Expected Norms of Zero-One Polynomials

Peter Borwein, Kwok-Kwong Stephen Choi, and Idris Mercer

Abstract

Let $\mathcal{A}_{n}=\left\{a_{0}+a_{1} z+\cdots+a_{n-1} z^{n-1}: a_{j} \in\{0,1\}\right\}$, whose elements are called zeroone polynomials and correspond naturally to the 2^{n} subsets of $[n]:=\{0,1, \ldots, n-1\}$. We also let $\mathcal{A}_{n, m}=\left\{\alpha(z) \in \mathcal{A}_{n}: \alpha(1)=m\right\}$, whose elements correspond to the $\binom{n}{m}$ subsets of $[n]$ of size m, and let $\mathcal{B}_{n}=\mathcal{A}_{n+1} \backslash \mathcal{A}_{n}$, whose elements are the zero-one polynomials of degree exactly n.

Many researchers have studied norms of polynomials with restricted coefficients. Using $\|\alpha\|_{p}$ to denote the usual L_{p} norm of α on the unit circle, one easily sees that $\alpha(z)=a_{0}+a_{1} z+\cdots+a_{N} z^{N} \in \mathbb{R}[z]$ satisfies $\|\alpha\|_{2}^{2}=c_{0}$ and $\|\alpha\|_{4}^{4}=c_{0}^{2}+2\left(c_{1}^{2}+\cdots+c_{N}^{2}\right)$, where $c_{k}:=\sum_{j=0}^{N-k} a_{j} a_{j+k}$ for $0 \leq k \leq N$.

If $\alpha(z) \in \mathcal{A}_{n, m}$, say $\alpha(z)=z^{\beta_{1}}+\cdots+z^{\beta_{m}}$ where $\beta_{1}<\cdots<\beta_{m}$, then c_{k} is the number of times k appears as a difference $\beta_{i}-\beta_{j}$. The condition that $\alpha \in \mathcal{A}_{n, m}$ satisfies $c_{k} \in\{0,1\}$ for $1 \leq k \leq n-1$ is thus equivalent to the condition that $\left\{\beta_{1}, \ldots, \beta_{m}\right\}$ is a Sidon set (meaning all differences of pairs of elements are distinct).

In this paper, we find the average of $\|\alpha\|_{4}^{4}$ over $\alpha \in \mathcal{A}_{n}, \alpha \in \mathcal{B}_{n}$, and $\alpha \in \mathcal{A}_{n, m}$. We further show that our expression for the average of $\|\alpha\|_{4}^{4}$ over $\mathcal{A}_{n, m}$ yields a new proof of the known result: if $m=o\left(n^{1 / 4}\right)$ and $B(n, m)$ denotes the number of Sidon sets of size m in $[n]$, then almost all subsets of $[n]$ of size m are Sidon, in the sense that $\lim _{n \rightarrow \infty} B(n, m) /\binom{n}{m}=1$.

1 Introduction and Statement of Main Result

We let \mathcal{A}_{n} denote the set $\left\{a_{0}+a_{1} z+\cdots+a_{n-1} z^{n-1}: a_{j} \in\{0,1\}\right.$ for all $\left.j\right\}$, and we call the elements of \mathcal{A}_{n} zero-one polynomials. There is a natural bijection between the 2^{n} polynomials in \mathcal{A}_{n} and the 2^{n} subsets of $[n]:=\{0,1, \ldots, n-1\}$. Generally, if $\alpha(z) \in \mathcal{A}_{n}$, we define

$$
m:=\alpha(1)=\text { the number of coefficients of } \alpha(z) \text { that are } 1
$$

and we write $\alpha(z)=z^{\beta_{1}}+z^{\beta_{2}}+\cdots+z^{\beta_{m}}$ where $\beta_{1}<\beta_{2}<\cdots<\beta_{m}$, so $\left\{\beta_{1}, \beta_{1}, \ldots, \beta_{m}\right\}$ is the subset of $[n]$ that corresponds to $\alpha(z)$. We let $\mathcal{A}_{n, m}$ denote the set $\left\{\alpha(z) \in \mathcal{A}_{n}: \alpha(1)=m\right\}$, so $\left|\mathcal{A}_{n, m}\right|=\binom{n}{m}$ and $\mathcal{A}_{n}=\mathcal{A}_{n, 0} \cup \mathcal{A}_{n, 1} \cup \cdots \cup \mathcal{A}_{n, n}$. We also define $\mathcal{B}_{n}:=\mathcal{A}_{n+1} \backslash \mathcal{A}_{n}$, so \mathcal{B}_{n} consists of the 2^{n} zero-one polynomials of degree exactly n.

A recurring theme in the literature is the problem of finding a polynomial with "small" norm subject to some restriction on its coefficients. (See [3, Problem 26], [5, Problem 19], or [1, Ch. 4, 15].) In general, for

$$
\begin{equation*}
\alpha(z)=a_{0}+a_{1} z+\cdots+a_{N} z^{N} \in \mathbb{R}[z] \tag{1.1}
\end{equation*}
$$

