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Expected Norms of Zero-One Polynomials

Peter Borwein, Kwok-Kwong Stephen Choi, and Idris Mercer

Abstract. Let An =
˘

a0 + a1z + · · · + an−1zn−1 : a j ∈ {0, 1}
¯

, whose elements are called zero-

one polynomials and correspond naturally to the 2n subsets of [n] := {0, 1, . . . , n − 1}. We also let

An,m = {α(z) ∈ An : α(1) = m}, whose elements correspond to the
`n

m

´

subsets of [n] of size m,

and let Bn = An+1 \ An, whose elements are the zero-one polynomials of degree exactly n.

Many researchers have studied norms of polynomials with restricted coefficients. Using ‖α‖p to

denote the usual Lp norm of α on the unit circle, one easily sees that α(z) = a0+a1z+· · ·+aN zN ∈ R[z]

satisfies ‖α‖2
2 = c0 and ‖α‖4

4 = c2
0 + 2(c2

1 + · · · + c2
N ), where ck :=

PN−k
j=0 a j a j+k for 0 ≤ k ≤ N .

If α(z) ∈ An,m, say α(z) = zβ1 + · · ·+ zβm where β1 < · · · < βm, then ck is the number of times k

appears as a difference βi − β j . The condition that α ∈ An,m satisfies ck ∈ {0, 1} for 1 ≤ k ≤ n − 1

is thus equivalent to the condition that {β1, . . . , βm} is a Sidon set (meaning all differences of pairs of

elements are distinct).

In this paper, we find the average of ‖α‖4
4 over α ∈ An, α ∈ Bn , and α ∈ An,m. We further

show that our expression for the average of ‖α‖4
4 over An,m yields a new proof of the known result: if

m = o(n1/4) and B(n, m) denotes the number of Sidon sets of size m in [n], then almost all subsets

of [n] of size m are Sidon, in the sense that limn→∞ B(n, m)/
`n

m

´

= 1.

1 Introduction and Statement of Main Result

We let An denote the set {a0 + a1z + · · · + an−1zn−1 : a j ∈ {0, 1} for all j}, and we
call the elements of An zero-one polynomials. There is a natural bijection between the

2n polynomials in An and the 2n subsets of [n] := {0, 1, . . . , n − 1}. Generally, if

α(z) ∈ An, we define

m := α(1) = the number of coefficients of α(z) that are 1,

and we write α(z) = zβ1 + zβ2 + · · · + zβm where β1 < β2 < · · · < βm, so
{β1, β1, . . . , βm} is the subset of [n] that corresponds to α(z). We let An,m denote

the set {α(z) ∈ An : α(1) = m}, so |An,m| =
(

n
m

)

and An = An,0 ∪An,1 ∪ · · · ∪An,n.

We also define Bn := An+1 \ An, so Bn consists of the 2n zero-one polynomials of
degree exactly n.

A recurring theme in the literature is the problem of finding a polynomial with
“small” norm subject to some restriction on its coefficients. (See [3, Problem 26],

[5, Problem 19], or [1, Ch. 4, 15].) In general, for

(1.1) α(z) = a0 + a1z + · · · + aN zN ∈ R[z],
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we define the usual Lp norms of α(z) on the unit circle:

‖α‖p :=
( 1

2π

∫ 2π

0

∣

∣α(eiθ)
∣

∣

p
dθ

) 1/p

,

where p ≥ 1 is real. The main result of this paper, which appears as Theorem 4.1 in

Section 4, is that if n ≥ 4 and m ≤ n, we have

EAn
(‖α‖

4
4) =

4n3 + 42n2 − 4n + 3 − 3(−1)n

96
,

EAn,m (‖α‖
4
4) = 2m2 − m +

2m[4]

3(n − 3)
+

m[3](n − m)(2n2 − 4n + 1 − (−1)n)

2n[4]
,

EBn
(‖α‖

4
4) =

4n3 + 66n2 + 188n + 87 + 9(−1)n

96
,

where EΩ(‖α‖
4
4) denotes the average of ‖α‖

4
4 over the polynomials in Ω, and the

notation x[k] is shorthand for x(x − 1) · · · (x − k + 1). This complements results of
Newman and Byrnes [7], who found the average of ‖α‖4

4 over the 2n polynomials of

the form

(1.2) a0 + a1z + · · · + an−1zn−1, a j ∈ {+1,−1} for all j,

and Borwein and Choi [2], who found (among other things) the average of ‖α‖6
6

and ‖α‖
8
8 over the 2n polynomials of the form (1.2), and the average of ‖α‖

2
2, ‖α‖

4
4,

and ‖α‖
6
6 over the 3n polynomials of the form

a0 + a1z + · · · + an−1zn−1, a j ∈ {+1, 0,−1} for all j.

