameters, and (2) 
we prefer analytical approach to this problem as far as it is 
possible. We treat the acceleration of suprathermal electrons, 
i.e., with energies hundreds and thousands of eV. 

2. MODELS OF A SHOCK WAVE 

2.1. One-Dimensional Case (a Plane Shock) 

The model (Vandas 1989) is presented in Figure 1. The 
upstream plasma velocity is Vx = (V{, 0,0), and magnetic field 
ZJ, = (£, cos 6Bn, 0, - f i , ) . The precise value of Blz should 
be -B, sin 6Bn but, for simplicity, we put sin 9Bn SK 1 and 
cos 6Bn ss 0 in expressions where it is possible because of 
dBn ss 90°. The magnetic and electric fields inside the shock 
layer with the thickness d are 

B = (Blco$6Bn,0,-Blq), £ = (0 , -K.f i , , 0) , (1) 

where q{x) is an increasing function of x from 1 to v (v is the 
shock magnetic field jump) and defines the magnetic field pro­
file in the shock. The electric field is constant everywhere and 
the magnetic field downstream is B2 = (B\ cos 6B„, 0, — B^). 

We have chosen three types of magnetic field profiles for 
calculations: 

(A) q{x) = exp — In v 

(B) q{x) 1 + > 1) , (2) 

(C) q(x) =\+r 1 — exp ( — Xx)\ cos wx H— sin wx 

where u = it Id, A = l/d, 

1 
1 + e x p ( - l ) 

Case (A) fulfils the condition q'/q = constant (q' = dq/dx) 
important in an analytical treatment (this is dB/ds = constant 
in a very good approximation). Case B is a linear profile and 
case C is similar to the observed magnetic field profiles (Van­
das 1991a). 

In our models we do not take into account electrostatic 
(barrier) field (Ex) and noncoplanar magnetic field (By) in the 
shock layer which are important mainly for thermal electrons. 

2.2. Two-Dimensional Case (a Curved Shock) 

The geometry of a curved shock in the two-dimensional case 
is presented in Figure 2 (Vandas 1991b). The shock wave has a 
cylindrical shape given by the equation (Rc ~ x)2 + z2 = R2

C, 
where Rc is the radius of curvature. The upstream plasma veloc­
ity is Vy = (K,, 0, 0), and magnetic field B, = (0, 0, - 5 , ) -

For a creation of a model of a curved shock, we have used an 
idea of Krauss-Varban & Burgess (1991) to take a plane shock 
and modify its fields according to expected field dependences 
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FIG. 1.—Plane shock with the thickness d and the coordinate system 
definition: the shock is parallel to yz-plane. In the upstream region (x < 0) 
the plasma velocity is V, and magnetic field B,. n is the shock normal; it 
makes the angle 9B„ with B,. B2 is the magnetic field in the downstream 
region (x > d), the thicker line is one of the magnetic field lines, E is the 
(motional) electric field. 

on the varying angle dBn. It follows from Figure 2 that the 
normal magnetic field component at the upstream side varies 
as B„ = \Brn\ = B,(z/Rc). Thus we take for a model of a 
curved shock in two-dimensions the same geometry as in Fig­
ure 1 (i.e., a plane shock) but the magnetic and electric fields 
inside the shock layer will be 

B=\B 
K 

0, -Btq , E=(0,-VtBl,0). (3) 

The quantity q(x) is defined as in the one-dimensional case. 

2.3. Three-Dimensional Case (a Curved Shock) 

The geometry of a curved shock in three-dimensional case is 
also as in Figure 2 (Vandas 1991b). The shock wave has a 
spherical shape given by the equation 

(Rc ~ x)2 + y2+~z2 
Rl 

where Rc is the radius of curvature. 
To create a model of a curved shock in three dimensions, we 

use the same idea as in the two-dimensional case. It follows 
from Figure 2 that the normal magnetic field component at the 
upstream side varies as B„ = \B,-n\ = B,(z/Rc), i.e., as in 
two-dimensional case. For the acceleration the normal compo­

nent of the upstream velocity is in play, 

R„- x 
Vu \Vrn\ = K, 

R, v, '-'£ 
Thus we take for a model of a curved shock in three dimen­
sions the same geometry as in Figure 1 (i.e., a plane shock) but 
the magnetic and electric fields inside the shock layer will be 

B Z?, —,0 , -£ ,<? 

0,-V.BA l Rc 
,0 

(4) 

The quantity q(x) is defined as in the one-dimensional case. 

3. STUDY OF THE ACCELERATION OF ELECTRONS 

Suprathermal electrons have a small gyroradius and we can 
use adiabatic approximation. In the following paragraphs we 
shall give equations of motion suitable for numerical calcula­
tions. In a special case an analytical solution of simplified 
equations of motion can be obtained. 