Received by the editors May 29, 2006.
The research of Peter Borwein and Stephen Choi is supported by NSERC of Canada.
AMS subject classification: Primary: 11B83; secondary: 11C08, 30C10.
(C)Canadian Mathematical Society 2008.
we define the usual L_{p} norms of $\alpha(z)$ on the unit circle:

$$
\|\alpha\|_{p}:=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\alpha\left(e^{i \theta}\right)\right|^{p} d \theta\right)^{1 / p}
$$

where $p \geq 1$ is real. The main result of this paper, which appears as Theorem 4.1 in Section 4, is that if $n \geq 4$ and $m \leq n$, we have

$$
\begin{aligned}
\mathbf{E}_{\mathcal{A}_{n}}\left(\|\alpha\|_{4}^{4}\right) & =\frac{4 n^{3}+42 n^{2}-4 n+3-3(-1)^{n}}{96} \\
\mathbf{E}_{\mathcal{A}_{n, m}}\left(\|\alpha\|_{4}^{4}\right) & =2 m^{2}-m+\frac{2 m^{[4]}}{3(n-3)}+\frac{m^{[3]}(n-m)\left(2 n^{2}-4 n+1-(-1)^{n}\right)}{2 n^{[4]}}, \\
\mathbf{E}_{\mathcal{B}_{n}}\left(\|\alpha\|_{4}^{4}\right) & =\frac{4 n^{3}+66 n^{2}+188 n+87+9(-1)^{n}}{96}
\end{aligned}
$$

where $\mathbf{E}_{\Omega}\left(\|\alpha\|_{4}^{4}\right)$ denotes the average of $\|\alpha\|_{4}^{4}$ over the polynomials in Ω, and the notation $x^{[k]}$ is shorthand for $x(x-1) \cdots(x-k+1)$. This complements results of Newman and Byrnes [7], who found the average of $\|\alpha\|_{4}^{4}$ over the 2^{n} polynomials of the form

$$
\begin{equation*}
a_{0}+a_{1} z+\cdots+a_{n-1} z^{n-1}, \quad a_{j} \in\{+1,-1\} \text { for all } j \tag{1.2}
\end{equation*}
$$

and Borwein and Choi [2], who found (among other things) the average of $\|\alpha\|_{6}^{6}$ and $\|\alpha\|_{8}^{8}$ over the 2^{n} polynomials of the form (1.2), and the average of $\|\alpha\|_{2}^{2},\|\alpha\|_{4}^{4}$, and $\|\alpha\|_{6}^{6}$ over the 3^{n} polynomials of the form

$$
a_{0}+a_{1} z+\cdots+a_{n-1} z^{n-1}, \quad a_{j} \in\{+1,0,-1\} \text { for all } j
$$

2 Autocorrelation

Notice that if α is of the form (1.1) and $|z|=1$, we have

$$
\begin{aligned}
|\alpha(z)|^{2}=\alpha(z) \overline{\alpha(z)} & =\left(a_{0}+a_{1} z+\cdots+a_{N} z^{N}\right)\left(a_{0}+a_{1} \frac{1}{z}+\cdots+a_{N} \frac{1}{z^{N}}\right) \\
& =c_{N} \frac{1}{z^{N}}+\cdots+c_{1} \frac{1}{z}+c_{0}+c_{1} z+\cdots+c_{N} z^{N}
\end{aligned}
$$

where the c_{k} are the so-called (aperiodic) autocorrelations of α, defined for $0 \leq k \leq N$ by $c_{k}:=\sum_{j=0}^{N-k} a_{j} a_{j+k}$. Using the general fact that

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(b_{-M} \frac{1}{z^{M}}+\cdots+b_{-1} \frac{1}{z}+b_{0}+b_{1} z+\cdots+b_{M} z^{M}\right) d \theta=b_{0}, \quad\left(z=e^{i \theta}\right)
$$

we see that for α of the form (1.1), we have

$$
\|\alpha\|_{2}^{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(c_{N} \frac{1}{z^{N}}+\cdots+c_{1} \frac{1}{z}+c_{0}+c_{1} z+\cdots+c_{N} z^{N}\right) d \theta=c_{0}, \quad\left(z=e^{i \theta}\right)
$$

and

$$
\begin{align*}
\|\alpha\|_{4}^{4} & =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(c_{N} \frac{1}{z^{N}}+\cdots+c_{1} \frac{1}{z}+c_{0}+c_{1} z+\cdots+c_{N} z^{N}\right)^{2} d \theta \tag{2.1}\\
& =c_{N}^{2}+\cdots+c_{1}^{2}+c_{0}^{2}+c_{1}^{2}+\cdots+c_{N}^{2}=c_{0}^{2}+2\left(c_{1}^{2}+\cdots+c_{N}^{2}\right), \quad\left(z=e^{i \theta}\right) .
\end{align*}
$$

We further observe that

$$
\begin{aligned}
c_{k}^{2} & =\left(\sum_{j=0}^{N-k} a_{j} a_{j+k}\right)^{2}=\sum_{i=0}^{N-k} a_{i} a_{i+k} \cdot \sum_{j=0}^{N-k} a_{j} a_{j+k}=\sum_{i=0}^{N-k N-k} \sum_{j=0}^{N-k} a_{i} a_{j} a_{i+k} a_{j+k} \\
& =\sum_{i=0}^{N-k} \sum_{j=0}^{N-k} f(i, j) .
\end{aligned}
$$

Noting that $f(i, j):=a_{i} a_{j} a_{i+k} a_{j+k}$ satisfies $f(i, j)=f(j, i)$, we have

$$
\begin{align*}
c_{k}^{2} & =\sum_{i=0}^{N-k} \sum_{j=0}^{N-k} f(i, j)=\sum_{i=0}^{N-k} f(i, i)+2 \sum_{0 \leq i<j \leq N-k} f(i, j) \tag{2.2}\\
& =\sum_{i=0}^{N-k} a_{i}^{2} a_{i+k}^{2}+2 \sum_{0 \leq i<j \leq N-k} a_{i} a_{j} a_{i+k} a_{j+k} .
\end{align*}
$$

If $\alpha(z)=a_{0}+\cdots+a_{n-1} z^{n-1}=z^{\beta_{1}}+\cdots+z^{\beta_{m}} \in \mathcal{A}_{n, m}$, then we have $c_{0}=m$ and c_{k} is the number of j such that a_{j} and a_{j+k} are both 1 and is equal to the number of times k appears as a difference $\beta_{i}-\beta_{j}$. Thus $c_{1}+\cdots+c_{n-1}=m(m-1) / 2$, and since the c_{k} are nonnegative integers, we have

$$
\begin{equation*}
c_{1}^{2}+\cdots+c_{n-1}^{2} \geq c_{1}+\cdots+c_{n-1}=m(m-1) / 2 \tag{2.3}
\end{equation*}
$$

with equality if and only if $c_{k} \in\{0,1\}$ for $1 \leq k \leq n-1$, or in other words, if and only if all differences of pairs of elements of $\left\{\beta_{1}, \ldots, \beta_{m}\right\}$ are distinct. If all differences of pairs of elements of $\left\{\beta_{1}, \ldots, \beta_{m}\right\}$ are distinct, we call $\left\{\beta_{1}, \ldots, \beta_{m}\right\}$ a Sidon set.

