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AVERAGE NORMALISATIONS OF ELLIPTIC CURVES

WILLIAM D. BANKS AND IGOR E. SHPARLINSKI

Ciet, Quisquater, and Sica have recently shown that every elliptic curve E over a finite
field Fp is isomorphic to a curve y2 = x3 + ax + b with o and b of size O(p3/4). In
this paper, we show that almost all elliptic curves satisfy the stronger bound O(p2/3).
The problem is motivated by cryptographic considerations.

1. INTRODUCTION

Let p > 3 be a prime number, and let Fp be the finite field with p elements, which
we identify with the set {0,1,2, . . . ,p - 1}. For any a, b e Fp with 4a3 + 27b2 ^ 0, let
E(a, b) be the elliptic curve over Fp given by the equation y2 = x3 + ax + b. Since every
elliptic curve E is isomorphic to some E(a,b), the invariant

H(E) = min { max{a, 6} | a, b € Fp, E(a, b) ^ E},

is a positive integer that is well-defined on isomorphism classes of elliptic curves over Fp.

For many cryptographic applications, or when performing other calculations on ellip-
tic curves where efficiency is an issue, it is often desirable to work with curves E S E(a, b)
where the coefficients a and b are very small relative to the prime p. Since every elliptic
curve E is isomorphic to some E(a,b) with 0 ^ a, b ^ n{E), this leads naturally to the
problem of estimating the size of n(E). This question has been recently considered in [2],
where it is shown that n(E) = O(p3^) for all elliptic curves E over Fp, with an effectively
computable constant. A very similar result has also been obtained in [4]. In this paper,
we shall show that for a "randomly chosen" elliptic curve E, one can improve this to
fj,[E) = O(p2/3); for a precise statement, see Theorem 1 in Section 3 below.

A° in [2], we use exponential sums, but our scheme is somewhat different. For ex-
ample, our proof does not use the Weil bound and can therefore be extended to "elliptic
curves" over arbitrary residue rings. In our estimates, we give explicit constants which
hold for any prime p > 235. By using more sophisticated techniques and better (known)
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bounds, one can easily both improve the constants and lower the limit 235; this is par-
ticularly true for primes in certain congruence classes modulo 4 or 6. In any case, the
condition p > 235 is irrelevant for most cryptographic applications, since primes used in
such constructions are typically several hundred bits long.

2. GENERAL ESTIMATES

Throughout this section, let p > 3 be a fixed prime number, and define e(a;) = e2mxlp

for all xe¥p. Then

(1)

LEMMA 1 . For every integer n > 2 and all a G F* the following inequality holds:

DP R O O F : See [7, Exercise l i b in Chapter VI].

LEMMA 2 . For every positive integer h, the following inequality holds:

h-l

P R O O F : See [7, Exercise l i e in Chapter III].

LEMMA 3 . For all 6 e F*, de Fp, and 1 ^ h ^ p, let

Ub,d,h = {u 6 F* | 0 ̂  bu6 + d < h}.

Then

P R O O F : Using (1), we have

h-l

= MI - p-1)+p~l E e(Xd) E

Since 1 ^ h ^ p, it follows that

A6F;

h- l

i/=0
EeH

(2)
AeF; u€F;
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By Lemma 1, we have for all A € F*:

e(\bu6)

Using this inequality in (2) and applying Lemma 2, we have

and the lemma is proved.

LEMMA 4 . For alla,b€ ¥*p, c,de ¥p,

6p1/2lnp,

, let

If c, d and h are Bxed, then for any 0 < 6 < 1, Vatb,c,d,h is empty for fewer than 5p(p — 1)
pairs (a, b) € F; X F ; provided that p > 235 and h > 4S~^3p2/3-

PROOF: Let b e F*, and note that for every a £ F*,

a.t.cd,/. = {w e WM,h | 0 < au4 + c < / i } ,

where W^h is defined as in Lemma 3. Put k = [/i/2j, and let Afa,b,c,d,h be the number of
solutions to the relation au4 + c = k + vx — u2 with u e U\,^h and 0 < v\, v2 < k. Clearly,
Na,b,c,d,h > 0 implies that Va<i,,c,d,h is non-empty.

