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Abstract

Today’s economy, production activity, and our life are sustained by social and technological

network infrastructures, while new threats of network attacks by destructing loops have been

found recently in network science. We inversely take into account the weakness, and propose

a new design principle for incrementally growing robust networks. The networks are self-

organized by enhancing interwoven long loops. In particular, we consider the range-limited

approximation of linking by intermediations in a few hops, and show the strong robustness in

the growth without degrading efficiency of paths. Moreover, we demonstrate that the tolerance

of connectivity is reformable even from extremely vulnerable real networks according to our

proposed growing process with some investment. These results may indicate a prospective

direction to the future growth of our network infrastructures.

Keywords: coexistence of efficiency and robustness, onion-like structure, long-distance relations,

interwoven loops, unselfish self-organization

1 Introduction

Social and technological networks for communication, collaboration, trading, travel,

or supply chain become more and more important, since their systems support

our daily life and economy. The connections between nodes facilitate information

deliveries, physical logistics, and energy supplies. Moreover, through some interme-

diations, the connections sometimes lead to new business chances, acquaintanceship,

or remote control of the infrastructures efficiently. Some case studies in organization

theory such as the rapid recovery of Toyota group’s supply chain from a large fire

accident of their subcontract plants (Nishiguchi & Beaudet, 1998; Nishiguchi, 2007),

world-wide economic networks with expanding business chances by Wenzhou people

in China (Nishiguchi, 2007), and the brain circulation system known as Silicon Valley

(SV) model for developing innovational high-tech industry with market opportunities

by immigrant engineers (Saxenian, 2007) have suggested the importance of long-

distance relations for both robustness of connectivity and efficiency of path in a

network. The established connections via intermediations probably work well for

managing cross-border operations.

On the other hand, many social, technological, and biological infrastructural

networks have a common scale-free (SF) structure (Barabási et al., 1999) gen-

erated by the selfish preferential attachment referred to as rich-get-richer rule

in consciously/unconsciously considering efficiency of paths between two nodes
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connected within a few hops. The SF networks also have an extreme vulnerability

against intentional attacks (Albert et al., 2000). However, in these several years by

percolation analyses, it has been clarified that onion-like topological structure with

positive degree–degree correlations gives the optimal robustness even for the attacks

in SF networks (Schneider et al., 2011; Tanizawa et al., 2012). Based on a natural

but unselfish rule, onion-like networks can be incrementally grown by applying

cooperative partial copying and adding shortcut (Hayashi, 2014, 2016a) instead

of the expensive whole rewiring (Wu & Holme, 2011) or hierarchically expanding

outer ring (Sampaio Filho et al., 2015) for enhancing the positive degree–degree

correlations. One of the drawback is that the robustness is weak in early stage of

the growth (Hayashi, 2016a). While none of incremental generation of networks

has been so far based on interwoven loops, new threats of network attacks by

destructing loops have been found recently (Morone & Makse, 2015; Mugisha &

Zhou, 2016). They give severer damage than the conventional intentional attacks

(Albert et al., 2000), and can be easily performed. One is Collective Influence (CI)

attack (Morone & Makse, 2015) considered for a global optimization to identifying

the most influence nodes called influencers in information spreading. Another is

Belief Propagation (BP) attack (Mugisha & Zhou, 2016) derived from a message-

passing approximation algorithm rooted by the spin glass model in statistical physics

for the Feedback Vertex Set (FVS) problem in belonging to NP-hard (Karp, 1972;

Kempe et al., 2003).

Inversely taking into account the weakness caused by the CI and BP attacks,

we propose a new design principle for generating robust onion-like networks in

focusing on enhancing of long loops, whose key factor is long-distance relation

inspired from the organization theory (Nishiguchi, 2007). Furthermore, we consider

a practical approximation of the network generation with moderately long loops,

which is based on range-limited intermediations for finding linked nodes without

large costs or efforts in the growth.

2 Self-organized growing network by a pair of attachments

We propose a self-organized growing network by enhancing long loops. After

explaining the basic model, we consider the realistic range-limited approximation

in Section 2.1. We estimate the degree distribution in our proposed network in

Section 2.2.

