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partition algebraP, (¢) is always cellular in the sense of Graham and Lehrer. Thus the representation
theory of P,(¢) can be determined by applying the developed general representation theory on
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arbitrary field and implies the well-known fact that the Brauer algéhréy) and the Temperley—Lieb
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1. Introduction

Let k& be a field of arbitrary characteristic. For each elemgrt k and a natural
numbern the partition algebraP,(q), defined in [11], is a generalization both of
the Brauer algebr®,(¢) in [2], and also of the Temperley—Lieb algelffd., (¢) in

[15]. Itis of interest in statistic mechanics and appears in high physical dimensions
(see [13] and [14]).

In the partition algebraP,(¢), the linear basis is by definition the set of all
partitions of{1, 2, ..., 2n}. The multiplication of two basis elements is the ‘natural
concatenation’ depending on the parametetf one takesk to be the complex
number field and £ O, then Martin proved in [12] that the partition algebPa(q)
is always quasi-hereditary in the sense of Cline, Parshall and Scott [3]. Moreover,
he also determined the structure of indecomposable projective modules in this
case. Clearly, the partition algebra always has a homomorphic image isomorphic
to the group algebra of the symmetric grotip on the letterq1, 2, ..., n}. If the
characteristic of is positive, then the group algebk&, usually is not quasi-
hereditary. This might suggest that in general the partition alg&h(a) is no
longer quasi-hereditary (see Section 5). Thus, one may ask which structure the
partition algebra could have and how to determine its irreducible representations.
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In this paper, we shall consider these questions. We show that the partition algebra
shares a structure similar to that of Brauer algebra developed in [7]. More precisely,
we prove that for any field andg < k, the partition algebra,(¢) is cellular in

the sense of Graham and Lehrer [6], where cellular algebras, motivated by the
properties of the Kazhdan—Lusztig basis of Hecke algebras, were introduced to
handle a class of important algebras including the Ariki-Koike Hecke algebras [1],
Brauer algebras and many others. Thus, applying the general representation theory
of cellular algebras to partition algebras, we can get a description of the irreducible
modules ofP,(g) for any field of arbitrary characteristic. As a consequence, we
get also some results of P. Martin.

The paper is organized as follows: In the second section we recall some relevant
definitions and facts on partition algebras from [11]. The third section deals with
cellular algebras, where we recall an equivalent definition of cellular algebras in [9]
and establish our main lemma. The fourth section is the proof of the main result of
this paper. The last section contains a simple example to explain the main result.

2. Partition Algebras

In this section we recall the definition of partition algebras and some basic facts
from [11] which are needed in this paper.

Let M be a finite set. We denote &y, the set of all equivalent relations on, or
equivalently all partitions of the sét’:

Ey = {p=((M)Mp)---(M;)---) | 8 # M; C M,U;M; = M,
M;NM; =00 # j)}

For example, we takéf = {1, 2, 3}, then
Ey = {123, (1D(23), (12(3), (13(2), (D) (I}

If p = ((My)---(My)), we defing|p| to be the number of equivalence classes
of p. If we call eachM; in p a part ofp, then|p| is the number of parts gp|.

Note that there is a partial order @), if p; andp, are two elements itk ,,,
we say by definition thap, is smaller than or equal to, if and only if each part
of py is a subset of a part gf,. With this partial orderE, is a lattice.

If w e Ey andv € Ey, then we defingr - v € Eyuy as being the smallegt
in Epuny such thatuw Uv C p.

We are mainly interested in the cad¢ = {1,2,...,n,1,2,...,n'}. Note
that E, depends only upon the cardinalityp| of M. So we some-
times write E,, for E,;. To formulate our definitions, we denote B¢’ the set
(r,2,....,n, 17,2, ...,n"}.

DEFINITION 2.1. Letf: Ey x Ey — Z be such thatf (u, v) is the number of
parts ofu - v € Eyuy (note that M U M’| = 3n) containing exclusively elements
with a single prime.
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For example, in the case= 3, ((123(1'2)(3)) - (1)(23)(1")(2")(3")) =
(123 (1'2'3)(1")(2")(3") and f (1, v) = 1.