2 Autocorrelation

Notice that if α is of the form (1.1) and |z| = 1, we have

|α(z)|
2

= α(z)α(z) = (a0 + a1z + · · · + aNzN )
(

a0 + a1
1

z
+ · · · + aN

1

zN

)

= cN
1

zN
+ · · · + c1

1

z
+ c0 + c1z + · · · + cN zN ,

where the ck are the so-called (aperiodic) autocorrelations of α, defined for 0 ≤ k ≤ N

by ck :=
∑N−k

j=0 a ja j+k. Using the general fact that

1

2π

∫ 2π

0

(

b−M
1

zM
+ · · · + b−1

1

z
+ b0 + b1z + · · · + bMzM

)

dθ = b0, (z = eiθ),

we see that for α of the form (1.1), we have

‖α‖
2
2 =

1

2π

∫ 2π

0

(

cN
1

zN
+ · · · + c1

1

z
+ c0 + c1z + · · · + cNzN

)

dθ = c0, (z = eiθ),
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and

‖α‖
4
4 =

1

2π

∫ 2π

0

(

cN
1

zN
+ · · · + c1

1

z
+ c0 + c1z + · · · + cN zN

) 2

dθ

= c2
N + · · · + c2

1 + c2
0 + c2

1 + · · · + c2
N = c2

0 + 2(c2
1 + · · · + c2

N), (z = eiθ).

(2.1)

We further observe that

c2
k =

(

N−k
∑

j=0

a j a j+k

) 2

=

N−k
∑

i=0

aiai+k ·

N−k
∑

j=0

a ja j+k =

N−k
∑

i=0

N−k
∑

j=0

aia jai+ka j+k

=

N−k
∑

i=0

N−k
∑

j=0

f (i, j).

Noting that f (i, j) := aia jai+ka j+k satisfies f (i, j) = f ( j, i), we have

c2
k =

N−k
∑

i=0

N−k
∑

j=0

f (i, j) =

N−k
∑

i=0

f (i, i) + 2
∑

0≤i< j≤N−k

f (i, j)

=

N−k
∑

i=0

a2
i a2

i+k + 2
∑

0≤i< j≤N−k

ai a jai+ka j+k.

(2.2)

If α(z) = a0 + · · ·+ an−1zn−1
= zβ1 + · · ·+ zβm ∈ An,m, then we have c0 = m and ck is

the number of j such that a j and a j+k are both 1 and is equal to the number of times

k appears as a difference βi − β j . Thus c1 + · · · + cn−1 = m(m − 1)/2, and since the
ck are nonnegative integers, we have

(2.3) c2
1 + · · · + c2

n−1 ≥ c1 + · · · + cn−1 = m(m − 1)/2

with equality if and only if ck ∈ {0, 1} for 1 ≤ k ≤ n−1, or in other words, if and only

if all differences of pairs of elements of {β1, . . . , βm} are distinct. If all differences of
pairs of elements of {β1, . . . , βm} are distinct, we call {β1, . . . , βm} a Sidon set.

Using (2.1), we see that (2.3) and c0 = m prove the following.

Proposition 2.1 For any α(z) = zβ1 + · · · + zβm ∈ An,m, we have ‖α‖
4
4 ≥ 2m2 − m,

with equality if and only if {β1, . . . , βm} is a Sidon set.

We observe also that (2.3) implies that c2
1 +· · ·+c2

n−1−m(m−1)/2 is a nonnegative

integer, and is zero if and only if {β1, . . . , βm} is Sidon.

3 Some Facts and Notation

If Ω denotes An, Bn, or An,m, then we turn Ω into a probability space by giving each

polynomial α ∈ Ω equal weight p(α).
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Generally, we will denote a typical element of An or An,m by

α(z) = a0 + a1z + · · · + an−1zn−1,

and denote a typical element of Bn by α(z) = a0 + a1z + · · · + an−1zn−1 + zn. As in
Section 1, if α ∈ An,m, we also write

α(z) = zβ1 + zβ2 + · · · + zβm

where β1 < β2 < · · · < βm.