Using (2.1), we see that (2.3) and $c_{0}=m$ prove the following.
Proposition 2.1 For any $\alpha(z)=z^{\beta_{1}}+\cdots+z^{\beta_{m}} \in \mathcal{A}_{n, m}$, we have $\|\alpha\|_{4}^{4} \geq 2 m^{2}-m$, with equality if and only if $\left\{\beta_{1}, \ldots, \beta_{m}\right\}$ is a Sidon set.

We observe also that (2.3) implies that $c_{1}^{2}+\cdots+c_{n-1}^{2}-m(m-1) / 2$ is a nonnegative integer, and is zero if and only if $\left\{\beta_{1}, \ldots, \beta_{m}\right\}$ is Sidon.

3 Some Facts and Notation

If Ω denotes $\mathcal{A}_{n}, \mathcal{B}_{n}$, or $\mathcal{A}_{n, m}$, then we turn Ω into a probability space by giving each polynomial $\alpha \in \Omega$ equal weight $p(\alpha)$.

Generally, we will denote a typical element of \mathcal{A}_{n} or $\mathcal{A}_{n, m}$ by

$$
\alpha(z)=a_{0}+a_{1} z+\cdots+a_{n-1} z^{n-1}
$$

and denote a typical element of \mathcal{B}_{n} by $\alpha(z)=a_{0}+a_{1} z+\cdots+a_{n-1} z^{n-1}+z^{n}$. As in Section 1, if $\alpha \in \mathcal{A}_{n, m}$, we also write

$$
\alpha(z)=z^{\beta_{1}}+z^{\beta_{2}}+\cdots+z^{\beta_{m}}
$$

where $\beta_{1}<\beta_{2}<\cdots<\beta_{m}$.
If Ω is one of the three spaces $\mathcal{A}_{n}, \mathcal{B}_{n}$, or $\mathcal{A}_{n, m}$ and X is a random variable on Ω, we of course have $\mathbf{E}_{\Omega}(X)=\sum_{\alpha \in \Omega} X(\alpha) p(\alpha)$, and we will sometimes omit the subscript Ω if it is clear from the context what probability space we are considering.

Two facts we will use that are each immediate from first principles are Markov's inequality, $\operatorname{Pr}[X \geq a] \leq \mathrm{E}(X) / a$, where X is a nonnegative real random variable, and linearity of expectation, $\mathbf{E}\left(X_{1}+\cdots+X_{k}\right)=\mathbf{E}\left(X_{1}\right)+\cdots+\mathbf{E}\left(X_{k}\right)$, which holds regardless of dependence or independence of the X_{i}.

4 Calculation of $\mathrm{E}\left(\|\alpha\|_{4}^{4}\right)$

Let $j_{1}, j_{2}, j_{3}, j_{4}$ denote distinct integers. We begin this section by finding some averages of products of $a_{j_{i}}$ that we will need later. First, suppose our probability space Ω is \mathcal{A}_{n}. We then have

$$
\begin{equation*}
\mathbf{E}\left(a_{j_{1}} a_{j_{2}}\right)=\frac{1}{2^{n}}\left(\text { number of } \alpha \in \mathcal{A}_{n} \text { such that } a_{j_{1}}=a_{j_{2}}=1\right)=\frac{2^{n-2}}{2^{n}}=\frac{1}{4} \tag{4.1}
\end{equation*}
$$

and by similar reasoning, we have

$$
\begin{equation*}
\mathbf{E}\left(a_{j_{1}} a_{j_{2}} a_{j_{3}}\right)=1 / 8, \quad \mathbf{E}\left(a_{j_{1}} a_{j_{2}} a_{j_{3}} a_{j_{4}}\right)=1 / 16 \tag{4.2}
\end{equation*}
$$

Now suppose our probability space Ω is $\mathcal{A}_{n, m}$. We then have

$$
\begin{align*}
\mathbf{E}\left(a_{j_{1}} a_{j_{2}}\right) & =\frac{1}{\binom{n}{m}}\left(\text { number of } \alpha \in \mathcal{A}_{n, m} \text { such that } a_{j_{1}}=a_{j_{2}}=1\right) \tag{4.3}\\
& =\frac{\binom{n-2}{m-2}}{\binom{n}{m}}=\frac{m(m-1)}{n(n-1)}=\frac{m^{[2]}}{n^{[2]}}
\end{align*}
$$

and by similar reasoning, we have

$$
\begin{equation*}
\mathbf{E}\left(a_{j_{1}} a_{j_{2}} a_{j_{3}}\right)=m^{[3]} / n^{[3]}, \quad \mathbf{E}\left(a_{j_{1}} a_{j_{2}} a_{j_{3}} a_{j_{4}}\right)=m^{[4]} / n^{[4]} \tag{4.4}
\end{equation*}
$$

We note that we need $n \geq 4$ in order for all expressions in (4.3) and (4.4) to be defined. For $\Omega=\mathcal{A}_{n, m}$, the case $n \leq 3$ will be treated separately.