DEFINITION 2.2. LetC: Ey x Ey — Ey be such thatC(u, v) is obtained by
deleting all single primed elements @f v (discarding thef (u, v) empty brackets
so produced), and replacing all double primed elements with single primed ones.

The partition algebra, (¢) is defined in the following way.
DEFINITION 2.3 ((see [11])). Let be a field ang; € k. We define a product on

Ey: Ey X Ey — Ey, (1, 1) —> v = g/ C(p, v).

This product is associative. Lét,(¢) denote the vector space ovewith the
basisE,,. Then, by linear extention of the product @i, the vector spac®,(q)
becomes a finite-dimensional algebra okewxith the above product. We call this
algebraP, (¢) the partition algebra

If we take By, = {p € E); | each part op has exactly two elements &f} and
define the product of two elementsBy, in the same way as in 2, then the subspace
D, (g) of P,(g) with the basisB,, becomes a finite-dimensional algebra. This is
just the Brauer algebra. Similarly, if we takl®, = {p € By | pis planag, then
we get the Temperley—Lieb algebrd., (¢) with the basisP,; and the product 2.3.
The word ‘planar’ means that if we think of the basis elements diagrammatically,
then there are no edges crossing each other in the diagram (see [6]).

For an elemeniu € P,(g), we define #(u) to be the maximal number of
distinct parts ofu containing both primed and unprimed elementafover the
E ) basis elements with nonzero coefficientguin

The following fact is true inP,(g).

LEMMA 2.4. For i, v € P,(q), we havet” () < min{#° (), #° (v)}.

Given a partitiorp € Ey,, if we interchange the primed elemetitwith unprimed
elementj, then we get a new partition @ff, let us denote this new partition by
i(p). Theni extends by linearity t&,(¢).

For example, ifn = 4 and p = ((12(3412)(34)) then i(p) =
((1'2)(3412)(3%)).

LEMMA 2.5. The linear mag is an anti-automorphism a®, (¢) with i? = id.

Proof. Clearly, the map is k-linear with i = id. It remaind to check that
i(uv) = i(v)i(u) holds true for allu, v € E,;. However, this follows immediately
from the graphical realization of the product®(q) (see [12]), or from a verific-
ation of the above equation for the products of two generato#, @f) displayed
in[11].

In the following, ak-linear anti-automorphism of a k-algebraA with i? = id
will be called aninvolution
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3. Cellular Algebras

First, we recall the original definition of cellular algebras introduced by Graham
and Lehrer. Then we give an equivalent definition which is convenient to use for
looking at the structure of cellular algebras, and establish our technical lemma.

DEFINITION 3.1. (Graham and Lehrer, [6]). L& be a commutative Noetherian
integral domain. An associativR-algebraA is called acellular algebrawith cell
datum(I, M, C, i) if the following conditions are satisfied:

(C1) The finite set/ is partially ordered. Associated with eaghe I there is
a finite setM (). The algebrad has anR-basisC% ; where (S, T) runs
through all elements a¥/ (1) x M(») forallx e I.

(C2) The map is anR-linear anti-automorphism of with i? = id which sends
Csrt0Chg.

(C3) Foreachh € I andS, T € M()») and eactu € A the productaCLé,T can
be written asy" ) 7« (U, S)Cp 1) + " wherer’ is a linear combination
of basis elements with upper indexstrictly smaller than., and where the
coefficientsr, (U, S) € R do not depend off'.

The basis{Cg’T} of a cellular algebrad is called a cellular basis. With this
basis there is a bilinear for,, for eachx € 1, which is defined by’ ,Cj, |, =
®, (T, U)C% , modulo the ideal generated by all basis elements with upper index
w strictly smaller thark. Graham and Lehrer proved that the isomorphism classes
of simple modules are parametrized by thesgt= {1 € I | ®; # 0}.

Typical examples of cellular algebras are Brauer algebras, Hecke algebras of
type A and B, Temperley—Lieb algebras and many others. We shall prove that
partition algebras are cellular.

