A NOTE ON PSEUDO-UMBILICAL SURFACES

by CHORNG-SHI HOUH

(Received 4th June 1974, revised 16th January 1975)

1. Preliminaries

We follow the notations and basic equations of Chen (2). Let M be a surface immersed in an m-dimensional space form $R^{m}(c)$ of curvature $c=1,0$ or -1 . We choose a local field of orthonormal frames e_{1}, \ldots, e_{m} in $R^{m}(c)$ such that, restricted to M, the vectors e_{1}, e_{2} are tangent to M. Let $\omega^{1}, \ldots, \omega^{m}$ be the field of dual frames. Then the structure equations of $R^{m}(c)$ are given by

$$
\begin{align*}
d \omega^{A} & =\Sigma \omega_{A}^{B} \wedge \omega^{B}, \quad \omega_{B}^{A}+\omega_{A}^{B}=0 \tag{1}\\
d \omega_{B}^{A} & =\Sigma \omega_{C}^{A} \wedge \omega_{C}^{B}+c \omega^{A} \wedge \omega^{B}, \quad A, B, C=1, \ldots, m .
\end{align*}
$$

Restricting these forms to M we have $\omega^{r}=0$, where $r, s, t=3, \ldots, m$. Since $0=d \omega^{r}=\omega_{r}^{1} \wedge \omega^{1}+\omega_{r}^{2} \wedge \omega^{2}$, by Cartan's Lemma we may write

$$
\begin{equation*}
\omega_{i}^{r}=\Sigma h_{i j}^{r} \omega^{j}, \quad h_{i j}^{r}=h_{j i}^{r}, \quad i, j=1,2 . \tag{2}
\end{equation*}
$$

From these we obtain

$$
\begin{align*}
& d \omega^{i}=\Sigma \omega_{i}^{j} \wedge \omega^{j} \tag{3}\\
& d \omega_{2}^{1}=\left\{c+\sum_{r} \operatorname{det}\left(h_{i j}^{r}\right)\right\} \omega^{1} \wedge \omega^{2}=K \omega^{1} \wedge \omega^{2}, \tag{4}\\
& d \omega_{i}^{r}=\Sigma \omega_{j}^{r} \wedge \omega_{j}^{i}+\Sigma \omega_{s}^{r} \wedge \omega_{s}^{i} . \tag{5}
\end{align*}
$$

The second fundamental form h and the mean curvature vector H are given respectively by

$$
\begin{align*}
h & =\Sigma h_{i j}^{r} \omega^{i} \otimes \omega^{j} e_{r}, \tag{6}\\
H & =\frac{1}{2} \Sigma h_{i i}^{r} e_{r} .
\end{align*}
$$

If there exists a function α on M such that $\langle h(X, Y), H\rangle=\alpha\langle X, Y\rangle$ for all tangent vectors X, Y, then M is called a pseudo-umbilical surface of $R^{m}(c)$. For points at which $H \neq 0$ we choose e_{3} to be $H /|H|$ then

$$
\begin{equation*}
h_{11}^{3}=h_{22}^{3}=\alpha, \quad h_{12}^{3}=0 . \tag{7}
\end{equation*}
$$

The normal curvature K_{N} of M is given by

$$
\begin{equation*}
K_{N}=\sum_{r, s}\left[\sum_{i}\left(h_{1 i}^{r} h_{2 i}^{s}-h_{2 i}^{r} h_{1 i}^{s}\right)\right]^{2} \tag{8}
\end{equation*}
$$

We denote the square of the length of the second fundamental form by S, that is

$$
\begin{equation*}
S=\sum_{r} \sum_{i, j} h_{i j}^{r} h_{i j}^{r} \tag{9}
\end{equation*}
$$

In this paper we will consider pseudo-umbilical surfaces in $R^{m}(c)$ with $K_{N}=0$ and S a constant. $S^{1} \times S^{1} \subset R^{4}\left(=R^{4}(0)\right)$ is one such surface. Another is the following example.