Now if Ω is either of the probability spaces \mathcal{A}_{n} or $\mathcal{A}_{n, m}$, then equation (2.2) gives

$$
\begin{equation*}
c_{k}^{2}=\sum_{i=0}^{n-k-1} a_{i} a_{i+k}+2 \sum_{0 \leq i<j \leq n-k-1} a_{i} a_{i+k} a_{j} a_{j+k} \tag{4.5}
\end{equation*}
$$

We define $\lambda:=n-k$ and also define

$$
\begin{align*}
S & :=\sum_{i=0}^{\lambda-1} a_{i} a_{i+k}, \tag{4.6}\\
T & :=\sum_{0 \leq i<j \leq \lambda-1} a_{i} a_{j} a_{i+k} a_{j+k}, \tag{4.7}
\end{align*}
$$

which of course implies $c_{k}^{2}=S+2 T$. If $k=0$, then $c_{k}^{2}=m^{2}$. So if $\Omega=\mathcal{A}_{n, m}$, we have simply $\mathbf{E}\left(c_{0}^{2}\right)=m^{2}$, whereas if $\Omega=\mathcal{A}_{n}$, we have

$$
\begin{equation*}
\mathbf{E}\left(c_{0}^{2}\right)=\sum_{m=0}^{n} \frac{\binom{n}{m}}{2^{n}} m^{2} \tag{4.8}
\end{equation*}
$$

It is an exercise to see that the right side of (4.8) evaluates to $\left(n^{2}+n\right) / 4$. Alternatively, we may observe that c_{0} has a binomial distribution with parameters n and $1 / 2$, which implies

$$
\begin{equation*}
\mathbf{E}\left(c_{0}^{2}\right)=\operatorname{Var}\left(c_{0}\right)+\mathbf{E}\left(c_{0}\right)^{2}=n \cdot \frac{1}{2} \cdot \frac{1}{2}+\left(n \cdot \frac{1}{2}\right)^{2}=\frac{n^{2}+n}{4} \tag{4.9}
\end{equation*}
$$

Having found $\mathbf{E}\left(c_{0}^{2}\right)$ for $\Omega=\mathcal{A}_{n, m}$ and for $\Omega=\mathcal{A}_{n}$, we now shift our attention to $\mathbf{E}\left(c_{k}^{2}\right)$ for $k \neq 0$.

Assume $k \neq 0$, and observe that (4.5), (4.6), and (4.7) (and linearity of expectation) give us

$$
\begin{equation*}
\mathbf{E}\left(c_{k}^{2}\right)=\mathbf{E}(S)+2 \mathbf{E}(T)=\sum_{i=0}^{\lambda-1} \mathbf{E}\left(a_{i} a_{i+k}\right)+2 \sum_{0 \leq i<j \leq \lambda-1} \mathbf{E}\left(a_{i} a_{j} a_{i+k} a_{j+k}\right) \tag{4.10}
\end{equation*}
$$

Since $k \neq 0$, each of the λ terms in the sum $\mathbf{E}(S)$ is of the form $\mathbf{E}\left(a_{j_{1}} a_{j_{2}}\right)$ where $j_{1} \neq$ j_{2}. We thus have

$$
\mathbf{E}(S)= \begin{cases}\lambda / 4 & \text { if } \Omega=\mathcal{A}_{n} \tag{4.11}\\ \lambda m^{[2]} / n^{[2]} & \text { if } \Omega=\mathcal{A}_{n, m}\end{cases}
$$

by (4.1) and (4.2). As for the $\binom{\lambda}{2}$ terms in the sum $\mathbf{E}(T)$, each term is of the form $\mathbf{E}\left(a_{i} a_{j} a_{i+k} a_{j+k}\right)$. Since $k \neq 0$ and $i<j$, the four subscripts $i, j, i+k, j+k$ constitute either three distinct integers (if $j=i+k$) or four distinct integers (if $j \neq i+k$). If $\{i, j, i+k, j+k\}$ consists of three distinct integers j_{1}, j_{2}, j_{3} where j_{3} is the one that is
"repeated", then, since $a_{j} \in\{0,1\}$ for all j, we have $\mathbf{E}\left(a_{i} a_{j} a_{i+k} a_{j+k}\right)=\mathbf{E}\left(a_{j_{1}} a_{j_{2}} a_{j_{3}}^{2}\right)=$ $\mathbf{E}\left(a_{j_{1}} a_{j_{2}} a_{j_{3}}\right)$, whereas, of course, if $\{i, j, i+k, j+k\}$ consists of four distinct integers, then $\mathbf{E}\left(a_{i} a_{j} a_{i+k} a_{j+k}\right)$ is of the form $\mathbf{E}\left(a_{j_{1}} a_{j_{2}} a_{j_{3}} a_{j_{4}}\right)$. Therefore, we now ask the question: For which of the $\binom{\lambda}{2}$ terms in the $\operatorname{sum} \mathbf{E}(T)$ does the set $\{i, j, i+k, j+k\}$ consist of only three distinct integers?

For some $i \in\{0,1, \ldots, \lambda-1\}$, there is exactly one j satisfying both $i<j \leq \lambda-1$ and $j=i+k$, and for other values of i, there is no such j. We will say that i is of "type I" if the former criterion holds, and is of "type II" if the latter criterion holds. An integer i is of type I if and only if $i+k<\lambda$, or equivalently, $i<\lambda-k=n-2 k$. If $n-2 k \leq 0$ (i.e., if $k \geq\lceil n / 2\rceil$), then $i<n-2 k$ never happens, i.e., no i is of type I and so all of the $\binom{\lambda}{2}$ terms in the sum $\mathbf{E}(T)$ are of the form $\mathbf{E}\left(a_{j_{1}} a_{j_{2}} a_{j_{3}} a_{j_{4}}\right)$. On the other hand, if $n-2 k>0$ (i.e., if $k<\lceil n / 2\rceil$), then $i<n-2 k=\lambda-k$ sometimes happens; namely, it happens if and only if i is one of the $\lambda-k$ integers $0,1, \ldots, \lambda-k-1$. In that case, each of those $\lambda-k$ values of i is of type I , which implies that precisely $\lambda-k$ of the $\binom{\lambda}{2}$ terms in the sum $\mathbf{E}(T)$ are of the form $\mathbf{E}\left(a_{j_{1}} a_{j_{2}} a_{j_{3}}\right)$ and the remaining terms are of the form $\mathbf{E}\left(a_{j_{1}} a_{j_{2}} a_{j_{3}} a_{j_{4}}\right)$.