If Ω is one of the three spaces An, Bn, or An,m and X is a random variable on Ω,

we of course have EΩ(X) =
∑

α∈Ω
X(α)p(α), and we will sometimes omit the sub-

script Ω if it is clear from the context what probability space we are considering.

Two facts we will use that are each immediate from first principles are Markov’s

inequality, Pr[X ≥ a] ≤ E(X)/a, where X is a nonnegative real random variable, and

linearity of expectation, E(X1 + · · ·+Xk) = E(X1)+ · · ·+E(Xk), which holds regardless

of dependence or independence of the Xi .

4 Calculation of E(‖α‖4
4)

Let j1, j2, j3, j4 denote distinct integers. We begin this section by finding some aver-

ages of products of a ji
that we will need later. First, suppose our probability space Ω

is An. We then have

(4.1) E(a j1
a j2

) =
1

2n
(number of α ∈ An such that a j1

= a j2
= 1) =

2n−2

2n
=

1

4
,

and by similar reasoning, we have

(4.2) E(a j1
a j2

a j3
) = 1/8, E(a j1

a j2
a j3

a j4
) = 1/16.

Now suppose our probability space Ω is An,m. We then have

E(a j1
a j2

) =
1

(

n
m

) (number of α ∈ An,m such that a j1
= a j2

= 1)

=

(

n−2
m−2

)

(

n
m

) =
m(m − 1)

n(n − 1)
=

m[2]

n[2]
,

(4.3)

and by similar reasoning, we have

(4.4) E(a j1
a j2

a j3
) = m[3]/n[3], E(a j1

a j2
a j3

a j4
) = m[4]/n[4].

We note that we need n ≥ 4 in order for all expressions in (4.3) and (4.4) to be

defined. For Ω = An,m, the case n ≤ 3 will be treated separately.
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Now if Ω is either of the probability spaces An or An,m, then equation (2.2) gives

(4.5) c2
k =

n−k−1
∑

i=0

aiai+k + 2
∑

0≤i< j≤n−k−1

aiai+ka j a j+k.

We define λ := n − k and also define

S :=

λ−1
∑

i=0

aiai+k,(4.6)

T :=
∑

0≤i< j≤λ−1

aia jai+ka j+k,(4.7)

which of course implies c2
k = S + 2T. If k = 0, then c2

k = m2. So if Ω = An,m, we

have simply E(c2
0) = m2, whereas if Ω = An, we have

(4.8) E(c2
0) =

n
∑

m=0

(

n
m

)

2n
m2.

It is an exercise to see that the right side of (4.8) evaluates to (n2 + n)/4. Alternatively,

we may observe that c0 has a binomial distribution with parameters n and 1/2, which

implies

(4.9) E(c2
0) = Var(c0) + E(c0)2

= n ·
1

2
·

1

2
+

(

n ·
1

2

) 2

=
n2 + n

4
.

Having found E(c2
0) for Ω = An,m and for Ω = An, we now shift our attention

to E(c2
k) for k 6= 0.

Assume k 6= 0, and observe that (4.5), (4.6), and (4.7) (and linearity of expecta-

tion) give us

(4.10) E(c2
k) = E(S) + 2E(T) =

λ−1
∑

i=0

E(aiai+k) + 2
∑

0≤i< j≤λ−1

E(aia jai+ka j+k).

Since k 6= 0, each of the λ terms in the sum E(S) is of the form E(a j1
a j2

) where j1 6=
j2. We thus have

(4.11) E(S) =

{

λ/4 if Ω = An,

λm[2]/n[2] if Ω = An,m,

by (4.1) and (4.2). As for the
(

λ
2

)

terms in the sum E(T), each term is of the form
E(aia jai+ka j+k). Since k 6= 0 and i < j, the four subscripts i, j, i + k, j + k constitute

either three distinct integers (if j = i + k) or four distinct integers (if j 6= i + k). If

{i, j, i + k, j + k} consists of three distinct integers j1, j2, j3 where j3 is the one that is
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“repeated”, then, since a j ∈ {0, 1} for all j, we have E(aia jai+ka j+k) = E(a j1
a j2

a2
j3

) =

E(a j1
a j2

a j3
), whereas, of course, if {i, j, i + k, j + k} consists of four distinct integers,

then E(aia jai+ka j+k) is of the form E(a j1
a j2

a j3
a j4

). Therefore, we now ask the ques-

tion: For which of the
(

λ
2

)

terms in the sum E(T) does the set {i, j, i +k, j +k} consist

of only three distinct integers?
For some i ∈ {0, 1, . . . , λ−1}, there is exactly one j satisfying both i < j ≤ λ−1

and j = i + k, and for other values of i, there is no such j. We will say that i is of