Let M be a product of two circular helices in R^{6} :

$$
x=(\cos t, \sin t, t, \cos s, \sin s, s)
$$

At each point of M we choose the following frame in R^{6} :
$e_{1}=\frac{1}{\sqrt{2}}(-\sin t, \cos t, 1,0,0,0), e_{2}=\frac{1}{\sqrt{2}}(0,0,0,-\sin s, \cos s, 1)$,
$e_{3}=(\cos t, \sin t, 0,0,0,0), \quad e_{4}=(0,0,0,-\cos s,-\sin s, 0)$,
$e_{5}=\frac{1}{2}(\sin t,-\cos t, 1, \sin s,-\cos s, 1)$,

$$
e_{6}=\frac{1}{2}(\sin t,-\cos t, 1,-\sin s, \cos s,-1)
$$

Then we have

$$
\left(h_{i j}^{3}\right)=\left(\begin{array}{cc}
-\frac{1}{2 \sqrt{ } 2} & 0 \\
0 & -\frac{1}{2 \sqrt{ } 2}
\end{array}\right), \quad\left(h_{i j}^{4}\right)=\left(\begin{array}{cc}
\frac{1}{2 \sqrt{ } 2} & 0 \\
0 & -\frac{1}{2 \sqrt{2}}
\end{array}\right), \quad\left(h_{i j}^{5}\right)=0,\left(h_{i j}^{6}\right)=0
$$

Hence M is pseudo-umbilical, $K_{N}=0, S=\frac{1}{2}=$ constant.
We are going to prove the following theorems.
Theorem 1. Let M be a pseudo-umbilical surface in $R^{m}(c)$ satisfying $K_{N}=0$ and S is constant. Then M is either flat or totally umbilical in $R^{m}(c)$. Furthermore, if the interior of the set $\{x \in M \mid H=0$ at $x\}$ is not empty then M is either flat and $c \geqq 0$ or totally geodesic.

Theorem 2. Let M be a simply-connected flat pseudo-umbilical surface in $R^{m}=R^{m}(0)$ satisfying $K_{N}=0$ and S is constant. Then M is a product of two curves C_{1} and $C_{2}, C_{1} \subset R^{l}, C_{2} \subset R^{m-l}$ so that the absolute values of the first curvatures of C_{1} and C_{2} are equal.

2. Proof of Theorem 1

Since $K_{N}=0$ on M, the second fundamental tensors of M in $R^{m}(c)$ are simultaneously diagonalisable. (For instance, see Chen (1), p. 101.) Let $U=\{x \in M \mid H \neq 0$ at $x\}$. Then U is an open set of M. The set

$$
\{x \in M \mid H=0 \text { at } x\}
$$

is closed. Let V be the interior of $\{x \in M \mid H=0$ at $x\}$.
At each point of U we may choose a frame field $e_{1}, e_{2}, \ldots, e_{m}$ in $R^{m}(c)$ so that e_{1}, e_{2} are tangent to M and e_{3} is the direction of the mean curvature
vector to M. Since M is pseudo-umbilical by (7) we have that at each point of U the second fundamental tensors are

$$
\left(h_{i j}^{3}\right)=\left(\begin{array}{ll}
\alpha & 0 \tag{10}\\
0 & \alpha
\end{array}\right), \quad\left(h_{i j}^{r}\right)=\left(\begin{array}{cc}
h_{11}^{r} & 0 \\
0 & -h_{11}^{r}
\end{array}\right), \quad 4 \leqq r \leqq m
$$

with respect to the frame field $e_{1}, e_{2}, \ldots, e_{m}$.
Hence we have the differential forms:

$$
\begin{gather*}
\omega_{i}^{3}=\alpha \omega^{i}, \quad 1 \leqq i \leqq 2 \tag{11}\\
\omega_{i}^{r}=h_{i i}^{r} \omega^{i}, r \leqq 4,1 \leqq i \leqq 2 . \tag{12}
\end{gather*}
$$

Exterior differentiation of (11) yields

$$
\begin{equation*}
\sum_{r=3}^{m}\left(h_{i i}^{r} \omega_{r}^{3}+d \alpha\right) \wedge \omega^{i}=0, \quad(i=1,2) \tag{13}
\end{equation*}
$$

Exterior differentiation of (12) yields

$$
\begin{equation*}
d h_{i i}^{r} \wedge \omega^{i}+2 h_{i i}^{r} d \omega^{i}+\alpha \omega_{3}^{r} \wedge \omega^{i}=\sum_{s=4}^{m} h_{i i}^{s} \omega_{r}^{s} \wedge \omega^{i}, r \geqq 4, \quad(i=1,2) . \tag{14}
\end{equation*}
$$

Multiplying (14) by $h_{i i}^{r}$ and summing for r from 4 to m we have by (1) and (13)

$$
\begin{equation*}
\sum_{r=4}^{m} h_{i i}^{r} d h_{i i}^{r} \wedge \omega^{i}+2 \sum_{r=4}^{m}\left(h_{i i}^{r}\right)^{2} d \omega^{i}+\alpha d \alpha \wedge \omega^{i}=0, \quad(i=1,2) \tag{15}
\end{equation*}
$$