This implies that we have

$$
\mathbf{E}(T)= \begin{cases}\binom{\lambda}{2} \mathbf{E}\left(a_{j_{1}} a_{j_{2}} a_{j_{3}} a_{j_{4}}\right) & \text { if } k \geq\lceil n / 2\rceil, \\ \binom{\lambda}{2} \mathbf{E}\left(a_{j_{1}} a_{j_{2}} a_{j_{3}} a_{j_{4}}\right) & \\ +(\lambda-k)\left[\mathbf{E}\left(a_{j_{1}} a_{j_{2}} a_{j_{3}}\right)-\mathbf{E}\left(a_{j_{1}} a_{j_{2}} a_{j_{3}} a_{j_{4}}\right)\right] & \text { if } k<\lceil n / 2\rceil .\end{cases}
$$

Thus, if $\Omega=\mathcal{A}_{n}$, then

$$
\mathbf{E}(T)= \begin{cases}\binom{\lambda}{2} / 16 & \text { if } k \geq\lceil n / 2\rceil \\ \binom{\lambda}{2} / 16+(\lambda-k) / 16 & \text { if } k<\lceil n / 2\rceil\end{cases}
$$

and hence by (4.10) and (4.11),

$$
\mathbf{E}\left(c_{k}^{2}\right)= \begin{cases}\lambda / 4+\lambda(\lambda-1) / 16 & \text { if } k \geq\lceil n / 2\rceil, \\ \lambda / 4+\lambda(\lambda-1) / 16+2(\lambda-k) / 16 & \text { if } k<\lceil n / 2\rceil .\end{cases}
$$

On the other hand, if $\Omega=\mathcal{A}_{n, m}$, then

$$
\mathbf{E}(T)= \begin{cases}\binom{\lambda}{2} m^{[4]} / n^{[4]} & \text { if } k \geq\lceil n / 2\rceil \\ \binom{\lambda}{2} m^{[4]} / n^{[4]}+(\lambda-k)\left[m^{[3]} / n^{[3]}-m^{[4]} / n^{[4]}\right] & \text { if } k<\lceil n / 2\rceil\end{cases}
$$

and hence

$$
\mathbf{E}\left(c_{k}^{2}\right)= \begin{cases}\lambda \frac{m^{[2]}}{n^{[2]}}+\lambda(\lambda-1) \frac{m^{[4]}}{n^{[4]}} & \text { if } k \geq\lceil n / 2\rceil, \\ \lambda \frac{m^{[2]}}{n^{2]}}+\lambda(\lambda-1) \frac{m^{[4]}}{n^{4]}}+2(\lambda-k)\left[\frac{m^{[3]}}{n^{[3]}}-\frac{m^{[4]}}{n^{4]}}\right] & \text { if } k<\lceil n / 2\rceil .\end{cases}
$$

It then follows that if $\Omega=\mathcal{A}_{n}$, we have

$$
\begin{equation*}
\mathbf{E}\left(c_{1}^{2}+\cdots+c_{n-1}^{2}\right)=\sum_{k=1}^{n-1}\left(\frac{\lambda}{4}\right)+\sum_{k=1}^{n-1}\left(\frac{\lambda(\lambda-1)}{16}\right)+\sum_{k=1}^{\lceil n / 2\rceil-1}\left(\frac{2(\lambda-k)}{16}\right), \tag{4.12}
\end{equation*}
$$

whereas if $\Omega=\mathcal{A}_{n, m}$, we have

$$
\begin{align*}
\mathbf{E}\left(c_{1}^{2}+\cdots+c_{n-1}^{2}\right)=\sum_{k=1}^{n-1}\left(\lambda \frac{m^{[2]}}{n^{[2]}}\right) & +\sum_{k=1}^{n-1}\left(\lambda(\lambda-1) \frac{m^{[4]}}{n^{[4]}}\right) \tag{4.13}\\
& +\sum_{k=1}^{\lceil n / 2\rceil-1}\left(2(\lambda-k)\left[\frac{m^{[3]}}{n^{[3]}}-\frac{m^{[4]}}{n^{[4]}}\right]\right) .
\end{align*}
$$

Recalling that λ is simply shorthand for $n-k$, it is straightforward to verify that

$$
\sum_{k=1}^{n-1} \lambda=\frac{n(n-1)}{2}, \quad \sum_{k=1}^{n-1}\left(\lambda^{2}-\lambda\right)=\frac{n(n-1)(n-2)}{3}
$$

and that

$$
\sum_{k=1}^{\lceil n / 2\rceil-1} 2(\lambda-k)= \begin{cases}n(n-2) / 2 & \text { if } n \text { is even } \\ (n-1)^{2} / 2 & \text { if } n \text { is odd }\end{cases}
$$