2.1 Basic model and the practical approximation

We explain a basic model of self-organized growing network by enhancing long

loops. At each time step of growing, a new node is added and connects to existing

nodes. As the connection rule for even number m links emanated from the new

node, we introduce a pair of attachments referred to as random and long distance

attachments (RLD-A) or preferential and long distance attachments (PLD-A). The

difference of the connection rule from that in the well-known Barabási–Albert (BA)

model (Barabási et al., 1999) is a pair of attachments with long distance attachment.

As shown in Figure 1(a), the following pair of attachments is repeated in m/2 times

at each time step.
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Fig. 1. Topological properties of the proposed networks. (a) In the case of m = 4, there are

two pairs of attachments represented by green and blue lines from a new node added at each

time step. The green node is at the end of the longest path represented by dashed-line in the

shortest paths counted by hops from the blue node. The furthest node is easily findable by a

labeling method. Once a link is generated, it is undirected. In PLD-A, the destination node of

blue line is chosen with a probability proportional to its degree, instead of random selection in

RLD-A. In MED, the destination node of green line is chosen in the μ+ 1th neighbors from

the blue node, instead of the furthest node in RLD-A. (b) Example of onion-like structure

by RLD-A for m = 4 at N = 200. The circle size of node is proportional to its degree.

The structure is visualized at the positions as node degrees become smaller from core to

peripheral. (Color online)

RLD-A: One of link destination is uniformly randomly chosen as encountering, and

another link destination is the furthest node from the chosen node. When there

are several candidates of the furthest with a same distance counted by hops, one

of them is randomly selected. Some kind of randomness is useful to avoid fixed

weak-points in the growth.

PLD-A: For the comparison with RLD-A, instead of uniformly random selection,

one of the pair is a preferentially chosen node with a probability proportional

to its degree (Barabási et al., 1999). Another link destination is the furthest node

from the preferentially chosen node.

For attached even number m links, m/2 loops through the pair of nodes are created

at each time step. The interwoven loops via new node are significant for m � 4 as

shown in Sections 3 and 4. The minimum m = 4 is corresponded to the least effort

of attachment linking to be strongly robust network in our growing method. Such

connection rule in Figure 1(a) was not noticed because of the lack of emphasis

on loops, but the importance of the part of long distance relation was covertly

suggested in organization theory (Nishiguchi, 2007).

Moreover, since range-limited approach is useful for efficiently investigating global

property of network such as influencer (Morone & Makse, 2015), centrality (Ercsey-

Ravasz et al., 2012), or random percolation (Radicchi & Castellano, 2016), we apply

it for generating robust networks. We consider a range-limited approximation of

RLD-A as random and intermediated attachments (MED).

MED: Instead of the furthest node, we select a distant node to the extent of a few

hops via intermediations from the randomly chosen pair node. Intermediations in

one hop mean attachments to the 2nd neighbors of the randomly chosen node,

intermediations in two hops mean ones to the 3rd neighbors, and intermediations
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Fig. 2. Estimation of exponential tail of degree distribution. (a) Degree distribution p(k) in

the average over 100 samples of our networks at N = 5, 000. Thin orange and cyan lines

guide the exponential tails. (b) The cases of MED for μ = 2, 3, 4. (c) Time course of degree

ki(t) of node i in the average over 100 samples of our networks. The thick lines from top to

bottom (red, green, light blue for m = 4, or cyan, yellow, blue for m = 2) denote ki(t) of node

i = 1, 10, and 100 inserted at the birth times ti = i − m > 0. Thin orange and cyan lines guide

O(log(t)). (Color online)

in μ hops mean ones to the μ + 1th neighbors. When μ is small, the attachments

to a few hops-th neighbors have reality without large connection costs or efforts.

If a same destination node in RLD-A, PLD-A, or MED is chosen, other selection

of pair is tried due to the prohibition of multiple links between two nodes.

