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ABSTRACT 
This paper proposes an optimization framework based on the OpenMDAO software library intended 
for engineer-to-order products and applies it to the conceptual design of a Mobile Miner. A Mobile 
Miner is a complex machine and a flexible alternative to Tunnel Boring Machines for small-scale 
tunneling and mining applications. The proposed framework is intended for use in early design and 
quotation stages with the objective to get fast estimates of important product characteristics, such as 
excavation rate and cutter lifetime. The ability to respond fast to customer requests is vital when 
offering customized products for specific applications and thereby to stay competitive on the global 
market. This is true for most engineer-to-order products and especially for mining equipment where 
each construction project is unique with different tunnel geometries and rock properties. The presented 
framework is applied to a specific use-case where the design of the miner’s cutter wheel is in focus 
and a set of Pareto optimal designs are obtained. Furthermore, the framework extends the capabilities 
of OpenMDAO by including support for mixed-variable formulations and it supports an exploratory 
approach to design optimization. 
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1 INTRODUCTION
Small scale mining equipment are important tools for excavation of resources and creating tunnels.
Among solutions for this, a Mobile Miner is a flexible and highly competitive option to Tunnel Boring
Machines (TBM) and traditional drill-and-blast operations (Lyly, Hartwig, and Nord, 2018). However,
a Mobile Miner is a specialized engineer-to-order product that is tailored for the tunnel geometry and
the ground properties at the mining site. Engineer-to-order products are characterized by the addition of
engineering to the product lead time and uncertain product properties at the start of the project (Wort-
mann, 1983). This is true for the Mobile Miners as well, where accurate estimations of the performance
and cost of the product are needed during the ordering process since detailed design is started when the
contract is won. Reducing engineering time is therefore crucial for commercial success in signing and
delivering Mobile Miner orders.
An important part of the preliminary design process for a Mobile Miner, is determining a number of
system-level parameters that control the overall mechanical layout and the excavation process. While
these parameters have a large impact on the engineering process, system behavior and product per-
formance, they are also interrelated in non-trivial ways and finding the optimal combination of these
parameters is a difficult task. Consequently, there is a need for methods that can 1) make accurate and
fast predictions of the performance of the finished product; and 2) speed up the development process to
reduce the engineering lead time.
A method that fulfills both criteria is multidisciplinary design optimization (MDO), as defined by
Schmit, 1960 and Simpson and Martins, 2011. MDO is used to holistically explore the design space
to find optimal designs given multiple disciplines and analyses (Martins and Lambe, 2013). Important
aspects are how to control the data flow between the different models to enable fast optimization, which
optimization algorithm to use and how to handle and present the data.
A flexible MDO framework should enable quick estimations regarding the cost and performance of a
new product variant based on the customer requirements. The results should also be used as a basis for
the continued engineering work. Consequently, there is a need for a flexible framework where appro-
priate models can be connected depending on the case at hand. The flexibility sought after here refers
to being able to exchange the models in use, without having to reconfigure the rest of the formulation
considerably. An example of this would be that one disciplinary model could be replaced without any
modification of another model or of the solver configuration.
Solving the challenges associated with these formulations is part of the motivation behind the Open-
MDAO software library (Gray et al., 2019). While OpenMDAO is gaining interest in the context of
high-fidelity modelling and optimization (Jasa et al., 2020; Hendricks and Gray, 2019; Sgueglia et al.,
2020), it has not been widely used for exploratory design optimization using multi-objective optimiza-
tion (or meta-heuristic) techniques, such as genetic algorithms. Even though the basic technical support
is in place for this kind of optimization, some components and properties are however missing.
The contributions presented in this paper are twofold. First, a number of extensions to the OpenM-
DAO platform are presented, to support its use in early-stage design of engineer-to-order products and
other exploratory optimization problems. Second, the Mobile Miner design problem is addressed by
implementing and solving it using OpenMDAO along with these extensions, to provide an example of
their applicability on an actual problem as well as the utility of an optimization-driven approach for
engineer-to-order products.
The remainder of the paper is organized as follows. Section 2 contains a background where previous
work and key methods are presented. Section 3 describes the extensions to OpenMDAO that have
been implemented to enable and improve the optimization platform. This is followed by a section that
presents the optimization study of the Mobile Miner. Finally, the paper ends with a discussion and
conclusion section.