Using (1), we have

fc-i
e(X(au'i + c - A: -

= *Ub4Xk2p-1 + p"1 J ^ e(A(c - A)) ^
fc-1

v=0

Thus,

Summing over all a e F*, we have

I fc-1

!!/=0

ifc-i

E
i/=0

A - l
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Using the Cauchy inequality, we estimate

E«
u€Ub,d,h

=p2 E

, " 2

Also,

E
fc-i

<E
i/=0

fc-1

= E E
AeFp fi ,1/2=0

-1 E
Consequently,

(3)

Now let Bs be the set of elements a € F* such that

= pk-

From (3), it follows that # 5 ^ < Sp. On the other hand, for all a € F * \ ^ , we have

hence Afa,b,c,d,h > 0 (and Vaib,c,d,h is non-empty) provided that

(4) #UbAh > 45-2k~y.

Since h is an integer, we have

k = {h/2\ ^{h- l ) /2 ^ 2 < T 2 V / 3 - 1/2 > 31/26-2'3p2/3-

Hence the right hand side of (4) is less than

4<r2(31/2
(T

2/y/3r¥ = (4/3)6-2'V'3 ^ h/3.
On the other hand, by Lemma 3, the left hand side of (4) is greater than h — 6p1|/2 lnp,
and this is at least h/3 provided that h ^ 9p^2lnp. Since 6 < 1, this condition holds
whenever 4p2/3 ^ 9p1/2 lnp, hence for all primes p > 235. The result now follows. D
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3. M A I N R E S U L T

We are now able to prove our main result.

We say that an elliptic curve E is typical if E = E(a,b) with a,b £ F*; otherwise
(that is, if ab = 0) we say that E is atypical. It is well-known that there are precisely
(2p - 4) distinct isomorphism classes of typical elliptic curves over Fp , while the number
of atypical isomorphism classes is

gcd(4,p-l)+gcd(6,p- I K 10.

THEOREM 1 . If p > 235, then for any 0 < 6 < 1, the bound n{E) > 45"2/3p2/3

holds for fewer than 25p distinct isomorphism classes of typical elliptic curves.

PROOF: The isomorphism classes of typical elliptic curves over Fp, collectively de-

noted here by A, are in bijection with the set

S = {{a, b) e F ; x F ; I 4a3 + 27b2 ̂  0}

modulo the equivalence relation on 5 defined by: (a, b) ~ (a', b') if and only if a' = au4

and b' = bu6 for some u € F*. The correspondence between 5 / ~ and A is given by
{a,b)^E(a,b).

In the notation of Lemma 4, take c = d = 0, let 0 < S < 1, and put h = [4(5~2/3p2/3J
+ 1. Observe that

for all (a, b), (a', b') 6 S with (a, b) ~ (a', b'). Thus, the function F given by

F(E) = #Va,6,c,d,h, UE^E(a,b),

is well-defined on A. Note that F(E) / 0 implies n(E) O - 1 < 46~V3p2/3.

Now by Lemma 4, Va,b,c,d,h is empty for fewer than 6p(p-1) elements of S C F* x F*.
Since every equivalence class in S contains precisely (p — l ) / 2 elements, F(E) = 0 for
fewer than 2Sp classes E G A. D

4. R E M A R K S

It is easy to see that for any 7 > I61/3 = 2.519. . . and all sufficiently large p (depend-
ing on 7), the bound n(E) > j6~2/3p2/3 holds for fewer than 26p distinct isomorphism
classes of typical elliptic curves.

One can also identify F p with the set {0, ± 1 , ± 2 , . . . , ±{p - l ) / 2 } and define

= min|max{|a|, |6|}|a,6eFp, E(a,b) ^

Then the result of Theorem 1 extends to Ho(E) with slightly better values for the con-
stants.
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The arguments of [2] show that the bounds fi(E) - o(p1/2) and no(E) = o{p1l2)

cannot be valid for almost all typical elliptic curves. It would be very interesting to
narrow the gap between this lower bound of order p1/2 and our upper bound of order
p2/3.

We also remark that in the case of atypical curves much stronger results can be
obtained with the help of character sums. Indeed, the Burgess bound on character sums
implies that n(E) = O(pllA). In fact, using the results of [3] or [5] one can easily derive
that for such curves n{E) = O(p1^i~c) for some non-negative c > 0. Also, from the bound
of multiplicative character sums in Chapter 13 of [6], which holds under the assumption
of the Extended Riemann Hypothesis, one can derive that n(E) — o(ip(p) log2p) for any
function ip(p) —> oo.

Finally, it would be very interesting to see whether our arguments could be combined
with the methods of [4] to improve the error term in the asymptotic formula given in [4].
We recall that the results of [4] are also based on studying "small" representatives in the
same family of curves that we consider in this paper. Although the obvious attack on
this question fails, we hope that by further developing our arguments, such a goal might
be attained.
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