So, if $\Omega=\mathcal{A}_{n}$, then from (4.12) we get

$$
\begin{aligned}
\mathbf{E}\left(c_{1}^{2}+\cdots+c_{n-1}^{2}\right) & = \begin{cases}\frac{1}{4} \cdot \frac{n(n-1)}{2}+\frac{1}{16} \cdot \frac{n(n-1)(n-2)}{3}+\frac{1}{16} \cdot \frac{n(n-2)}{2} & \text { if } n \text { is even }, \\
\frac{1}{4} \cdot \frac{n(n-1)}{2}+\frac{1}{16} \cdot \frac{n(n-1)(n-2)}{3}+\frac{1}{16} \cdot \frac{(n-1)^{2}}{2} & \text { if } n \text { is odd },\end{cases} \\
& = \begin{cases}\left(2 n^{3}+9 n^{2}-14 n\right) / 96 & \text { if } n \text { is even }, \\
\left(2 n^{3}+9 n^{2}-14 n+3\right) / 96 & \text { if } n \text { is odd }\end{cases}
\end{aligned}
$$

which, using (2.1) and (4.9), implies

$$
\mathbf{E}\left(\|\alpha\|_{4}^{4}\right)= \begin{cases}\frac{n^{2}+n}{4}+\frac{2 n^{3}+9 n^{2}-14 n}{48}=\frac{2 n^{3}+21 n^{2}-2 n}{48} & \text { if } n \text { is even } \\ \frac{n^{2}+n}{4}+\frac{2 n^{3}+9 n^{2}-14 n+3}{48}=\frac{2 n^{3}+21 n^{2}-2 n+3}{48} & \text { if } n \text { is odd }\end{cases}
$$

or equivalently

$$
\begin{equation*}
\mathbf{E}_{\mathcal{A}_{n}}\left(\|\alpha\|_{4}^{4}\right)=\frac{4 n^{3}+42 n^{2}-4 n+3-3(-1)^{n}}{96} \tag{4.14}
\end{equation*}
$$

On the other hand, if $\Omega=\mathcal{A}_{n, m}$, then from (4.13) we get

$$
\begin{aligned}
\mathbf{E}\left(c_{1}^{2}\right. & \left.+\cdots+c_{n-1}^{2}\right) \\
& = \begin{cases}\frac{m^{[2]}}{n^{[2]}} \cdot \frac{n(n-1)}{2}+\frac{m^{[4]}}{n^{[4]}} \cdot \frac{n(n-1)(n-2)}{3}+\left(\frac{m^{[3]}}{n^{[3]}}-\frac{m^{[4]}}{n^{[4]}}\right) \cdot \frac{n(n-2)}{2} & \text { if } n \text { is even, } \\
n^{[2]} & \frac{m^{[4]}}{n^{[4]}} \cdot \frac{n(n-1)(n-2)}{3}+\left(\frac{m^{33]}}{n^{[3]}}-\frac{m^{[4]}}{n^{4]}}\right) \cdot \frac{(n-1)^{2}}{2} \\
\text { if } n \text { is odd, }\end{cases} \\
& = \begin{cases}\binom{m}{2}+m^{[4]} /(3(n-3))+m^{[3]}(n-m)\left(n^{2}-2 n\right) /\left(2 n^{[4]}\right) & \text { if } n \text { is even, } \\
\binom{m}{2}+m^{[4]} /(3(n-3))+m^{[3]}(n-m)\left(n^{2}-2 n+1\right) /\left(2 n^{[4]}\right) & \text { if } n \text { is odd, },\end{cases}
\end{aligned}
$$

which, using (2.1), implies

$$
\mathbf{E}\left(\|\alpha\|_{4}^{4}\right)= \begin{cases}2 m^{2}-m+\frac{2 m^{[4]}}{3(n-3)}+\frac{m^{[3]}(n-m)\left(n^{2}-2 n\right)}{n^{[4]}} & \text { if } n \text { is even } \\ 2 m^{2}-m+\frac{2 m^{[4]}}{3(n-3)}+\frac{m^{[3]}(n-m)\left(n^{2}-2 n+1\right)}{n^{4]}} & \text { if } n \text { is odd }\end{cases}
$$

or equivalently

$$
\begin{equation*}
\mathbf{E}_{\mathcal{A}_{n, m}}\left(\|\alpha\|_{4}^{4}\right)=2 m^{2}-m+\frac{2 m^{[4]}}{3(n-3)}+\frac{m^{[3]}(n-m)\left(2 n^{2}-4 n+1-(-1)^{n}\right)}{2 n^{[4]}} \tag{4.15}
\end{equation*}
$$

Notice that if m is fixed and n approaches infinity, then $\mathbf{E}_{\mathcal{A}_{n, m}}\left(\|\alpha\|_{4}^{4}\right)$ approaches $2 m^{2}-m$, i.e., for fixed m and large n, we expect a random $\alpha \in \mathcal{A}_{n, m}$ to correspond to a Sidon set, as is consistent with intuition.

If $\Omega=\mathcal{B}_{n}$, since $\mathcal{B}_{n}:=\mathcal{A}_{n+1} \backslash \mathcal{A}_{n}$, we get

$$
\begin{aligned}
\mathbf{E}_{\mathcal{B}_{n}}\left(\|\alpha\|_{4}^{4}\right) & =\frac{1}{2^{n}} \sum_{\alpha \in \mathcal{B}_{n}}\|\alpha\|_{4}^{4}=2 \mathbf{E}_{\mathcal{A}_{n+1}}\left(\|\alpha\|_{4}^{4}\right)-\mathbf{E}_{\mathcal{A}_{n}}\left(\|\alpha\|_{4}^{4}\right) \\
& =\frac{4 n^{3}+66 n^{2}+188 n+87+9(-1)^{n}}{96}
\end{aligned}
$$

by (4.14). Therefore we have proved
Theorem 4.1 If $m \leq n$, we have

$$
\begin{aligned}
& \mathbf{E}_{\mathcal{A}_{n}}\left(\|\alpha\|_{4}^{4}\right)=\frac{4 n^{3}+42 n^{2}-4 n+3-3(-1)^{n}}{96} \\
& \mathbf{E}_{\mathcal{A}_{n, m}}\left(\|\alpha\|_{4}^{4}\right)=2 m^{2}-m+\frac{2 m^{[4]}}{3(n-3)}+\frac{m^{[3]}(n-m)\left(2 n^{2}-4 n+1-(-1)^{n}\right)}{2 n^{[4]}} \\
& \quad(\text { if } n \geq 4), \\
& \mathbf{E}_{\mathcal{B}_{n}}\left(\|\alpha\|_{4}^{4}\right)=\frac{4 n^{3}+66 n^{2}+188 n+87+9(-1)^{n}}{96} .
\end{aligned}
$$