The following is the equivalent definition of cellular algebras:

DEFINITION 3.2 [(see [9])]. LetA be anR-algebra whereR is a commutative
Noetherian integral domain. Assume there is an involuii@m A. A two-sided
ideal J in A is called acell ideal if and only if i(J) = J and there exists a left
ideal A C J such thatA is finitely generated and free ov&rand that there is an
isomorphism ofdA-bimodulesx : J >~ A ®z i(A) (wherei(A) C J is thei-image
of A) making the following diagram commutative:

J o A®ri(A)
i Xy i(y) ®i(x)
J o A®ri(A)

The algebrad (with the involutioni) is calledcellular if and only if there is an
R-module decompositiod = J; & J; @ --- & J, (for somen) with i(J]’.) = i(J]’.)
for each;j and such that setting; = ®_,J/ gives a chain of two-sided ideals of
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AQ=JgcJicC J, C--- C J, = A (each of them fixed by) and for each
j (G =1,...,n) the quotient/; = J;/J;_1 is a cell ideal (with respect to the
involution induced by on the quotient) oA/ J;_.

The A’s obtained from each sectiofy/J;_; are calledstandard modulesf
the cellular algebra, and the above chain of ideals ihis called a cell chain
of A. Note that all simpleA-modules can be obtained from standard modules [6].
(Standard modules are called Weyl modules in [6]).

To construct cellular algebras, we have the following lemma which is essentially
implied in [10].

LEMMA 3.3. Let A be an algebra with an involutionh Suppose there is a decom-
position

A= @ V;® V; ® B; (direct sum of vector space)
j=1

whereV; is a vector space angi; is a cellular algebra with respect to an involution
o; and a cell chain;” c --- ¢ J/' = B; for eachj. Define, = @'_, V; &
V;® B;. Assume that the restriction 6bnV; ®; V; ® B; is given byw @v®b +—
v® w ® o;(b). If for each j there is a bilinear formp;: V; @, V; — B; such
thato;(¢;(w, v)) = ¢;(v, w) for all w, v € V; and that the multiplication of two
elements iV; ® V; ® B; is governed by; moduloJ;_,, thatis, forx, y, u, v € V;
andb, ¢ € B;, we have

xR YyRbHURVR®Cc) =xQVRbd;(y,u)
modulo the ideal/; ;, and if V; ® V; ® JY + J,_, is an ideal inA for all / and

j, thenA is a cellular algebra

Proof. DefineC = @_,V; ® V; ® B; andJ = Ji. ThenC = A/J is an
algebra. Now by [10] it is easy to see that the algefiia an inflation ofC along
J. Note that/ is, in fact, an iterated inflation sina® is a cellular algebra. Thus
is an iterated inflation and a cellular algebra by [10].

A direct proof of this lemma reads as follows. Since

NeoclP =8 j=1...m

is a cell chain for the given cellular algebra&s, we can check that the following
chain of ideals iMA satisfies all conditions in Definition 3.2:

Vievi®@ st ¢ - cViei®@JP cVieVie B V,® V0 J,7

C V1®V1®31®V2®V2®Jz(2)
C---CVi®Vi®B1@&Vo® Vo® By
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m—1
c-CPViev,®B eV, Vu®," C--
j=1
m—1
cPviev,eB eV, Vv, " =A.
j=1

Now we take a fixed nonzero elemante V; and suppose that J”) — A ®
i(AY) is the bimodule isomorphism in the definition of the cell idé5. Define

B: V,®YV; ®J,(j) — (Vj QR v; ®A§j))®(vj R V; ®®I(At(j)))
UQRLUVR X > Zl(”®v,/®xl)®(v,~®v®yl),

whereu,v € V;,x € J” anda(x) = Y, 5 ® y. Then one can verify that

B makes the corresponding diagram in the definition of cell ideals commutative.
HenceV; ® v; ® A" is a standard module for, andV; ® V; ® J, is a cell ideal

in the corresponding quotient @f. ThusA is a cellular algebra.

4. Proof of the Main Result

In this section we prove the main result of this paper and give some corollaries.

THEOREM 4.1.The partition algebraP,(g) is a cellular algebra

The proof of this theorem is based on a series of lemmas. We keep the notation
introduced in the previous sections. Recall thatdenotes the set of all partitions
of{1,2,...,n}.

Foreachl € {0, 1, ..., n}, we define a vector spadé which has as a basis the
set

4 = {(p,S)|p€E,|pl =1, Sisasubset
of the set of all parts g  with |S| =1}.

(Note that in [11] this set is denoted I8y(/).)