On the other hand, by (10) S in (9) has the form

$$
\begin{equation*}
\frac{1}{2} S=\alpha^{2}+\sum_{r=4}^{m}\left(h_{i i}^{r}\right)^{2}, \quad(i=1,2) \tag{16}
\end{equation*}
$$

Differentiating this equality and using (15) we have

$$
\begin{equation*}
\frac{1}{4} d S \wedge \omega^{i}+2 \sum_{r=4}^{m}\left(h_{i i}^{r}\right)^{2} d \omega^{i}=0, \quad(i=1,2) \tag{17}
\end{equation*}
$$

Since S is assumed to be a constant we have

$$
\left\{\sum_{r=4}^{m}\left(h_{11}^{r}\right)^{2}\right\} d \omega^{1}=0 \text { and }\left\{\sum_{r=4}^{m}\left(h_{22}^{r}\right)^{2}\right\} d \omega^{2}=0
$$

Noticing that $h_{22}^{r}=-h_{11}^{r}$ we then have either $h_{i i}^{r}=0(4 \leqq r \leqq m, 1 \leqq i \leqq 2)$ or $d \omega^{i}=0(1 \leqq i \leqq 2)$. U is thus either totally umbilical or flat.

By (4) the Gauss curvature K of U is given by

$$
K=c+\alpha^{2}-\sum_{r=4}^{m}\left(h_{i i}^{r}\right)^{2}(i=1 \text { or } 2)
$$

If U is flat, then $K=0$. Otherwise $h_{i i}^{r}=0(4 \leqq r \leqq m, 1 \leqq i \leqq 2)$ on U, we then have from (16) that $\alpha^{2}=\frac{1}{2} S=$ constant and $K=c+\alpha^{2}=$ constant. Hence for either case U has constant Gauss curvature.

Next we consider points in V. Since the mean curvature vector is zero on V, V is a minimal surface of $R^{m}(c)$. The second fundamental tensors of V in $R^{m}(c)$ are simultaneously diagonalisable on V. We may choose a local frame field on V in such a way that $h_{12}^{r}=0, r=3, \ldots, m$. Then

$$
h_{11}^{r}=-h_{22}^{r}(3 \leqq r \leqq m),
$$

since V is minimal. Now

$$
\begin{aligned}
S=\sum_{i, j, r}\left(h_{i j}^{r}\right)^{2}=\sum_{r=3}^{m} \sum_{i=1}^{2}\left(h_{i i}^{r}\right)^{2} & =2 \sum_{r=3}^{m}\left(h_{11}^{r}\right)^{2}, \\
K & =c+\sum_{r=3}^{m}\left(\operatorname{det} h_{i j}^{r}\right)=c-\sum_{r=3}^{m}\left(h_{11}^{r}\right)^{2}=c-\frac{1}{2} S .
\end{aligned}
$$

The assumption that $S=$ constant implies that V has constant Gauss curvature. V thus is a minimal surface of $R^{m}(c)$ with constant Gauss curvature and $K_{N}=0$. By Lemma 2 of (3) V is either flat and $c \geqq 0$ or totally geodesic. This conclusion may also be reached by taking account that $\alpha=0, r$ runs from 3 to m in formulas (14) through (17).

Finally we consider the entire surface M. If $V=\varnothing$ then any point

$$
p \in\{x \in M \mid H=0 \text { at } x\}
$$

is a limit point of U. At every point of U we have proved that either

$$
h_{11}^{3}=h_{22}^{3}=\alpha \text { and } h_{i i}^{r}=0(r \geqq 4)
$$

or $K=0$. $h_{i i}^{3}, h_{i i}^{4}$ and K are continuous on M, we have also $h_{11}^{3}=h_{22}^{3}$ and $h_{i i}^{r}=0(r \geqq 4)$ or $K=0$ at p. Hence M is either totally umbilical or flat. If $V \neq \varnothing$ we have shown that V is minimal with constant Gauss curvature. So M has constant Gauss curvature K. If $K=0$ then M is flat and $c \geqq 0$. If $K \neq 0$ then $h_{i i}^{r}=0(r \geqq 3, i=1,2)$ and hence $K=c \neq 0$. We have shown in U if $K \neq 0$ then $K=c+\alpha^{2}$. This means that U is empty. M thus is totally geodesic and Theorem 1 is proved.