2 FRAME OF REFERENCE

2.1 Mobile Miners
A Mobile Miner is a complex machine intended for small-scale mining and tunneling applications
(Robbins, 2000, Lyly, Hartwig, and Nord, 2018). The Mobile Miner is a large piece of machinery with
a cross-section of at least 2-4 meters in each direction and a length of up to 20 meters, see figure 1.
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Figure 1. An example of a mobile miner. The cutter wheel can be seen to the right in the
figure. Image reproduced from Epiroc, 2021 with permission, c© Epiroc.

The miner is self-propelled using wheels or crawler-tracks to move forward, and it has excavating
cutters placed on a cutter wheel in the front of the machine. The cutter wheel is pressed towards the rock
wall as it rotates in order to excavate the rock. Furthermore, the cutter wheel could be maneuvered both
horizontally and vertically using a hydraulic actuation mechanism to control the shape of the excavated
tunnel. The miner also has a system that transports the excavated rock material to the end of the machine
from where it could be transported off-site using other machines such as dumpers or a conveyor system.
Hence the miner is a self-contained mining system. The main focus of the design process proposed in
this paper is the design of the cutter wheel, and particularly the design and placement of the cutters on
the wheel. This is where the machine interacts with the rock, and hence the properties of the complete
system is strongly dependent on the design and control of the cutter wheel.
The rotating motion of the cutter wheel means that the individual cutters follow a circular trajectory.
This cutting motion, the kerf, is what fractures the rock and consequently also imposes loads to the
cutter wheel. Multiple cutters can work along each kerf. The cutters must be placed in a physically
feasible manner and so that certain damaging static and dynamic loads are avoided.

2.2 Optimization
Optimization is the mathematical process of identifying the point that yields the maximum or minimum
value of a defined function. In engineering, optimization is often characterized by the presence of multi-
ple (and contradicting) objective functions, and problems where the functions are not known as explicit
mathematical equations, but more often by numerical simulation models from different engineering
disciplines (Andersson, 2001).
An MDO problem includes several system and sub-system models from different disciplines which need
to be interconnected and solved in a numerical process to obtain overall optimal solutions. The problem
is decomposed in what is referred to as an architecture, and according to the definition of Martins and
Lambe, 2013, “architectures define how to organize the disciplinary analysis models, the approximation
functions (if any), and the optimization software in concert with the problem formulation so that an
optimal design can be achieved”. The most common architectures for MDO are the All-at-Once (AAO)
approach, Individual Discipline Feasible (IDF), Multidisciplinary Feasible (MDF) and Collaborative
Optimization (CO).
In Sun, X. Wang, L. Wang, et al., 2016 a TBM is optimized using an AAO MDO formulation in order
to determine control parameters and excavation strategy, considering aspects such as tool wear and
excavation rate. In Sun, X.Wang, Shi, et al., 2018 the authors improve the strategy further and variables
such as the number of cutters and their placement are added as optimization variables, and the problem
is formulated as a CO MDO problem. In this paper, we perform a similar optimization study as in Sun,
X.Wang, Shi, et al., 2018 using an MDF MDO formulation, applied to a Mobile Miner instead of a
TBM.
There are numerous options available for the definition and execution of MDO formulations, including
both commercial and open-source software packages. Some commercial offerings include modeFRON-
TIER and HEEDS MDO, while some open-source alternatives include Dakota, RCE and OpenMDAO.
One substantial benefit with the open-source alternatives is that they can be freely distributed, extended
and scaled out due to their open license models. On the other hand, the commercial offerings generally
include data visualization tools and integrations with third-party tools.
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2.2.1 OpenMDAO

OpenMDAO is an open-source optimization platform implemented in Python, whose development is
led by NASA Glenn Research Center (Gray et al., 2019). Its main focus is an efficient handling of
optimization problems where analytical gradients of the models are available. However, it also enables
creation of MDO frameworks with MDF solvers and has the capability to manage the data flow between
the different models and optimization algorithms. Furthermore, it can be called as a software library from
other applications, meaning that it can be integrated in custom user interfaces and workflows.

2.2.2 NSGA-II

The multi-objective evolutionary algorithm Non-Dominated Sorting GA (NSGA-II) was developed by
Deb, Pratap, et al., 2002 and has been used in many engineering optimization projects. Its main char-
acteristics is the ranking procedure for the population, which ranks the designs belonging to the same
Pareto rank. The Pareto optimal points are ranked according to how far they are from their neighbours in
the design variable space. Consequently, the design with the best rank is the Pareto optimal design that
is farthest from the other Pareto optimal designs. This ensures diversity in the genes of the population
which reduces the probability of premature convergence and ensures a good spread of solutions on the
Pareto front.