If p € E,, we may writep in a standard way: Suppope= ((M1) - - - (My)), we
write eachM; in such a way thas; = (a\’ay’ - a”) with @i’ < @y’ < .- <
al’ fa? < al? <. < a?, then we say thap is written in standard form. It
is clear that there is only one standard form for eachVe may also introduce an
order on the set of all parts pfby saying thatV/; < M, if and only if &\’ < a{®.

If N ¢ M andp € E,, we denote byy(p) the partition of M\ N obtained
from p by deleting all elements itv from the parts ofo, and bydy (p) the set of
parts of p which do not contain any element . Finally, we denote by, the
symmetric group of all permutations ¢, 2, . .., r} and byk X, the corresponding

group algebra over the field
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LEMMA 4.2. Each elemenp € Ej can be written uniquely as an element of
Vi ® V; ® k%, for a natural numbet € {0, 1, ..., n}.

Proof. Take a partitionp € Ej, we definex := rp 2. . (p) € E,. If we
identify the set{1’, 2, ..., n'} with {1,2,...,n} by sending;’ to j, theny :=
ra2..n(p) liesin E,. Let S, be the set of parts g containing both primed and
unprimed elements. Thelis,| = #(p). Now let S be the set of those parts of
x which are obtained from elements 8f by deleting the numbers contained in
{1,2,...,n'}. Similarly, we get a subseft of the set of all parts of. It is clear
that bothS and7 containi/(= |S,|) elements. Now if we write§ = {S1, ..., S/}
andT = {Ty,T»,...,T;}suchthatS; < S, < --- < S;andTy < Tr < --- < Tj,
we may define a permutatidn e X; by sending; to « if there is a party € S,
containing bothS; and7;, whereT, = {a’ | a € T;}. Sincex, y andb are uniquely
determined byp in a standard form, we can associate with the gigea unique
element(x, $) ® (y, T) ® b. Obviously,(x, S) and(y, T) belong toV; andb € ;.
Conversely, each elemeft, S) ® (y, T) ® b with (x, S), (v, T) € 8, andb € %,
corresponds to a unique partitipne E,,;. This finishes the proof of the lemma.

For example, forp = ((12323)(41)(54)(5)), we havex = ((123(4)(5)),

y = (D@D 5)), S = {123, 4D, OLT = {(D), (23, P} andb = (12) €
3.

Now we want to define a bilinear forghy: V, ® V; — kX,. Let (p, S) be in ;.

We may assume that= {S;, ..., S} with §; < S < --- < §;. We define

o:Vi®V, — k%

by sending(x, S) ® (v, T) to zero if there aré andj with 1 < i, j <l andi # j

and there is a partof - y € E, containing boths; andsS;, or dually there are and
Jwith1l<i, j<landi # jandthereisapartof-y € E, containing bothr;

andT;, or there is a number X i </ and a part of - y containing onlys;, or
dually there is a number £ i </ and a part ofc - y containing onlyT;, and to
g%svr@Mlp e k3, in other case, wher§ v T stands for the union of all parts 6f
andT, andb is defined as follows: Since for eactthere is a unique part of - y

containing bothS; and a unique paff;, we defineb to be the permutation taking
to j. Thusb € ;. We denote thi$ by p,(x, S; y, T). If we extendg, by linearity
to the whole spac®; ® V;, then we have the following lemma.

LEMMA 4.3. The mapp;: V; ®; V; — kX, is a bilinear form

The multiplication of two elements iP,(¢) is given by the following two
lemmas:

LEMMA 4.4, Letpu,vbeinEy. Ifu=w,R)®x,S)®b1 € VRV, ®kX, and
v=>,T)® W, Q) ®b eV, ®V,®kX;, then

py = (u, R) ® (v, Q) @ bagy((x, S), (y, T))b2
moduloJ_y = P, V; ® V; ® k=)
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Proof. By the definition of the multiplication inP,(¢) and the definition of
dsyr(x - y), we know thatf (u, v) = |dsv7r(x - y)|. Hence, it is sufficient to show
that the elementu, R) ® (v, Q) ® b1¢;((x, S), (v, T))b, just presents the element
g/ C(w, v) in P,(g) moduloJ;_;.

