
SIP (2021), vol. 10, e17, page 1 of 14 © The Author(s), 2021. Published by Cambridge University Press in association with Asia Pacific Signal and Information Processing
Association. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
doi:10.1017/ATSIP.2021.15

original paper

TGHop: an explainable, efficient, and
lightweight method for texture generation
xuejing lei, ganning zhao, kaitai zhang and c.-c. jay kuo

An explainable, efficient, and lightweight method for texture generation, called TGHop (an acronym of Texture Generation
PixelHop), is proposed in this work. Although synthesis of visually pleasant texture can be achieved by deep neural networks,
the associated models are large in size, difficult to explain in theory, and computationally expensive in training. In contrast,
TGHop is small in its model size, mathematically transparent, efficient in training and inference, and able to generate high-
quality texture. Given an exemplary texture, TGHop first crops many sample patches out of it to form a collection of sample
patches called the source. Then, it analyzes pixel statistics of samples from the source and obtains a sequence of fine-to-coarse
subspaces for these patches by using the PixelHop++ framework. To generate texture patches with TGHop, we begin with the
coarsest subspace, which is called the core, and attempt to generate samples in each subspace by following the distribution of real
samples. Finally, texture patches are stitched to form texture images of a large size. It is demonstrated by experimental results
that TGHop can generate texture images of superior quality with a small model size and at a fast speed.

Keywords: Texture generation, Texture synthesis, Generative model, Successive subspace modeling

Received 1 July 2021; Revised 13 September 2021

I . I NTRODUCT ION

Automatic generation of visually pleasant texture that
resembles exemplary texture has been studied for several
decades since it is of theoretical interest in texture analy-
sis and modeling. Research in texture generation benefits
texture analysis and modeling research [1–7] by providing
a perspective to understand the regularity and random-
ness of textures. Texture generation finds broad applica-
tions in computer graphics and computer vision, including
rendering textures for 3D objects [5, 8], image or video
super-resolution [9], etc.

Early works of texture generation generates textures in
pixel space. Based on exemplary input, texture can be gener-
ated pixel-by-pixel [10–12] or patch-by-patch [13–16], start-
ing from a small unit and gradually growing to a larger
image. These methods, however, suffer from slow genera-
tion time [11, 14] or limited diversity of generated textures
[13, 15, 17]. Later works transform texture images to a fea-
ture space with kernels and exploit the statistical correlation
of features for texture generation. Commonly used kernels
include theGabor filters [18] and the steerable pyramid filter
banks [19]. This idea is still being actively studied with the
resurgence of neural networks. Various deep learning (DL)

Ming Hsieh Department of Electrical and Computer Engineering, University of
Southern California, Los Angeles, CA 90089, USA

Corresponding author:
Xuejing Lei
Email: xuejing@usc.edu

models, including Convolutional Neural Networks (CNNs)
andGenerativeAdversarial Networks (GANs), yieldvisually
pleasing results in texture generation. Compared to tradi-
tional methods, DL-based methods [20–26] learn weights
and biases through end-to-end optimization. Nevertheless,
these models are usually large in model size, difficult to
explain in theory, and computationally expensive in train-
ing. It is desired to develop a new generation method that
is small in model size, mathematically transparent, efficient
in training and inference, and able to offer high-quality
textures at the same time. Along this line, we propose
the TGHop (Texture Generation PixelHop) method in this
work.

TGHop consists of four steps. First, given an exemplary
texture, TGHop crops numerous sample patches out of it to
form a collection of sample patches called the source. Sec-
ond, it analyzes pixel statistics of samples from the source
and obtains a sequence of fine-to-coarse subspaces for these
patches by using the PixelHop++ framework [27]. Third, to
generate realistic texture patches, it begins with generating
samples in the coarsest subspace, which is called the core,
by matching the distribution of real and generated samples,
and attempts to generate spatial pixels given spectral coef-
ficients from coarse to fine subspaces. Last, texture patches
are stitched to form texture images of a larger size. Extensive
experiments are conducted to show that TGHop can gener-
ate texture images of superior quality with a small model
size, at a fast speed, and in an explainable way.

It is worthwhile to point out that this work is an extended
version of our previous work in [28], where a method called

1https://doi.org/10.1017/ATSIP.2021.15 Published online by Cambridge University Press

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-2335-4445
mailto:xuejing@usc.edu
https://doi.org/10.1017/ATSIP.2021.15


2 xuejing lei et al.

NITES was presented. Two works share the same core idea,
but this work provides a more systematic study on texture
synthesis task. In particular, a spatial Principal Component
Analysis (PCA) transform is included in TGHop. This addi-
tion improves the quality of generated textures and reduces
the model size of TGHop as compared with NITES. Fur-
thermore, more experimental results are given to support
our claim on efficiency (i.e., a faster computational speed)
and lightweight (i.e., a smaller model size).

The rest of the paper is organized as follows. Related
work is reviewed in Section II. A high-level idea of suc-
cessive subspace analysis and generation is described in
Section III. The TGHop method is detailed in Section IV.
Experimental results are shown in Section V. Finally, con-
cluding remarks and future research directions are given in
Section VI.