2.2 Estimation of degree distribution

We consider growing networks with a same condition of the total number M =

m(N − m) + m(m − 1)/2 of links for size N: total number of nodes at time step

t = N − m. As the initial configuration, we set a complete graph of N0 = m nodes

and M0 = m(m− 1)/2 links at t = 0. Figure 1(b) shows onion-like structure in which

older nodes form the core while younger nodes surround it. Figure 2(c) justifies that

older nodes get more links. Moreover, we can derive exponential tails of degree

distributions p(k) by the asymptotic approximation (Hayashi, 2016b) as follows. The

invariant ordering kn(t) < kn−1(t) < · · · < k1(t) hold for large t in parallel curves in

Figure 2(c). Since the time course of degree of node i follows ki(t) ∼ log(t)/β as a
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monotone increasing function of t with a constant β > 0, we obtain

ti

t
=

eβki

eβki(t)

p(ki(t) < k) = p

(
ti >

eβki

eβk
t

)
=

(
1 − eβki

eβk

)
t

N0 + t

p(k) =
∂p((ki(t) < k)

∂k
∼ e−βk

Indeed, the orange and cyan lines guide log(t) and 2 log(t) in Figure 2(c), the

estimated same color lines of e−k and e−k/2 are fitting with the tails of p(k) in

Figure 2(a). The largest degree is bounded around 20–35 without heavy connection

load as on hub nodes in SF structure of many real networks. Figure 2(b) shows that

the range-limited cases of MED in μ = 2, 3, 4 intermediations have slightly deviated

but similar exponential tails of p(k).

3 Strong robustness and the small-world effect

For our proposed networks, we investigate the robustness index

R
def
=

1

N

1∑
q=1/N

S(q)

where S(q) denotes the number of nodes included in the giant component (GC as

the largest cluster) after removing qN nodes, q is a fraction of removed nodes by

High Degree Adaptive (HDA), CI for l = 3 layer (Morone & Makse, 2015), and

BP (Mugisha & Zhou, 2016) attacks. As in appendix or Morone & Makse (2015)

and Mugisha & Zhou (2016), the highest value of CIl(i) in Equation (A4) or q0
i in

Equations (A5)–(A9) to be removed is recalculated after each node removal. Note

that the maximum R � 0 is 0.5 in general. The following results are insensitive

for varying values of inverse temperature x = 7 and 100 rounds of the message-

passing (Mugisha & Zhou, 2016), and there is no difference for l � 3 in CI attacks.

Figure 3(a) shows that our networks by RLD-A for m = 4 have strong robustness

R > 0.3 even in the early stage of growth, while Figure 3(b) shows that R is lower

in the conventional SF networks by BA model. The networks by PLD-A show the

intermediate R values. In Figure 3(c) for m = 2, these lines fall in overall, but it

is invariant that the ordering of damage by attacks is BP > CI3 > HDA whose

differences are very small. Each value of R is almost constant in the growing at least

from the initial complete graph. In the range-limited cases of MED in μ = 2, 3, 4

intermediations, we obtain 0.31 < R < 0.35 and 0.28 < R < 0.34 against HDA and

BP attacks, respectively. Figure 4(a) and (b) shows the relative size S(q)/N with the

sudden breakdowns by BP attacks (blue lines) as mentioned in Mugisha & Zhou

(2016). Each of the robustness in Figure 4(a) and (b) for m = 4 is improved from the

corresponding one in Figure 4(c) for m = 2, although larger m requires more links.

We also investigate the assortativity −1 � r � 1 as the Pearson correlation

coefficient for degrees (Newman, 2002).

r
def
=

4M
∑

e(kek
′
e) − [∑

e(ke + k′
e)

]2

2M
∑

e(k
2
e + k′2

e ) − [∑
e(ke + k′

e)
]2
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Fig. 3. Robustness in the growing networks. Robustness index R against HDA, CI3, and BP

attacks vs size N in the networks by (a) RLD-A or PLD-A, (b) BA model for m = 4, and (c)

RLD-A or PLD-A for m = 2. (Color online)

where ke and k′
e denote degrees at both end-nodes of link e and M is the total

number of links. Figure 5(a) shows that our networks by RLD-A for m = 4 (red

line) have high assortativity r > 0.2 as similar to the copying model (Hayashi, 2014,

2016a). However PLD-A is insufficient to create strong correlations. Figure 5(b)

shows that the range-limited cases of MED in μ = 3, 4 (purple and cyan lines) are

close to the case of RLD-A (red line). Although there is no clear criteria for the

value of r in order to be an onion-like network with necessary positive degree-degree

correlations, too large r is unsuitable (Tanizawa et al., 2012). We do not discuss the

optimally robust onion structure, but concern about incrementally growing proper

good onion-like networks self-organized by natural and reasonable attachments.