If ¢;,((x,S), (v, T)) =0, then, by the definiton af,;, we see that #(uv) < I.
This implies thaC (i, v) € J,_1. Now assume thag; ((x, S), (v, T)) = g!%svr&lp,
whereb is defined as above. Now we have to show thatR) ® (v, Q) ® b1bbs
presents the elemenit(w, v). Indeed, by the definition af;, we have obviously
thatry > . (C(u,v)) = u € E, and thatrp o (C(u,v)) = v € E, if we
identify j" with j for 1 < j < n. Note that there is only distinct parts ofx - y,
sayiny Py, P, ..., P;, containing a single; and a singl€f;,. Hence, there is a part
in C(u, v) which contains botlR;,-1 andsS;. SinceT; andQ;,, are contained in the
same part ob, we see finally thaRl.bl_l and Q;;, are contained in the same part
of C(u, v). HenceC (i, v) is presented byu, R) ® (v, Q) ® bibb,. This finishes
the proof.

LEMMA 4.5. Let I andm be two natural numbers with< m. Takex = (u, R) ®
x,®beV,®V, @k, withb € £,,andp = (y,T) ® (v,0) Qc €
Vi®Vi®kZwithe € I If af = gl Dl(w, F) ® (z, G) ® d, then

QO if |F| =1,then(z,G) = (v, Q),d = d'c, and(w, F) andd’ € X; do not
depend ore.

(2) if |[F| < I, then for anyc; € %, there holdsx((y, T) ® (v, Q) ® ¢1) € J;_1.

Proof.(1) If |F| =1, then|G| = I. SincegG is always obtained fron®, we infer
that(z, G) must be(v, Q). Henced is also of the desired form. The other assertions
follow immediately from the definition of the multiplication of two basis elements
in P,(q).

(2) This is trivial sincec andc; can be considered as two bijections fra@hto
Q. If there is a part ok - y containing more than one elementsgfthen we always
havea((y, T) ® (v, Q) ® c1) € J;_1 for anyc; € ;. The proof is finished.

There is, of course, a dual version of the above lemma, in which the ca#se of
is considered.

By Lemma 4, we may identifyz,, with | ;_, 4;. Then we have the following
fact.

LEMMA4.6. J, := )"V, ® V; ® kX, is an ideal ofP, (¢).

This follows from Lemma 2 and Lemma 4. The following lemma is a con-
sequence of definitions and Lemma 4.
LEMMA4.7. If u = (x, ) ® (v, T) @ b with (x, S), (v, T) € 4 andb € %, then
iw=0T) QxS @bt

Note that the bilinear formg; is not symmetric, but we have the following fact.
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LEMMA 4.8. Leti: kX, — kX; be the involution ot X; defined by +— o~ for
all o € X;. Theniqbl(vl, v2) = ¢ (v2, V1) for all vy, vp € V.

Proof. We may assume that = (x, S) andvy, = (y, T). If ¢;(v1, v2) = 0, then
it follows from the definition ofp;, andx - y = y - x that¢,; (v, v1) = 0. Hence, we
assume now thag; (vy, vo) # 0. In this case, ifS; andT;, with b = p;(x, S; v, T)
are contained in the same part.of y, then7; and S;,-1 are contained also in
the same part of - x. Thus p;(y, T; x, §) = b~L. This shows thai¢;(vy, vo) =
¢ (v2, v1). The proof is finished.

Now we are in the position to prove our main result.

Proof of the TheorenRutJ_; = 0, ¥ = {1} andB; = kX,. Then the partition
algebra has a decomposition

Pq) =VoRr Vo Bo®--- DV R Vi®r QB &®--- DV, Qi V, & By.

Note thatB, is a cellular algebra with respect to the involutien— o~ for

o € X, (see [6]). According to Lemma 4.4 and Lemma 4.5, the chain displayed in
the proof of Lemma 3.1 is a chain of idealsf(g). Hence, by the lemmas in this
section, the above decomposition satisfies all conditions in Lemma 3.1. Thus, the
algebraP, (¢) is a cellular algebra.

We have the following corollary which is proved in [6] by a complicated com-
putation for each algebra; respectively. Here we have a simpler unified proof.

COROLLARY 4.9. (1)The Brauer algebraD, (¢) is cellular.

(2) The Temperley—Lieb algbef@l, (¢) is cellular.