3 DEVELOPED EXTENSIONS TO OPENMDAO
After examining the existing implementations of genetic algorithms for OpenMDAO, the following
criteria were found to be missing:
• simultaneous usage of continuous, integer, discrete and categorical variables
• ability to handle Pareto-optimization of multi-objective formulations
• inequality constraint handling without extra parameters
As part of realizing this, an enhanced NSGA-II (Deb, Pratap, et al., 2002) implementation for OpenM-
DAO was implemented, featuring multiple variable types and parameter-less constraint handling.
The optimization and data management tools developed as a part of this work are available in the
OpenMDAO-Bridge-MATLAB (Vidner, 2020a), OpenMDAO-NSGA (Vidner, 2020b) and Scop (Vidner,
2020c) packages, respectively.

3.1 Discrete and categorical values
Unlike continuous and integer variables, discrete and categorical variables have the special property that
their values might not be numeric. But, variational operators (such as crossover and mutation) usually
assume this. To circumvent this conflict, we exploit the assumption that each one of the discrete and
categorical variables can only take a finite number of enumerable values. For each variable, the possible
values are thus enumerated and given an integer index, meaning that the possibly non-numeric values
used within the models are represented by integers within the optimization. The optimization thus only
has to handle real-coded continuous and integer values.
However, while categorical values can be represented by a series of integers, the ordering of these
integers are not significant in contrast to native integer variables. Thus, the different types of variables
need different variational operators (such as mutation and crossover) that can take the different variables’
properties in consideration.

3.2 Crossover and mutation operators
Different types of variables require different crossover and mutation operators, respectively. To solve this
problem, the population is split into different parts, each part using different strategies, as represented
in figure 2. The different sub-populations are mated and mutated using the operators described below
before being merged into a unified offspring population.
The simulated binary crossover (Deb and Ram Bhushan, 1995) and polynomial mutation operators
are used for continuous and integer variables, truncated to integer values for integer variables. Uniform
crossover and uniform mutation operators are meanwhile used for the categorical and discrete variables.
All mating/mutation methods respect variable bounds and use the implementations offered by the DEAP
software package (Fortin et al., 2012).
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Figure 2. Schematic view of the GA variational procedure, where an example (parent)
population is split into multiple sub-populations, based on the represented variables’

properties. Each sub-population is mated and mutated accordingly, and thereafter merged
into the complete offspring population.

The choice of operators for discrete and categorical variables have not been extensively explored, and
is considered a subject for future studies. For problems with only continuous variables, the algorithm
behaves just as the reference NSGA-II implementation as described by Deb, Pratap, et al., 2002.

3.3 Constraint handling
As part of implementing the reference NSGA-II algorithm, its constraint handling method (as described
by Deb, Pratap, et al., 2002), constraint-domination, have also been implemented. One benefit of this
constraint handling method is that it does not require any extra parameters, in contrast to e.g. penaliz-
ing constraint methods. This is viewed as an attractive property, as the optimization strategy is aimed
towards exploration and that the number of parameters adjustments necessary is to be kept small in
order to maintain engineer focus on the application and ease of use for ordinary engineers.

3.4 Data management
The NSGA-II algorithm used (and many other meta-heuristics) cannot guarantee feasibility nor opti-
mality of each and every evaluated point in the design space. This means that infeasible, dominated
or otherwise non-interesting points will be evaluated during the optimization. As the algorithm will
also need to evaluate a very large number of points, the amount of (possibly uninteresting) data gener-
ated will be immense. Thus, implementing and running an optimization formulation like this must also
include managing data during and after execution. While OpenMDAO offers some utilities for this, they
are somewhat restricted to continuous variables and single-objective optimization, and do not directly
help with common post-processing activities, such as filtering and ranking of designs. Additionally,
these built-in tools use a custom, procedural data structure that does not directly support an exploratory
workflow nor enable integration with other tools in the Python scientific ecosystem.
As a complement to OpenMDAO’s built-in utilities for data management, another approach is proposed,
using the Dataset and DataArray data structures from the xarray package (Hoyer and Hamman, 2017).
Instead of examining only one design at a given time, here the complete dataset can be conceptualized
as one big array containing all variable data gathered during the execution. Alongside the actual variable
values, metadata is also contained within the dataset object, storing properties such as units, constraint
bounds, objective directions, etc.. Thus, the dataset can be efficiently indexed and examined along any
axis using shorthand syntax. Furthermore, generic utility functions are also provided that operate on the
dataset object, for performing a number of ordinary post-processing activities such as calculating con-
straint violation, discarding designs that violate any constraint or discarding Pareto-dominated designs.
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The important visualization of optimization results (Simpson and Martins, 2011) also becomes available
"for free" by utilizing a widely-used data structure, through the Python ecosystem.