From Figures 3–5, our networks by RLD-A and MED in μ = 3, 4 for m = 4 have

onion-like structure with both high R and r, but other cases are not. Moreover, they

have efficient small-world property (Watts & Strogatz, 1998): the average shortest

path length is O(log(N)) as shown in Figure 6, even though half links in RLD-A

or MED are created by random attachment without intention to be efficiency. In

the growing from the initial complete graph, the number μ ≈ 3 of intermediations

is at the similar level of the average path length. On average, the length of simple

one-round loop (as shown in Figure 1(a), it consists of the path between blue and

green nodes + the corresponding blue and green links) generated by the pair of

RLD-A or MED becomes short and inexpensive as O(log(N)).
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Fig. 4. Relative size S (q)/N vs fraction q of removed nodes in the networks by (a) RLD-A,

PLD-A, (b) BA for m = 4, and (c) RLD-A, PLD-A, BA for m = 2 at N = 5, 000. The red

curves against HDA attacks are gradually decreased, while blue ones against BP attacks are

suddenly dropped. The yellow-green or black curves against CI3 attacks are the intermediate.

Note that R is defined by the area under the line of S (q)/N. (Color online)

Fig. 5. Degree–degree correlations in the growing networks. Assortativity r as the measure

of correlations for size N in comparison with the networks by (a) RLD-A, PLD-A, and BA

model for m = 2 or m = 4, (b) RLD-A and MED0–4 for m = 4. MED0–4 denote the case of

MED for μ = 0, 1, 2, 3, 4. (Color online)
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Table 1. Basic data of the real networks after converting from each of them to an

undirected graph without multiple links.

Network N0 M0 〈k〉 = 2M0/N0 Average path length Diameter

Facebook 1,899 13,838 14.573 3.055 8

USair 1,574 17,215 21.874 3.115 8

USpower 4,941 6,594 2.669 18.989 46

USair and USpower are abbreviations of US Airport Network and US Power Grid,

respectively. The average path length and diameter are defined by the averaged length

of the shortest paths with the minimum number of hops between two nodes and the longest

length in a network.

Fig. 6. Average path length on the shortest paths counted by hops in our growing networks

by RLD-A. The purple and blue thin lines guide O(log(N)) as the small-world effect. These

results are averaged over 100 samples. (Color online)

4 Virtual test for prospective growth of real networks

As a virtual test for exploring future design of networks, we study the robustness

of our model in growing to onion-like structure from the initial configuration

of real networks1 in Table 1. For these social and technological networks, long

distance connections will be somewhat required in order to seek solution strategies

to undeveloped relationship or inconvenience, and realizable by intermediation or

investment (e.g., for low-cost carrier or innovation of power transmission) in a

trade-off between the benefit and the cost.

This network design in growth is different task from healing or recovering by

rewirings e.g., between second neighbors (Gallos & Fefferman, 2015; Park & Hahn,

2016) in almost constant numbers of nodes and links for a damaged network by

earthquakes or terrorist attacks, etc. Because we focus on a structural change of

network from almost uncorrelated SF to onion-like without hubs in the growth

rather than topologically partial changes by rewirings. We also investigate the

dependence of the initial network structure that is not a complete graph and the

1 http://toreopsahl.com/datasets/
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Fig. 7. Drastically improved robustness against HDA attacks in growing networks from the

initial configuration of real networks. Robustness index R vs N in the growing networks from

the initial (a) Facebook for m = 4, (b) US Airport Network for m = 4, (c) Facebook for

m = 10, (d) US power grid for m = 4, and (e) US power grid for m = 12. (Color online)

initial size N0 on the robustness and degree–degree correlations for our growing

method. Of course, some investments may be required for the growing network in

larger size than the initial real one; however, the virtual test will give a prospective

insight.