3. Proof of Theorem 2

Let M be simply-connected and such that $d \omega^{i}=0, i=1,2$. For this case, $\omega_{2}^{1}=0 . \quad M$ is flat and both the distributions $T_{i}=\left\{\lambda e_{i} \mid \lambda \in R\right\}, i=1,2$ are parallel. By the de Rham decomposition theorem we have that $M=C_{1} \times C_{2}$ where C_{i} is the maximal integral manifold of T_{i}.

From now on we consider that $M \subset R^{m}(0)$. Thus M is a simply-connected surface in a euclidean space R^{m}. Since the second fundamental forms given by (10) satisfy $h_{12}^{r}=0(r>3)$, Moore in (4) has proved that there are euclidean spaces R^{l} and R^{m-l} so that $C_{1} \subset R^{l}, C_{2} \subset R^{m-l}$ and

$$
M=C_{1} \times C_{2} \subset R^{l} \times R^{m-l}=R^{m}
$$

Let the curve C_{1} in R^{l} be $x(s)$ and the curve C_{2} in R^{m-t} be $y(t)$, here s, t are arc length for curves C_{1} and C_{2}. Then M in R^{m} is given by $(x(s), y(t))$ and $e_{1}=\left(x^{\prime}(s), 0\right), e_{2}=\left(0, y^{\prime}(t)\right)$ are the tangent vectors of M. Let us write the Frenet formulas for C_{1}, C_{2} as follows:
$\frac{d e_{1}}{d s}=k_{1}(s) e_{3}$

$$
\begin{aligned}
& \vdots \\
& \frac{d e_{2 i-1}}{d s}=-k_{i-1}(s) e_{2 i-3}+k_{i}(s) e_{2 i+1}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d e_{2}}{d t}=h_{1}(t) e_{4} \\
& \vdots \\
& \frac{d e_{2 i}}{d t}=-h_{i-1}(t) e_{2 i-2}+h_{i}(t) e_{2 i+2}
\end{aligned}
$$

$$
\begin{array}{ccc}
\vdots & 2 \leqq i \leqq l-1, & \vdots \\
\frac{d e_{2 l-1}}{d s}=-k_{l-1}(s) e_{2 l-3} ; & & \frac{d e_{2(m-l)}}{d t}=-h_{m-l-1}(t) e_{2(m-l-1)}
\end{array}
$$

Here k_{i}, h_{i} are the i th curvatures of C_{1}, C_{2}.
It is then easy to see that the basic forms and connection forms of M are

$$
\begin{aligned}
& \omega^{1}=d s, \quad \omega^{2}=d t \\
& \omega_{1}^{3}=-k_{1} \omega_{1}, \quad \omega_{2}^{4}=-h_{1} \omega_{2}, \quad \omega_{2}^{3}=\omega_{1}^{4}=0 \\
& \omega_{i}^{r}=0 \quad(i=1,2 ; t \geqq 5)
\end{aligned}
$$

The second fundamental forms of M thus are

$$
\left(h_{i j}^{3}\right)=\left(\begin{array}{cc}
-k_{1} & 0 \\
0 & 0
\end{array}\right), \quad\left(h_{i j}^{4}\right)=\left(\begin{array}{cc}
0 & 0 \\
0 & -h_{1}
\end{array}\right), \quad\left(h_{i j}^{r}\right)=0(r \geqq 5) .
$$

Hence the mean curvature of C_{1} is $\left|k_{1}\right|$, the mean curvature of C_{2} is $\left|h_{1}\right|$ and the mean curvature vector of M is $\frac{1}{2}\left(-k_{1} e_{3}-h_{1} e_{4}\right)$. That the length of the second fundamental form of M is constant implies that $h_{1}^{2}+k_{1}^{2}=$ constant. That M is pseudo-umbilical implies that $h_{1}^{2}=k_{1}^{2}$. Hence we have that

$$
\left|h_{1}\right|=\left|k_{1}\right|=\text { constant. }
$$

Thus Theorem 2 is proved.

Acknowledgment

The author wishes to express his gratitude to the referee for his suggestions which led to many improvements of this paper.

REFERENCES

(1) B. Y. Chen, Geometry of submanifolds (Marcel-Dekker, New York, 1973).
(2) B. Y. Chen, Pseudo-umbilical surfaces with constant Gauss curvature, Proc. Edinburgh Math. Soc. 18 (1972), 143-148.
(3) B. Y. Chen, Minimal surfaces with constant Gauss curvature, Proc. Amer. Math. Soc. 34 (1972), 504-508.
(4) J. D. Moore, Isometric immersions of riemannian products. J. Diff. Geometry 5 (1971), 159-168.

Wayne State University
Detroit, Mich. 48202