3.1. Results in the One-Dimensional Case (a Plane Shock) 

The case of a plane shock is well understood (Wu 1984; 
Leroy & Mangeney 1984; Vandas 1989). The equations of 

FIG. 2.—Geometry of a curved shock (thick line) and the coordinate 
system definition. In the upstream region (right) the plasma velocity is V, 
and magnetic field B,. Three magnetic field lines are shown; E is the (mo­
tional) electric field. The angle SB„ varies along the shock surface, it de­
creases from 90° at the nose of the shock (the coordinates' origin). 
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motion for the model in Figure 1 in adiabatic approximation 
are 

{>, = - • £ B X coseB n
 q- - v«'™e*» („, coseB n + v,) 

~ B\ cos 6Bn — , 
m q 

x = — cos 8Bn H 

(5) 
H q m q' 
e q eBx q4 y = - — — (un cos eBn K)2 Hi. 

e q 

z = -v. + • 
V, 

cos dK - » l , 

£ = eF,5,3;« ftF.fi, 
9 

where expressions on the right hand side after « are a very 
good approximation, E is the electron energy, «| is the electron 
velocity along the magnetic field, fi the magnetic moment, e is 
the elementary charge, m the electron mass. The initial values 
for the time t = 0 are vf = p, cos a,,, x = 0, y = y,•, z = z,•, E = Et. 
The quantity u, is the initial electron velocity, 2s, = \mv2 is the 
initial energy, «, the initial pitch angle (a, < 90° is toward the 
shock), and 

mv| sin2 a, 
2fi, 

1984; Vandas 1989) for final energy £} of reflected electrons 

£/• = Ej + 2m K 2
B + 2m VBvt cos a, , (8) 

where FB = F,/cos dBn (a magnetic mirror velocity). In order 
for the acceleration of electrons to be efficient the velocity VB 

must be comparable to electron velocities, i.e., 6Bn close to 90°. 
Analogically for transmitted electrons we can get tint and Ef 

solving the equation x = d. 
It can be shown (Vandas 1989) that the expressions for Ef 

are more general and Ef does not depend on the shock struc­
ture (q) and thickness (d). The same is true for Ay, the total 
shift in y in the shock layer (Ay = yf- y,). The interaction time 
tiM and shift Az do depend on the shock structure. The final 
pitch angle follows from the magnetic moment conservation. 

For electrons breaking the adiabatic approximation (rg «; d, 
rg ?> d, where rg is the gyroradius, or even for d = 0), direct 
numerical calculations of the equation of motion for an elec­
tron mr = — e(E + r X B) in the fields of the model show that 
the initial and final magnetic moments approximately coin­
cide (but fi varies during the interaction). Also the final energy 
Ef, final pitch angle af, and shift Ay correspond to the results in 
adiabatic approximation (Vandas 1991a). 

3.2. Results in the Two-Dimensional Case (a Curved Shock) 

The equations of motion are 

B,^r ^ 
m ' Rc\q Rcq 

, z z 
q — I v, Rr Rr 

V, ik-'i 
The approximate equations can be solved for q of case A: 

x = -— In 
In v 

In v 
[V,t - {z-zt) cos 6Bn]+ 1 , 

n In v 
y = 'e-d-t + y' 

z = \Kxt
2 - V/t cos a, + z, , 

E = M K , 5 , ^ t + E, , 

(6) 

M R z 9 

m 

x = 

A* /<? ' 
e \ q R3

cq
3 

5» [*("' R,+ V>)+%[•**-7%). 
m 

(9) 

where 

* i 

^Bx cos 6Bn In v 
md 

If an electron crosses x = d it is called transmitted, else if it 
returns to x = 0 it is called reflected. Solving the equation x = 0 
we can obtain the interaction time tiM of reflected electrons 

2 / K, 
— U, COS a, + M " ' ' cos^J Kx 

(u, cos a, + KB), (7) 

and the known expression (Wu 1984; Leroy & Mangeney 

e q 

Vx z 
r Rc 

E=eVlB,y^nVlBl^-. 