In the following, the cases of intermediately destructive CI3 attacks and not

very effective PLD-A are omitted to simplified the discussion. Figures 7(a) and (b)

and 8(a) and (b) show that high robustness against both HDA and BP attacks
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Fig. 8. Drastically improved robustness against BP attacks in growing networks from the

initial configuration of real networks. Robustness index R vs N in the growing networks from

the initial (a) Facebook for m = 4, (b) US Airport Network for m = 4, (c) Facebook for

m = 10, (d) US power grid for m = 4, and (e) US power grid for m = 4 and m = 12. (Color

online)

is obtained with increasing to R > 0.3 from R ≈ 0.1 in initial vulnerable real

networks of Facebook and USair. In Figures 7(c) and (e) and 8(c) and (e), the cases

of m = 10 and m = 12 are investigated for checking the emergence of onion-like

structure with high assortativity r > 0.2. We remark that some range-limited cases

of MED in μ = 3 intermediations (blue lines) have higher R than the cases of

RLD-A with the attachments to the furthest nodes, but the effect is weak in the
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Fig. 9. Assortativity r vs N in growing networks from the initial (a) Facebook for m = 4, (b)

US Airport Network for m = 4, (c) Facebook for m = 10, (d) US Power Grid for m = 4, and

(e) US Power Grid for m = 12. (Color online)

cases of MED in μ = 2 intermediations. If we do not insist onion-like networks,

USpower can be already grown with high robustness before around N ≈ 10, 000

of double size of the initial as shown in Figures 7(d) and (e) and 8(d) and (e). It

suggests a possibility for incrementally growing other robust networks with r < 0

or r ≈ 0 (see Figure 9(d) and (e)) instead of onion-like networks. Figure 9(a)–(c)

shows the increase of degree–degree correlations in increasing values of r in the

growth of Facebook or USair. However, a different behavior of late increasing after
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Fig. 10. Average degree 〈k〉 vs N in the growing networks from the initial (a) Facebook for

m = 4 and m = 10 and US Airport Network for m = 4, (b) US Power Grid for m = 4 and

m = 12. (Color online)

decreasing to negative correlations is obtained in USpower as shown in Figure 9(d)

and (e). Some sort of structural change occurred in the growth. The reason may

be from that USpower includes chain-like parts that induce large diameter, while

Facebook and USair are compact with small diameter as shown in Table 1. We

note that the average path length is monotonously increasing to 4.13 and 4.21 at

N = 10, 000 in Facebook and USair, but decreasing to 4.97 at N = 40,000 in

USpower. These distributions of path lengths are bell-shaped with the peak around

the average length for each size N. In addition, the average path length in USpower

is substantially greater than the number μ of intermediations at least in the early

stage of the growth as shown in Table 1.

From Figures 7–9, an onion-like structure with both high R and r emerges by

RLD-A or MED for μ � 3 intermediations in the growing from Facebook for

m = 10, USair for m = 4, and USpower for m = 12. The growth to onion-like

networks needs more steps as the initial size N0 is larger compared to Facebook or

USair and USpower. We remark that the effect of degree–degree correlations on the

robustness works well in the early stage of the growth with structural change from

real networks; however, the robustness index R is saturated in N > 6, 000 in Figures

7(a)–(c) and 8(a)–(c) and in N > 20, 000 in Figures 7(d) and (e) and 8(d) and (e)

for increasing assortativity r with the increase of correlations in Figure 9. It is also

interesting that the robustness in Figures 7 and 8 is improved in spite of decreasing

average degree 〈k〉 in the growing from Facebook and USair for m = 4 (red and

purple lines) as shown in Figure 10(a). Note that the average degree approaches to

2 × m for N → ∞ in Figure 10.

5 Conclusion

We have proposed a second method for incrementally growing strongly robust onion-

like networks self-organized by more natural and reasonable pair of attachments

than the copying model (Hayashi, 2014, 2016a). In addition, it becomes robust even

in the early stage of the growth, and there is no huge hub whose largest degree

is bounded. Since random attachments make an exponential degree distribution

https://doi.org/10.1017/nws.2017.25 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2017.25


66 Y. Hayashi

(Barabási et al., 1999), the random ones are dominant in the tail for high degrees,

while another intermediated attachments mainly work for low degrees and the

positive correlations among them. In a virtual test for the growing from real

networks with extreme vulnerability, we have shown that the proposed growing

networks have reformable robustness to be future prospective infrastructures. It

is also expected that the range-limited intermediations in a few hops reduce the

Euclidean distances of links embedded on a space.