For completeness, we also determine $\mathbf{E}_{\mathcal{A}_{n, m}}\left(\|\alpha\|_{4}^{4}\right)$ when $n \leq 3$. If $n \leq 3$, we have $\alpha(z)=a_{0}+a_{1} z+a_{2} z^{2}$ and then

$$
\begin{aligned}
\|\alpha\|_{4}^{4} & =c_{0}^{2}+2 c_{1}^{2}+2 c_{2}^{2} \\
& =\left(a_{0}^{2}+a_{1}^{2}+a_{2}^{2}\right)^{2}+2\left(a_{0} a_{1}+a_{1} a_{2}\right)^{2}+2\left(a_{0} a_{2}\right)^{2} \\
& =a_{0}^{4}+a_{1}^{4}+a_{2}^{4}+4\left(a_{0}^{2} a_{1}^{2}+a_{0}^{2} a_{2}^{2}+a_{1}^{2} a_{2}^{2}\right)+4 a_{0} a_{1}^{2} a_{2} \\
& =a_{0}+a_{1}+a_{2}+4\left(a_{0} a_{1}+a_{0} a_{2}+a_{1} a_{2}\right)+4 a_{0} a_{1} a_{2}
\end{aligned}
$$

since $a_{j} \in\{0,1\}$ from which it readily follows that

$$
\begin{aligned}
\mathbf{E}_{\mathcal{A}_{2,0}}\left(\|\alpha\|_{4}^{4}\right)= & \mathbf{E}_{\mathcal{A}_{3,0}}\left(\|\alpha\|_{4}^{4}\right)=0 \\
\mathbf{E}_{\mathcal{A}_{2,1}}\left(\|\alpha\|_{4}^{4}\right)= & \mathbf{E}_{\mathcal{A}_{3,1}}\left(\|\alpha\|_{4}^{4}\right)=1 \\
\mathbf{E}_{\mathcal{A}_{2,2}}\left(\|\alpha\|_{4}^{4}\right)= & \mathbf{E}_{\mathcal{A}_{3,2}}\left(\|\alpha\|_{4}^{4}\right)=6 \\
& \mathbf{E}_{\mathcal{A}_{3,3}}\left(\|\alpha\|_{4}^{4}\right)=19
\end{aligned}
$$

We remark that substituting $m \in\{0,1,2,3\}$ into the second equation in Theorem 4.1 and then formally cancelling common factors as appropriate, we get

$$
\begin{aligned}
& \mathbf{E}_{\mathcal{A}_{n, 3}}\left(\|\alpha\|_{4}^{4}\right)=15+\frac{3\left(2 n^{2}-4 n+1-(-1)^{n}\right)}{n(n-1)(n-2)} \\
& \mathbf{E}_{\mathcal{A}_{n, 2}}\left(\|\alpha\|_{4}^{4}\right)=6 \\
& \mathbf{E}_{\mathcal{A}_{n, 1}}\left(\|\alpha\|_{4}^{4}\right)=1 \\
& \mathbf{E}_{\mathcal{A}_{n, 0}}\left(\|\alpha\|_{4}^{4}\right)=0
\end{aligned}
$$

yielding results consistent with the explicit averages just obtained for $n \leq 3$.

5 Ubiquity of Sidon Sets

We show that our expression for $\mathbf{E}_{\mathcal{A}_{n, m}}\left(\|\alpha\|_{4}^{4}\right)$ yields a new proof of a result that appears in articles by Godbole et al. [4] and Nathanson [6].

Suppose $\Omega=\mathcal{A}_{n, m}$, and as before, denote a typical element of $\mathcal{A}_{n, m}$ by

$$
\alpha(z)=z^{\beta_{1}}+\cdots+z^{\beta_{m}} .
$$

Recall from Section 2 that $X:=c_{1}^{2}+\cdots+c_{n-1}^{2}-\binom{m}{2}$ is a nonnegative-integer-valued random variable on Ω that attains the value 0 if and only if $\left\{\beta_{1}, \ldots, \beta_{m}\right\}$ is a Sidon set.

We have

$$
\begin{aligned}
\mathbf{E}_{\mathcal{A}_{n, m}}(X) & =\mathbf{E}_{\mathcal{A}_{n, m}}\left(c_{1}^{2}+\cdots+c_{n-1}^{2}\right)-\binom{m}{2} \\
& = \begin{cases}\frac{m^{[4]}}{3(n-3)}+\frac{m^{[3]}(n-m)\left(n^{2}-2 n\right)}{2 n^{[4]}} & \text { if } n \text { is even, } \\
\frac{m^{[4]}}{3(n-3)}+\frac{m^{[3]}(n-m)\left(n^{2}-2 n+1\right)}{2 n^{4]}} & \text { if } n \text { is odd }\end{cases} \\
& \leq \frac{m^{[4]}}{3(n-3)}+\frac{m^{[3]}(n-m)(n-1)^{2}}{2 n^{[4]}} \\
& =\frac{m(m-1)(m-2)(2 m n-3 n-m)}{6 n(n-2)} \\
& \leq \frac{m^{4}}{3 n}
\end{aligned}
$$

if $n \geq 4$. On the other hand, if we let $B(n, m)$ be the number of Sidon sets in $[n]$ with m elements, then we have

$$
\begin{aligned}
\mathbf{E}(X)=\frac{1}{\binom{n}{m}} \sum_{\alpha \in \mathcal{A}_{n, m}} X & =\frac{1}{\binom{n}{m}} \sum_{\alpha \in \mathcal{A}_{n, m}, X>0} X \geq \frac{1}{\binom{n}{m}} \#\left\{\alpha \in \mathcal{A}_{n, m}: X(\alpha)>0\right\} \\
& \geq 1-\frac{1}{\binom{n}{m}} B(n, m) .
\end{aligned}
$$

Hence we have proved (by essentially using Markov's inequality) the following.