“type I” if the former criterion holds, and is of “type II” if the latter criterion holds.
An integer i is of type I if and only if i + k < λ, or equivalently, i < λ− k = n− 2k. If

n−2k ≤ 0 (i.e., if k ≥ ⌈n/2⌉), then i < n−2k never happens, i.e., no i is of type I and
so all of the

(

λ
2

)

terms in the sum E(T) are of the form E(a j1
a j2

a j3
a j4

). On the other

hand, if n− 2k > 0 (i.e., if k < ⌈n/2⌉), then i < n− 2k = λ− k sometimes happens;

namely, it happens if and only if i is one of the λ − k integers 0, 1, . . . , λ − k − 1.
In that case, each of those λ − k values of i is of type I, which implies that precisely

λ−k of the
(

λ
2

)

terms in the sum E(T) are of the form E(a j1
a j2

a j3
) and the remaining

terms are of the form E(a j1
a j2

a j3
a j4

).
This implies that we have

E(T) =











(

λ
2

)

E(a j1
a j2

a j3
a j4

) if k ≥ ⌈n/2⌉,
(

λ
2

)

E(a j1
a j2

a j3
a j4

)

+(λ − k)
[

E(a j1
a j2

a j3
) − E(a j1

a j2
a j3

a j4
)
]

if k < ⌈n/2⌉.

Thus, if Ω = An, then

E(T) =

{

(

λ
2

)

/16 if k ≥ ⌈n/2⌉,
(

λ
2

)

/16 + (λ − k)/16 if k < ⌈n/2⌉,

and hence by (4.10) and (4.11),

E(c2
k) =

{

λ/4 + λ(λ − 1)/16 if k ≥ ⌈n/2⌉,

λ/4 + λ(λ − 1)/16 + 2(λ − k)/16 if k < ⌈n/2⌉.

On the other hand, if Ω = An,m, then

E(T) =

{

(

λ
2

)

m[4]/n[4] if k ≥ ⌈n/2⌉,
(

λ
2

)

m[4]/n[4] + (λ − k)[m[3]/n[3] − m[4]/n[4]] if k < ⌈n/2⌉,

and hence

E(c2
k) =

{

λm[2]

n[2] + λ(λ − 1) m[4]

n[4] if k ≥ ⌈n/2⌉,

λm[2]

n[2] + λ(λ − 1) m[4]

n[4] + 2(λ − k)
[

m[3]

n[3] − m[4]

n[4]

]

if k < ⌈n/2⌉.

It then follows that if Ω = An, we have

(4.12) E(c2
1 + · · · + c2

n−1) =

n−1
∑

k=1

( λ

4

)

+

n−1
∑

k=1

( λ(λ − 1)

16

)

+

⌈n/2⌉−1
∑

k=1

( 2(λ − k)

16

)

,
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whereas if Ω = An,m, we have

(4.13) E(c2
1 + · · · + c2

n−1) =

n−1
∑

k=1

(

λ
m[2]

n[2]

)

+

n−1
∑

k=1

(

λ(λ − 1)
m[4]

n[4]

)

+

⌈n/2⌉−1
∑

k=1

(

2(λ − k)
[ m[3]

n[3]
−

m[4]

n[4]

])

.

Recalling that λ is simply shorthand for n − k, it is straightforward to verify that

n−1
∑

k=1

λ =
n(n − 1)

2
,

n−1
∑

k=1

(λ2 − λ) =
n(n − 1)(n − 2)

3
,

and that
⌈n/2⌉−1
∑

k=1

2(λ − k) =

{

n(n − 2)/2 if n is even,

(n − 1)2/2 if n is odd.

So, if Ω = An, then from (4.12) we get

E(c2
1 + · · · + c2

n−1) =

{

1
4
· n(n−1)

2
+ 1

16
· n(n−1)(n−2)

3
+ 1

16
· n(n−2)

2
if n is even,

1
4
· n(n−1)

2
+ 1

16
· n(n−1)(n−2)

3
+ 1

16
· (n−1)2

2
if n is odd,

=

{

(2n3 + 9n2 − 14n)/96 if n is even,

(2n3 + 9n2 − 14n + 3)/96 if n is odd,

which, using (2.1) and (4.9), implies

E(‖α‖
4
4) =

{

n2+n
4

+ 2n3+9n2−14n
48

=
2n3+21n2−2n

48
if n is even,

n2+n
4

+ 2n3+9n2−14n+3
48

=
2n3+21n2−2n+3

48
if n is odd,

or equivalently

(4.14) EAn
(‖α‖

4
4) =

4n3 + 42n2 − 4n + 3 − 3(−1)n

96
.