Proof. Since the Brauer algebra and the Temperley-Lieb algebra are special
subalgebras of,(q), we can get a similar cellular structure if we restrict us to the
special basis that defines the particular algebra respectively.

From the proof of the theorem, we have the following fact.
COROLLARY 4.10.The standard modules &,(¢) are A;(A) := V,; Q@ v; ® A(L),

wherel € {0, 1, ...,n}andx is a partition ofi, v, is a fixed nonzero element Gf,
and A(1) is a standard module &f%;. For [ = 0, we taker = (0) and A(0) = k.

Moreover, we have complete information about the set of simple modules.
COROLLARY 4.11.Let P,(g), (n > 1) be the partition algebra over a field of
characteristicp (possiblyp = 0). If ¢ # 0then the nonisomorphic simple modules

are parametrized by(m, 1) |0 < m < n, A is a p-regular partition ofm}.
In the case ofy = 0, the above assertion is also valid except 0.

Recall that a partition ig-regular if it does not have-equal parts g # 0); if
p = 0, then all partitions arg-regular.

Proof. It follows from the above corollary that the simpl (¢)-modules are
parametrized by(/, 1) | @) # 0}. If I # O, then it follows from 4 and an easy
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computation thatb ,, # O if and only if the corresponding linear ford, for

the cellular algebraX; is not zero. (Here we use the fact that(x, S), (x, S)) =

g"¥1=lid € k%,.) Now it follows from [4] (7.6) thatd, # 0 if and only if A is a
p-regular partition of. If m = 0, then®d ;, # 0if and only ifg # 0. Hence, the
statements follow.

Recall that an ideaV of an algebraA is called aheredity idealif J is idem-
potent,J(rad(A))J = 0 andJ is a projective left (or, rightA-module. An algebra
A is calledquasi-hereditanyif there is a finite chain@= Jjoc J,;Cc---Cc J, = A
of ideals inA such that/;/J;_1 is a heredity ideal iPA/J;_1 for 1 < j < n.
Quasi-hereditary algebras were introduced by Cline, Parshall and Scott to study the
highest-weight categories in the representation theory of Lie algebras and algebraic
groups (see [3]).

In [12], Martin proved that over a field of characteristc O the partition algebra
P,(qg) is quasi-hereditary if the parametgiis not zero. More generally, we have
the following fact which comes from the above corollary and [6] 3.10.

COROLLARY 4.12.Suppose that the base fidlis of characteristicp, andg # 0.
Then the partition algebra, (¢) is quasi-hereditary ifp = 0 or p is bigger than
n.

5. An Example

Let us consider a simple example to illustrate the main result and meantimes to
show that in general the partition algebra is not quasi-hereditary.

We taken = 2 andg € k. Then the partition algebrB,(g) is a 15-dimensional
algebra ovek. The corresponding vector spacésand the bilinear formg; can
be described as follows

Vo = kvy + kva, Vi =kuy + kus + kus, Vo =k,

qzq g 01
¢0=< )v ¢l= Oql ) ¢2=(l)
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ThenPy(g) = Vo@ Vo @k B Vi@ Vi®k® Vo® Vo ® kXp and dim P(q) =
22432 4+2=15

If the characteristic of the field is two amd= 1, thenJy = Vo ® Vo ® k is an
idempotent ideal of,(1). Hence, Jp is a heredity ideal (see [9]), and the global
dimension ofP,(1) is finite if and only if so is the global dimension of the algebra
P>(1)/ Jo by [5]. Sinceg, is not singular, we can deduce thiay J; is also a heredity
ideal in P,(1)/Jo. Thus the global dimension @&(1)/ Jy is finite if and only if the
global dimension ofP,(1)/J; is finite. But we know thatP,(1)/J; = kX, and
that the global dimension @fX; is infinite. Thus the global dimension #(1) is
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infinite. HenceP,(1) is not quasi-hereditary since quasi-hereditary algebras always
have finite global dimension.

The Brauer algebr®,(q) is three-dimensional, and the corresponding datum
are:

Vo=kvp,, Vi =0, V,=k, do = (q) and¢2 = (1.
Hence the decomposition @f,(g) is D2(q) = Vo @ Vo Rk ® Vo ® Vo ® kXs.
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