We emphasize the emergence of robust onion-like networks in enhancing mod-

erately long loops by range-limited MED in a few hops without both degrading

efficiency of paths and large connection costs or efforts. We should remember that the

coexistence of robustness and efficiency has not been realized in many real networks,

and the threat against attacks (Morone & Makse, 2015; Mugisha & Zhou, 2016) is

never decreased rather increased more and more, unless the dependence on selfish

preferential attachment (Barabási et al., 1999) is changed by ourselves. Therefore,

our study suggests that we should discontinue the dependence on selfish rule and

develop the potential of distant connections for the half of links, which may mean

necessary investment for highly reliable connectivity in our network infrastructures

even against intelligent attacks.
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Appendix

We briefly summarize the theoretical background of CI and BP.

For CI, according to Morone & Makse (2015), we consider the optimal im-

munization to prevent disease or information spreading. This is mapped onto the

breakdown problem as minimizing the size of GC of a network. In the GC, after

removing a fraction q of nodes, there are two states represented by the quantity

ni = 1 or ni = 0: node i exists or not. The fraction q is denoted by q = 1− 1
N

∑N
i=1 ni.

The probability νi→j for information spreading is computed in self-consistency

through the following message passing equations

νi→j = ni
[
1 − Πk∈∂i\j(1 − νk→i)

]
(A1)
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where ∂i denotes node i’s set of connecting neighbor nodes, and ∂i\j is the node

subset obtained by removing node j from ∂i. Since the stability condition at the

fixed point of origin for the iterated map of Equation (A1) is given by that the

largest eigenvalue λ(n; q) of the Jacobian matrix

∂νi→j

∂νk→l

∣∣∣∣
νi→j=0

= niBk→l,i→j

is less than one, to find the minimum set of immunization nodes is equivalent to

select the minimum set of removed nodes until satisfying λ(n; q) = 1. Here, Bk→l,i→j

is an element of 2M × 2M non-backtracking (NB) matrix (Hashimoto, 1989) for the

network. At the critical λ(n; qc) = 1, the GC is broken.

Moreover, according to Power Method, we have

λ(n; q) = lim
l→∞

[ |wl(n)|
|w0|

]1/l

(A2)

where wl(n) denotes the vector at the lth iterations by multiplying the Jacobian

matrix for an initial arbitrary nonzero vector w0. The elements of 2M dimensional

vectors wl(n) and w0 are for bidirectional i → j and j → i links. The denominator

|w0| in the right-hand side of Equation (A2) is constant and independent of the set

{ni}. The numerator is approximated by the following expression corresponding to

2l-body problem:

|wl(n)|2 ≈
N∑
i=1

(ki − 1)
∑

j∈∂Ball(i,2l−1)

(
Πk∈P2l−1(i,j)nk

)
(kj − 1) (A3)

where P2l−1(i, j) is the set of nodes belonging to the shortest path of length 2l − 1

connecting i and j nodes, ∂Ball(i, l) denotes the set of nodes on the frontier of the

ball with radius l hops from node i, ki and kj denotes the degrees of nodes i and j.

We remark the factor Πknk = 1 in the parenthesis in the right-hand side of Equation

(A3) when all nodes on the shortest path are not absent, the path is connected. The

above approximation can be extended to the case of even length path to ∂Ball(i, 2l).

Thus, for i = 1, 2, . . . , N, the expression in the right-hand side of Equation (A3) gives

CIl(i)
def
= (ki − 1)

∑
j∈∂Ball(i,l)

(kj − 1) (A4)

This approximation of CI in l hops is categorized in range-limited approach.

Thus, the scalable algorithm for calculating CIl(i) is based on the minimization of

the energy of a many-body system, which is equivalent to find the principal part of

connectivity as the minimal set of nodes that minimize the largest eigenvalue λ(n, q).