On the other hand, if Ω = An,m, then from (4.13) we get

E(c2
1 + · · · + c2

n−1)

=

{

m[2]

n[2] · n(n−1)
2

+ m[4]

n[4] · n(n−1)(n−2)
3

+
(

m[3]

n[3] − m[4]

n[4]

)

· n(n−2)
2

if n is even,
m[2]

n[2] · n(n−1)
2

+ m[4]

n[4] · n(n−1)(n−2)
3

+
(

m[3]

n[3] − m[4]

n[4]

)

· (n−1)2

2
if n is odd,

=

{

(

m
2

)

+ m[4]/(3(n − 3)) + m[3](n − m)(n2 − 2n)/(2n[4]) if n is even,
(

m
2

)

+ m[4]/(3(n − 3)) + m[3](n − m)(n2 − 2n + 1)/(2n[4]) if n is odd,
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which, using (2.1), implies

E(‖α‖
4
4) =

{

2m2 − m + 2m[4]

3(n−3)
+ m[3](n−m)(n2−2n)

n[4] if n is even,

2m2 − m + 2m[4]

3(n−3)
+ m[3](n−m)(n2−2n+1)

n[4] if n is odd,

or equivalently

(4.15) EAn,m (‖α‖
4
4) = 2m2 −m +

2m[4]

3(n − 3)
+

m[3](n − m)(2n2 − 4n + 1 − (−1)n)

2n[4]
.

Notice that if m is fixed and n approaches infinity, then EAn,m (‖α‖
4
4) approaches

2m2 − m, i.e., for fixed m and large n, we expect a random α ∈ An,m to correspond

to a Sidon set, as is consistent with intuition.

If Ω = Bn, since Bn := An+1 \ An, we get

EBn
(‖α‖

4
4) =

1

2n

∑

α∈Bn

‖α‖
4
4 = 2EAn+1

(‖α‖
4
4) − EAn

(‖α‖
4
4)

=
4n3 + 66n2 + 188n + 87 + 9(−1)n

96

by (4.14). Therefore we have proved

Theorem 4.1 If m ≤ n, we have

EAn
(‖α‖

4
4) =

4n3 + 42n2 − 4n + 3 − 3(−1)n

96
,

EAn,m(‖α‖
4
4) = 2m2 − m +

2m[4]

3(n − 3)
+

m[3](n − m)(2n2 − 4n + 1 − (−1)n)

2n[4]

(if n ≥ 4),

EBn
(‖α‖

4
4) =

4n3 + 66n2 + 188n + 87 + 9(−1)n

96
.

For completeness, we also determine EAn,m (‖α‖
4
4) when n ≤ 3. If n ≤ 3, we have

α(z) = a0 + a1z + a2z2 and then

‖α‖
4
4 = c2

0 + 2c2
1 + 2c2

2

= (a2
0 + a2

1 + a2
2)2 + 2(a0a1 + a1a2)2 + 2(a0a2)2

= a4
0 + a4

1 + a4
2 + 4(a2

0a2
1 + a2

0a2
2 + a2

1a2
2) + 4a0a2

1a2

= a0 + a1 + a2 + 4(a0a1 + a0a2 + a1a2) + 4a0a1a2,

since a j ∈ {0, 1} from which it readily follows that

EA2,0(‖α‖
4
4) = EA3,0 (‖α‖

4
4) = 0,

EA2,1(‖α‖
4
4) = EA3,1 (‖α‖

4
4) = 1,

EA2,2(‖α‖
4
4) = EA3,2 (‖α‖

4
4) = 6,

EA3,3 (‖α‖
4
4) = 19.
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We remark that substituting m ∈ {0, 1, 2, 3} into the second equation in Theorem 4.1
and then formally cancelling common factors as appropriate, we get

EAn,3(‖α‖4
4) = 15 +

3(2n2 − 4n + 1 − (−1)n)

n(n − 1)(n − 2)
,

EAn,2(‖α‖
4
4) = 6,

EAn,1(‖α‖
4
4) = 1,

EAn,0(‖α‖
4
4) = 0,

yielding results consistent with the explicit averages just obtained for n ≤ 3.