4 OPTIMIZATION OF THE MOBILE MINER
The developed methods and tools have been applied to create an optimization framework for a Mobile
Miner concept. Taking user input in the form of tunnel geometry specifications and rock properties, the
framework will evaluate numerous designs to identify a set of Pareto-optimal designs for the Mobile
Miner.

4.1 Overview of the framework
An overview of the framework is shown in figure 3, where the models and functions are denoted with
grey squares while the yellow squares represent optimizations and the blue squares design variables
and environmental variables, such as rock properties. The latter are specified by the user before the
optimization and are used as constants.

Local Optimization

NSGA-2

Cutter
Wheel 

Dimensions

Calculate
Intermediate

Variables

Cutting
Profile

Balance
Calculation

Individual
Cutter

Placement
Machine

Performance

Lifetime
Calculation

Convert to 
Optimization

Values

Design 
Variables

Environment 
Variables

x1-8 x1-x8 x1-6

x1,2,4,6,7,8 x6,7

f1,2 g1-4

Figure 3. A simplified flowchart for the framework. Design variables, xi, and environmental
variables are marked with blue squares, optimization processes with yellow squares and

models with grey squares.

First, the dimensions of the cutter wheel are calculated according to the design variables to fulfill the
requirements of the customer. This is followed by placement of each individual cutter on the cutter
wheel. With the cutter wheel designed, its impact on the rest of the machine is calculated. This results in
estimations of overall entities such as power, torque, thrust, stiffness and excavation rate. These entities
are used to calculate the loads on the cutters, which yields the lifetime of each individual cutter.
Different versions of some of the models have been developed to handle customer requests for differ-
ent characteristics. Consequently, the optimization framework needs to automatically select the proper
models for each case, which complicates the framework architecture. Hence, the optimization problem
changes depending on the case, which makes it more difficult to tune the optimization algorithm as it is
expected to solve all cases in an efficient manner and return Pareto optimal designs.
All models are considered as black boxes from the perspective of the calling entity, meaning that
only zero-order information is available at each design point. The models are implemented in Python
and Matlab, respectively. A generic Matlab-interfacing component for OpenMDAO has therefore been
developed as part of this work.
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4.2 Problem formulation
In this framework, the requirements are considered as constants from the perspective of the optimiza-
tion formulation. The design variables consist of other geometric and operational parameters and are
summarized in table 1 together with the constraints and objectives. Variables x1 through x6 controls the
actual shape of the cutter wheel, whereas x7 and x8 controls the excavating motion of the wheel. Other
intermediate variables and constants are excluded for the sake of brevity.

Table 1. An overview of the design variables and responses defined in the
optimization model.

Notation Description Value set Units
x1 Cutters per kerf in face section Z ∩ [1,3] —
x2 Cutters per kerf in gage section Z ∩ [1,2] —
x3 Number of kerfs in face section Z ∩ [3,24] —
x4 Number of vertical strokes Z ∩ [2,5] —
x5 Cutter wheel width R ∩ [1200,1800] mm
x6 Cutter wheel diameter R ∩ [3200,4000] mm
x7 Nominal rotational speed of cutter wheel R ∩ [9,15] min−1

x8 Special excavation mode {True,False} —
g1 Minimum distance between any pair of cutters R ∩ [1,∞) mm
g2 Minimum load on any cutter at any time R ∩ [150,∞) kN
g3 Kerf spacing-penetration ratio R ∩ [5,15] —
g4 Velocity of cutter wheel perifery R ∩ [2,2.75] ms−1

f1 Excavation rate — m3min−1

f2 Minimum excavation lifetime of any cutter — m3

This results in the problem formulation shown in eq. 1 where both the excavation rate (f1) and the short-
est lifetime (f2) should be maximized to ensure as fast excavation process as possible. Since replacement
of worn-out cutters means that the machine is standing by, the lifetime of all the cutters should be as long
as possible, hence maximizing the shortest lifetime. The constraints ensure that the cutter configuration
is physically feasible and that the required power is realistic.