The initial values for the time t = 0 are vx = u, cos a,, JC = 0, y = 
yi7z = z, = Rc cos 0Bn/, £• = £•,. 
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The approximate equations can be solved for q of case A: 

d i x = -— In 
In v 

In v 
V^2K{Z2-Zj) 

n In v 

, „ vt cos a, 
z = z, cosh K?t — 

E = nViBi^-f-1 + E, 

sinh K2t, (10) 

where 

K,= 
nBl In v 

mdRc 

If an electron crosses x = d it is called transmitted, else if it 
returns to x = 0 it is called reflected (electrons with opposite 
signs of z, and z^are reflected through the nose). Setting* = 0 
we obtain an equation for the interaction time tn 

electrons 

V • COS (X • 
z, cosh K2tint - -L--—'- sinh K2tmX 

i A.-, 

of reflected 

FIG. 3.—Time dependence of the energy E of a reflected electron (thick 
line) with the initial energy E, = 1 keV, pitch angle a, = 80°, 0B„, = 88?9 in 
the curved shock with the parameters B, = 10 nT, K, = 400 km s"1, v = 3, 
Rc = 40 RE, d = 100 km, q of case A, in adiabatic approximation. The thin 
line shows the same for the plane shock with 8B„ = 8Bni. Arrows indicate the 
exit time from the shock layer, i.e., the interaction time tmx which is signifi­
cantly lower for the curved shock. 

z? - 2RcV,tint = 0 (11) 

(z, = Rc cos dBni). Opposite to a plane shock this is a transcen­
dental equation and /int can be solved only numerically. Hence 
the final energy Ef of reflected electrons 

Ef=E,+nV1Bl 
In v 

(12) 

cannot be explicitly given. Nevertheless the numerical solution 
of tint is easy. Analogically for transmitted electrons we can get 
tmt and ^solving the equation x = d. 

The time dependence of the energy of interacting electrons 
practically does not depend on the curvature; it is the same as 
at a plane shock (cf. E in eqs. [ 5 ] and [ 9 ], see Fig. 3). But the 
interaction time is significantly lower for reflected electrons at 
a curved shock so the energy gain is correspondingly lower 
(Figs. 4 and 5). For a given thickness, a higher curvature gives 
a lower energy gain, in principle. Opposite to a plane shock 
case the energy gain of reflected electrons depends on the 
shock structure (q) and namely on the thickness (d) of the 
shock layer (Fig. 6). The decrease of thickness causes the in­
crease in energy gain. In the limit d -*• 0 (in fact unrealistic 
because adiabatic approximation is not valid) the solution 
gives £/-as at a plane shock. In fact, direct numerical calcula­
tions using the Lorenz force for case d = 0 give lower values 
of£>. 

A more detailed inspection of the equations (11) and (12) 
reveals that the final energy Ef of reflected electrons depends 
on the ratio of the radius of curvature to the shock thickness 
Rc/d, and not on Rc and d separately. Figure 7 gives a rough 

> 
(D 

UJ 3 -
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FIG. 4.—Change in energy E of a reflected electron with the initial 
energy Et = 1 keV, pitch angle a, = 80°, 8Bni = 88?9 during its motion in 
the curved shock with the parameters B, = 10 nT, K, = 400 km s~', v = 3, 
Rc = 40 RE, d= 100 km, IJ of case A, as a function ofthex-coordinate: the 
dashed thick line is adiabatic approximation, the thin line is a direct nu­
merical calculation using the Lorenz force. The shock layer is situated 
between vertical dashed lines. Also shown are the results for the plane 
shock with 8B„ = 8Bni (the full thick line is adiabatic approximation, the 
thin line is a direct numerical calculation using the Lorenz force). A very 
good coincidence is seen between the analytical solutions and direct nu­
merical calculations. 
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FIG. 5.—Dependence of the final energy Ef of an electron with the 
initial energy £, = 1 keV, 6Bni = 89? 1 on the pitch angle a, (full line) at the 
curved shock with the parameters B, = 10 nT, V, = 400 km s"1, v = 3, Rc = 
40 RE, d = 100 km, q of case A, in adiabatic approximation. The thin line 
represents transmitted, the thick line reflected electrons. Dashed lines are 
results at the plane shock with dB„ = 0S„,. The plot illustrates that the energy 
gain of reflected electrons at a curved shock is significantly lower than at a 
plane one, and it is approximately the same for transmitted electrons. 
Opposite to a plane shock there are also reflected electrons for small a, 
(reflected through the nose) and for a, near 180°. 

500 
d (km) 

000 

FIG. 6.—Dependence of the final energy Efoi a reflected electron with 
the initial energy £, = 1 keV, pitch angle a, = 80°, 0S„, = 88?9 at the curved 
shock with the parameters B, = 10 nT, V, = 400 km s"1, v = 3, Rc = 40 RE, 
on the shock thickness d and magnetic field profile: full line for q of case A, 
dashed line for q of case B, dotted line for q of case C, in adiabatic approxi­
mation. The dashed-dotted line shows the same for the plane shock with 
dBn = 0fl„, (no dependence on shock thickness and magnetic field profile). 
An arrow indicates the value of £}from direct numerical calculations using 
the Lorenz force for a model with d = 0. 
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FIG. 7.—Dependence of the averaged energy gain TJ of reflected elec­
trons at a curved shock relative to a plane shock case on the ratio of the 
radius of curvature to the shock thickness RJd. 