The critical transition of the eigenvalue of the NB matrix from one to zero is caused

as the network that consists of a single loop is changed to a tree by a node removal

eventually. Once it becomes a tree, fragmentation to large components occurs by

any node removal. When a network includes more than one loops, the eigenvalue

is greater than one. Thus, it has been pointed out that the best attack strategy is to

destroy the loops (Morone & Makse, 2015)(Supplementary Information). Note that

the NB matrix is intrinsic for enumerating the number of loops on a length basis in

Zeta function of graphs (Hashimoto, 1989).
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For BP, according to Zhou (2013), it is assumed that nodes j ∈ ∂i are mutually

independent of each other when node i is removed. Such approximated tree-like

graph is called as cavity graph. We consider the marginal probability qAi

i for the

state Ai of node i. Since Ai represent the index of root node of i, it is influenced

by the neighboring nodes in the cavity graph after removing node i denoted by \i.
Based on the product of independent marginal probability q

Aj

j→i for the state Aj , we

consider the joint probability

P\i(Aj : j ∈ ∂i) ≈ Πj∈∂iq
Aj

j→i

In the cavity graph, if all nodes j ∈ ∂i are either empty (Aj = 0) or roots (Aj = j),

the added node i can be a root (Ai = i). There are the following exclusive states.

1. Ai = 0: i is empty (removed). Since i is unnecessary as a root, it belongs to

FVS.

2. Ai = i: i becomes its own root.

The state Aj = j of j ∈ ∂i is changeable to Aj = i when node i is added.

3. Ai = k: one node k ∈ ∂i becomes the root of i when it is added, if k is occupied

and all other j ∈ ∂i are either empty or roots.

The corresponding probabilities to the above states are

q0
i

def
=

1

zi
(A5)

qii
def
=

exΠj∈∂i(t)
[
q0
j→i + q

j
j→i

]
zi

qki
def
=

ex
(1−q0

k→i)

q0
k→i+qkk→i

Πj∈∂i(t)
[
q0
j→i + q

j
j→i

]
zi

q0
i→j =

1

zi→j(t)
(A6)

qii→j =
exΠk∈∂i(t)\j

[
q0
k→i + qkk→i

]
zi→j(t)

(A7)

where ∂i(t) denotes node i’s set of connecting neighbor nodes at time t, and x > 0

is a parameter of inverse temperature. We have the normalization constants

zi
def
= 1 + ex

⎡
⎣1 +

∑
k∈∂i(t)

1 − q0
k→i

q0
k→i + qkk→i

⎤
⎦ Πj∈∂i(t)

[
q0
j→i + q

j
j→i

]
(A8)

zi→j(t)
def
= 1 + exΠk∈∂i(t)\j

[
q0
k→i + qkk→i

] ×
⎡
⎣1 +

∑
l∈∂i(t)\j

1 − q0
l→i

q0
l→i + qll→i

⎤
⎦ (A9)

to be satisfied for any i and i → j as

q0
i + qii +

∑
k∈∂i

qki = 1

q0
i→j + qii→j +

∑
k∈∂i

qki→j = 1
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In BP attacks with sudden breakdown (Mugisha & Zhou, 2016), which gives

severer damages than CI and hub attacks, the node deletion process also focus on

the destroy of loops, since the FVS of graph G is a subset of nodes such that if all the

nodes of this set and the attached links are removed from G, the remaining graph will

have no loops (Zhou, 2013). A node with the highest q0
i is chosen as the removed

target at each time step t that consists of a number of rounds by the updating

calculations of Equations (A5)–(A9) in order of random permutation of nodes 1–N.

On the other hand in computer science, to find a suitable node for removing

and inserting into FVS, the largest node of its degree deg(v) minus the number

comp(G− v) of connecting components formed by removing the node v is recursively

chosen in an approximation algorithm (Vazirani, 2001). When several links connect

to a component, pairs of these links form loops through v. Then, the number of them

(precisely the number −1) is not decreased from its degree. The most subtracted

case is only one link connects to a component, then deg(v) − comp(G − v) becomes

0. Thus, deg(v) − comp(G − v) is considered as a characteristic index to delete loops

as many as possible. However, this heuristic approximation method requires large

computation.

https://doi.org/10.1017/nws.2017.25 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2017.25