maximize f1(Ex), f2(Ex)
with respect to Ex

subject to 1 ≤ g1(Ex) ≤ ∞
150 ≤ g2(Ex) ≤ ∞
5 ≤ g3(Ex) ≤ 15
2 ≤ g4(Ex) ≤ 2.75

(1)

4.3 Optimization execution and results
Following the procedure described above, the optimization problem has been solved using the presented
NSGA-II implementation, with 76 individuals evaluated for 75 generations. All 5700 designs were
sequentially evaluated over the course of approximately 20 minutes on an HP ZBook 15v G5 laptop,
equipped with an Intel Core i7-8850H CPU and 16 GB of physical memory, running Windows 10 (build
18363).
The progression of the optimization solver can be followed through the evolution of each evolutionary
generation’s hypervolume (Zitzler and Thiele, 1998), as represented in figure 4. It can be seen that the
hypervolume is initially decreasing, probably due to the elimination of infeasible solutions. Thereafter,
it takes on a positive trend up until approximately generation 45 before reaching a plateau with minor
fluctuations.
After filtering the complete design set from unfeasible solutions and subsequently selecting the non-
dominated solutions, a Pareto-frontier of 68 points (represented in figure 5) is achieved. It is immediately
visible that the Pareto-frontier can be divided into three main areas of interest. When examining the
design variables behind these designs, it can be subjectively concluded that these areas (or clusters)
coincide with the value of x1. This is also reflected in the figure through the coloring of scatter points.
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Figure 5. Scatter plot of the Pareto-optimal set of feasible solutions.

A scatter matrix with the two objectives and the eight design variables is presented in figure 6. Here, it
can be observed that a number of design variable values are consistent across all designs in the obtained
Pareto-optimal set: x2 = 1, x4 = 3 and x8 = False.
While all constraints are not directly active (meaning that the constraint value would be equal to or
close to a boundary) for the Pareto set, it has been observed that deactivating these constraints would
yield solutions outside the allowed boundaries. Consequently, the constraints are needed to guide the
optimization towards feasible regions.

5 DISCUSSION AND CONCLUSION
In this paper, a number of contributions that extend the OpenMDAO software library has been pro-
posed, with the goal of broadening its area of applicability to include early-stage, exploratory design
optimization with mixed variables. OpenMDAO was selected as the base platform for this work due to
its currently strong support, both in terms of development and community engagement. By giving the
means to structure the problem into separated, interchangeable and extensible parts, it can be a useful
tool in building flexible and maintainable optimization applications.
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To demonstrate the utility of these contributions, it has been shown that they can be used to assemble
an optimization framework that is capable of optimizing a Mobile Miner on a conceptual level. The
framework is intended for use in early design and quotation stages with the objective to get an estimate
of important machine characteristics such as excavation rate and cutter lifetime. These characteristics
are among the most important properties for the customer as they determine the tunneling speed to a
great extent, which could be directly translated to cost for the client and contractor. The optimization
parameters are focused around the cutter wheel (such as number of cutters, cutter placement, cutter
wheel speed etc.) as these are decisive for the studied objectives. It is evident that the number of cutters
strongly affects the shape of the Pareto front, and hence this parameter is essential to get right early
in the design and quotation stage. Also, it is apparent that the problem is strongly characterized by
the presence of a mix of continuous and discrete variables and hence the proposed extension of the
OpenMDAO platform is essential to handle this type of problems in an efficient manner.
The MDO architecture used for the Mobile Miner example was selected due to its non-intrusive char-
acter, meaning that it does not in itself require any adaptations of the disciplinary models or the native
optimization problem. Conversely, a CO approach would probably require case-specific modifications
of the models, increasing the logical coupling between them. This would imply a decreased degree of
flexibility in the framework, but could possibly render performance improvements on the other hand.
Directions for future work include higher fidelity models, in order to improve the prediction capabilities
of the framework, and to link to further product development activities. While the Mobile Miner models
have been approved by a professional in the field, their validity should also be investigated further. One
way could be through the integration of alternative models in the same framework, providing a means
to compare and contrast their results.
Finally, the Mobile Miner is a good example of a complex engineer-to-order product which requires a lot
of engineering efforts for each new order. Here the concept of product configurators should be explored
in future studies, and the optimization framework is developed with this in mind. By minor changes to
the framework it would be possible to automatically reconfigure the optimization problem formulation
to fit in a configurator setting. This configurator approach should provide visualization tools and should
facilitate reuse of both models and problem formulations, and also the ability to include self-contained
software packages so that proprietary models and knowledge could be handled efficiently.
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