Corollary 5.1 For $4 \leq m \leq n$, we have

$$
B(n, m) \geq\binom{ n}{m}\left(1-\frac{m^{4}}{3 n}\right)
$$

and

$$
\operatorname{Pr}\left[\left\{\beta_{1}, \ldots, \beta_{m}\right\} \text { is Sidon }\right]>1-\frac{m^{4}}{3 n}
$$

Hence if $m=o\left(n^{1 / 4}\right)$, then as n approaches infinity, the probability that a randomly chosen m-subset of $[n]$ is Sidon approaches 1 .

Although when $m=o\left(n^{1 / 4}\right)$, the probability that a randomly chosen m-subset of [n] is Sidon approaches 1 (i.e., $\|\alpha\|_{4}^{4}$ is $2 m^{2}-m$ for almost all $\alpha \in \mathcal{A}_{n, m}$), there are some other cases in which a positive proportion of polynomials in $\mathcal{A}_{n, m}$ have very large L_{4} norm.

For $\alpha \in \mathcal{A}_{n, m}$, since for $0 \leq k \leq n-1, c_{k}=\sum_{j=0}^{n-k-1} a_{j} a_{j+k}$, we have $c_{0}=m$, and for $1 \leq k \leq n-1,\left|c_{k}\right| \leq \min \{m-1, n-k\}$. Therefore, we have

$$
\begin{aligned}
\|\alpha\|_{4}^{4} & =c_{0}^{2}+2 \sum_{k=1}^{n-1} c_{k}^{2} \leq m^{2}+2 \sum_{k=1}^{n-m+1}(m-1)^{2}+2 \sum_{k=n-m+2}^{n-1}(n-k)^{2} \\
& =2 n m^{2}-\frac{4}{3} m^{3}+4 m^{2}-4 n m+2 n-\frac{5}{3} m \\
& =2(1+o(1)) m^{2}\left(n-\frac{2}{3} m\right)
\end{aligned}
$$

if $n=o\left(m^{2}\right)$ as $m, n \rightarrow \infty$ and on the other hand, from (4.15) we have

$$
\begin{aligned}
\frac{2(1+o(1)) m^{4}}{3 n} & \leq \mathbf{E}_{\mathcal{A}_{n, m}}\left(\|\alpha\|_{4}^{4}\right)=\frac{1}{\binom{n}{m}} \sum_{\alpha \in \mathcal{A}_{n, m}}\|\alpha\|_{4}^{4} \\
& =\frac{1}{\binom{n}{m}}\left\{\sum_{\|\alpha\|_{4}^{4} \leq x}\|\alpha\|_{4}^{4}+\sum_{\|\alpha\|_{4}^{4}>x}\|\alpha\|_{4}^{4}\right\} \\
& \leq x+\frac{1}{\binom{n}{m}} \sum_{\|\alpha\|_{4}^{4}>x}\|\alpha\|_{4}^{4} \\
& \leq x+\frac{1}{\binom{n}{m}} \sum_{\|\alpha\|_{4}^{4}>x} 2(1+o(1)) m^{2}\left(n-\frac{2}{3} m\right)
\end{aligned}
$$

It then follows that for any $x<2(1+o(1)) m^{4} /(3 n)$, we have

$$
\frac{\#\left\{\alpha \in \mathcal{A}_{n, m}:\|\alpha\|_{4}^{4}>x\right\}}{\binom{n}{m}} \geq \frac{2(1+o(1)) m^{4} /(3 n)-x}{2(1+o(1)) m^{2}(n-2 m / 3)}
$$

In particular, for any $\epsilon>0$, if $m=c_{1} n$ and $x=c_{2} m^{2} n$ for $0<c_{1}<1$ and $0<c_{2}<2(1-\epsilon) c_{1}^{2} / 3$, we have

$$
\frac{\#\left\{\alpha \in \mathcal{A}_{n, m}:\|\alpha\|_{4}^{4}>c_{2} m^{2} n\right\}}{\binom{n}{m}} \geq \frac{2(1-\epsilon) c_{1}^{2} / 3-c_{2}}{2(1+\epsilon)\left(1-2 c_{1} / 3\right)}>0
$$

for sufficiently large n and m, i.e., there is a positive proportion of polynomials in $\mathcal{A}_{n, m}$ having large L_{4} norm (note that the L_{4} norm in $\mathcal{A}_{n, m}$ is at most as large as $\left.2(1+o(1)) m^{2} n\right)$.

References

[1] P. B. Borwein, Computational Excursions in Analysis and Number Theory. CMS Books in Mathematics/Ouvrages de Mathmatiques de la SMC 10. Springer-Verlag, New York, 2002.
[2] P. B. Borwein and K.-K. S. Choi, The average norm of polynomials of fixed height. Trans. Amer. Math. Soc. 359(2007), no. 2, 923-936.
[3] P. Erdős, Some unsolved problems. Michigan Math. J. 4(1957), 291-300.
[4] A. P. Godbole, S. Janson, N. W. Locantore, Jr., and R. Rapoport, Random Sidon sequences. J. Number Theory 75(1999), no. 1, 7-22.
[5] J. E. Littlewood, Some Problems in Real and Complex Analysis. D.C. Heath, Lexington, MA, 1968.
[6] M. B. Nathanson. On the ubiquity of Sidon sets. In: Number Theory. Springer, New York, 2004, pp. 263-272.
[7] D. J. Newman and J. S. Byrnes, The L L^{4} norm of a polynomial with coefficients ± 1. Amer. Math. Monthly 97(1990), 42-45.

Department of Mathematics, Simon Fraser University, Burnaby, BC, V5A 1S6
e-mail: pborwein@cecm.sfu.ca
kkchoi@cecm.sfu.ca
Department of Mathematics, Atkinson Faculty, York University, Toronto, ON, M3J 1P3
e-mail: idmercer@yorku.ca