5 Ubiquity of Sidon Sets

We show that our expression for EAn,m(‖α‖
4
4) yields a new proof of a result that ap-

pears in articles by Godbole et al. [4] and Nathanson [6].

Suppose Ω = An,m, and as before, denote a typical element of An,m by

α(z) = zβ1 + · · · + zβm .

Recall from Section 2 that X := c2
1 + · · ·+ c2

n−1 −
(

m
2

)

is a nonnegative-integer-valued

random variable on Ω that attains the value 0 if and only if {β1, . . . , βm} is a Sidon

set.
We have

EAn,m (X) = EAn,m (c2
1 + · · · + c2

n−1) −

(

m

2

)

=

{

m[4]

3(n−3)
+ m[3](n−m)(n2−2n)

2n[4] if n is even,
m[4]

3(n−3)
+ m[3](n−m)(n2−2n+1)

2n[4] if n is odd

≤
m[4]

3(n − 3)
+

m[3](n − m)(n − 1)2

2n[4]

=
m(m − 1)(m − 2)(2mn − 3n − m)

6n(n − 2)

≤
m4

3n

if n ≥ 4. On the other hand, if we let B(n, m) be the number of Sidon sets in [n] with

m elements, then we have

E(X) =
1

(

n
m

)

∑

α∈An,m

X =
1

(

n
m

)

∑

α∈An,m,X>0

X ≥
1

(

n
m

)#{α ∈ An,m : X(α) > 0}

≥ 1 −
1

(

n
m

)B(n, m).

Hence we have proved (by essentially using Markov’s inequality) the following.
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Corollary 5.1 For 4 ≤ m ≤ n, we have

B(n, m) ≥

(

n

m

)

(

1 −
m4

3n

)

and

Pr[{β1, . . . , βm} is Sidon] > 1 −
m4

3n
.

Hence if m = o(n1/4), then as n approaches infinity, the probability that a randomly

chosen m-subset of [n] is Sidon approaches 1.

Although when m = o(n1/4), the probability that a randomly chosen m-subset

of [n] is Sidon approaches 1 (i.e., ‖α‖4
4 is 2m2 − m for almost all α ∈ An,m), there

are some other cases in which a positive proportion of polynomials in An,m have very
large L4 norm.

For α ∈ An,m, since for 0 ≤ k ≤ n − 1, ck =
∑n−k−1

j=0 a ja j+k, we have c0 = m, and

for 1 ≤ k ≤ n − 1, |ck| ≤ min{m − 1, n − k}. Therefore, we have

‖α‖4
4 = c2

0 + 2

n−1
∑

k=1

c2
k ≤ m2 + 2

n−m+1
∑

k=1

(m − 1)2 + 2

n−1
∑

k=n−m+2

(n − k)2

= 2nm2 −
4

3
m3 + 4m2 − 4nm + 2n −

5

3
m

= 2(1 + o(1))m2
(

n −
2

3
m

)

if n = o(m2) as m, n → ∞ and on the other hand, from (4.15) we have

2(1 + o(1))m4

3n
≤ EAn,m(‖α‖

4
4) =

1
(

n
m

)

∑

α∈An,m

‖α‖
4
4

=
1

(

n
m

)

{

∑

‖α‖4
4≤x

‖α‖
4
4 +

∑

‖α‖4
4>x

‖α‖
4
4

}

≤ x +
1

(

n
m

)

∑

‖α‖4
4>x

‖α‖
4
4

≤ x +
1

(

n
m

)

∑

‖α‖4
4>x

2(1 + o(1))m2
(

n −
2

3
m

)

.

It then follows that for any x < 2(1 + o(1))m4/(3n), we have

#{α ∈ An,m : ‖α‖
4
4 > x}

(

n
m

) ≥
2(1 + o(1))m4/(3n) − x

2(1 + o(1))m2(n − 2m/3)
.
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In particular, for any ǫ > 0, if m = c1n and x = c2m2n for 0 < c1 < 1 and
0 < c2 < 2(1 − ǫ)c2

1/3, we have

#{α ∈ An,m : ‖α‖
4
4 > c2m2n}

(

n
m

) ≥
2(1 − ǫ)c2

1/3 − c2

2(1 + ǫ)(1 − 2c1/3)
> 0

for sufficiently large n and m, i.e., there is a positive proportion of polynomials in
An,m having large L4 norm (note that the L4 norm in An,m is at most as large as

2(1 + o(1))m2n).
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