{Ef-E,\ 
{Ef-EX 

where the subscript c is for a curved shock, and p is for a corresponding 
plane shock. y\ was averaged over initial pitch angles a, and incident field 
angles 6Bnl in the interval 88°-90°. We used the above given fraction in the 
definition of y instead of (Ef)J (Ej)p because the former is less sensitive to 
the upstream plasma velocity K, (see eq. [12]). Shocks have the parame­
ters B, = 10 nT, v = 3, q of case A. The thicker line is for E, = 1 keV, the 
thin line is for £, = 10 keV. The full lines are for the upstream plasma 
velocity K, = 400 km s"', the dashed lines are for K, = 800 km s"1. 

imagination of the influence of curvature on the energy gain of 
reflected electrons, rj is the energy gain of reflected electrons at 
a curved shock relative to a plane shock averaged over initial 
pitch angles a, and incident field angles dBni. In the range of the 
Earth's bow shock, i.e., RJd-** 102-103, we see a large influ­
ence of curvature; the energy gain is about \ of a plane shock 
case. For interplanetary shocks, the ratio can be estimated to 
104-105 where the energy gain is about | of a plane shock case. 

In general, the energy gain of transmitted electrons is lower 
than for reflected ones. This can be explained by shorter inter­
action times: transmitted electrons move only forward in the 
shock layer while reflected electrons forward and backward 
(see Figs. 4 and 3). The energy gain of transmitted electrons is 
approximately the same as at a plane shock with the corre­
sponding dBn = eBni (Fig. 5). This can be understood if we 
realize that the evolution in energy gain differs only slightly 
from a plane shock case during the forward part of the electron 
trajectory, but it differs very much during the backward part 
(see Fig. 4). 

Electrons reflected through the nose are electrons with small 
initial pitch angles a,, and dBni close to 90° (within l°-2°) 
which in case of a plane shock wave are transmitted. Their 
energy gain is only slightly larger than that of transmitted elec­
trons (Fig. 5). 

The dependence if an electron will be reflected or transmit­
ted is more complicated than in a plane shock case and it can 
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FIG. 8.—Plot maps a type of interaction of an electron with the initial 
energy £,, pitch angle a,, and 6Bni = 88?9 with the curved shock with the 
parameters B, = 10 nT, V, = 400 km s_1, v = 3, i?c = 40RE, d = 100 km, q 
of case A, in adiabatic approximation. The thick curves divide the plot into 
four regions: T are transmitted, R are reflected, NI are noninteracting 
electrons, and RN are electrons reflected through the nose. The thin curves 
(one coincides with the thick R/NI line) show a plane shock case with 
0Bn = DBni. In the latter case the region RN does not exist, it is a part of the 
region T. 

be evaluated only numerically (Fig. 8). Opposite to a plane 
shock, with increasing 9Bni there are always present reflected 
electrons, and reflection or transmission depend on the shock 
thickness. 

3.3. Results in the Three-Dimensional Case (a Curved Shock) 

The equations of motion are the same as in the two-dimen­
sional case if we make the substitution 

in equation (9). Because y/Rc« yt / Rc, the three-dimensional 
case can be converted with good accuracy into the two-dimen­
sional case if we only take the proper upstream plasma velocity 
in two-dimensional equations, i.e., make the change 

V, 
Rl 

Vx R\ 

(also constant velocity) in equations (9)-( 12). 

4. CONCLUSIONS 

1. The presented expressions enable calculation of electron 
trajectories and energy gains at a plane and curved shocks in 
adiabatic approximation and open way to calculate directly 
fluxes of electrons near a curved shock; 

2. Energy gain of electrons at a curved shock is thickness 
and (slightly) structure dependent; 

3. Energy gain of reflected electrons at a curved shock de­
pends on the ratio of the radius of curvature to the shock thick­
ness, it is an increasing function of this ratio with an upper 
limit given by the energy gain at a plane shock; 

4. The influence of curvature on the energy gain of reflected 
electrons can be roughly estimated from Figure 7: the energy 
gain at the Earth's bow shock is significantly lower than at a 
plane shock; 

5. Energy gain of transmitted electrons at a curved shock is 
approximately the same as at a plane shock; 

6. Acceleration at a three-dimensional curved shock can be 
converted into the two-dimensional case. 

Maximum energy gain of electrons reflected at a plane shock 
is 10X for v = 3 and 18X for c = 5, and it is lower for a curved 
shock. The equation for E in equation (10) tells us that the 
energy gain depends significantly on the time spent in the 
shock layer (/int). If a process (like scattering) holds electrons 
longer in the shock layer, they could get considerably higher 
energies, mainly for shocks with a large extent and thickness 
(application to SNR?—but this should need a relativistic gener­
alization). 
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