I I . RELATED WORK

A) Early work on texture generation
Texture generation (or synthesis) has been a long-standing
problem of great interest. The methods for it can be catego-
rized into two types. The first type generates one pixel or one
patch at a time and grows synthesized texture from small to
large regions. Pixel-based method synthesizes a center pixel
conditioned on its neighboring pixels. Efros and Leung [11]
proposed to synthesize a pixel by randomly choosing from
the pixels that have similar neighborhood as the query pixel.
Patch-based methods [13–16] usually achieve higher qual-
ity than pixel-based methods [10–12]. They suffer from two
problems. First, searching thewhole space to find amatched
patch is slow [11, 14]. Second, the methods [13, 15, 17] that
stitching small patches to form a larger image sustain lim-
ited diversity of generated patches, though they are capable
of producing high-quality textures at a fast speed. A cer-
tain pattern may repeat several times in these generated
textures without sufficient variations due to lack of under-
standing the perceptual properties of texture images. The
second type addresses this problem by analyzing textures in
feature spaces rather than pixel space.A texture image is first
transformed to a feature space with kernels. Then, statistics
in the feature space, such as histograms [18] andhandcrafted
summary [19], is analyzed and exploited for texture gen-
eration. For the transform, some pre-defined filters such
as Gabor filters [18] or steerable pyramid filter banks [19]
were adopted in early days. The design of these filters, how-
ever, heavily relies on human expertise and lack adaptivity.
With the recent advances of deep neural networks, filters
from a pre-trained networks such as VGG provide a pow-
erful transformation for analyzing texture images and their
statistics [20, 24].

B) DL-based texture generation
DL-basedmethods often employ a texture loss function that
computes the statistics of the features. Fixing the weights
of a pre-trained network, the method in [20] applies the

Gram matrix as the statistical measurement and iteratively
optimizes an initial white-noise input image through back-
propagation. The method in [24] computes feature covari-
ances of white-noise image and texture image, and matches
them through whitening and coloring. The method in [29]
trained a generator network using a loss based on the same
statistics as [20] inside a pre-trained descriptor network.
Its training is sensitive to hyper-parameters choice vary-
ing with different textures. These three methods utilized
a VGG-19 network pre-trained on the Imagenet to extract
features. The method in [25] abandons the deep VGG net-
work but adopts only one convolutional layer with ran-
dom filter weights. Although these methods can generate
visually pleasant textures, the iterative optimization pro-
cess (i.e. backpropagation) is computationally expensive.
There is a lot of follow-ups to [20] using the Gram matrix
as the statistics measurement such as incorporating other
optimization terms [21, 22] and improving inference speed
[23, 26]. However, there is a price to pay. The former aggra-
vates the computational burden while the latter increases
the training time. Another problem of these methods lies in
the difficulty of explaining the usage of a pre-trained net-
work. The methods in [20, 24] develop upon a VGG-19
network pre-trained on the Imagenet dataset. The Imagenet
dataset is designed for understanding the semantic mean-
ing of a large number of natural images. Textures, however,
mainly contain low-level image characteristics. Although
shallow layers (such as conv_1) of VGG are known to cap-
ture low-level characteristics of images, generating texture
only with shallow layers does not give a good results in
[20]. It is hard to justify whether the VGG feature contains
redundancy for textures or ignores some texture-specific
information. Lack of explainability also raises the challenge
of inspecting the methods when unexpected generation
results occurred. There are some advances in explainable
DL research. Visual Analytics systems are utilized for in-
depth model understanding and diagnoses [30]. Algorithm
unrolling technique was developed to help connect neural
networks and iterative algorithms [31]. Although they are
beneficial tools to alleviate the issue, more work needs to be
done to thoroughly understand themechanismof networks.
Thus, these drawbacks motivate us to design a method that
is efficient, lightweight, and dedicated to texture.

C) Successive subspace learning
To reduce the computational burden in training and
inference of DL-based methods, we adopt spatial-spectral
representations for texture images based on the succes-
sive subspace learning (SSL) framework [32–34]. To imple-
ment SSL, PixelHop [35] and PixelHop++ [27] architec-
tures have been developed. PixelHop consists of multi-stage
Saab transforms in cascade. PixelHop++ is an improved
version of PixelHop by replacing the Saab transform with
the channel-wise (c/w) Saab transform, exploitingweak cor-
relations among spectral channels. Both the Saab transform
and the c/w Saab transform are data-driven transforms,
which are variants of the PCA transform. PixelHop++

https://doi.org/10.1017/ATSIP.2021.15 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2021.15


tghop 3

Fig. 1. Illustration of successive subspace analysis and generation, where a sequence of subspace S1, . . . , Sn is constructed from source space, S0, through a successive
process indicated by blue arrows while red arrows indicate the successive subspace generation process.

offers powerful hierarchical representations and plays a key
role of dimension reduction in TGHop. SSL-based solutions
have been proposed to tackle quite a few problems, includ-
ing [36–45]. In this work, we present an SSL-based texture
image generation method. The main idea of the method is
demonstrated in the next section.

I I I . SUCCESS IVE SUBSPACE
ANALYS IS AND GENERAT ION

In this section, we explain themain idea behind the TGHop
method, successive subspace analysis, and generation, as
illustrated in Fig. 1. Consider an input signal space denoted
by S̃0, and a sequence of subspaces denoted by S̃1, . . . , S̃n.
Their dimensions are denoted by D̃0, D̃1, . . . , D̃n. They are
related with each other by the constraint that any element
in S̃i+1 is formed by an affine combination of elements in S̃i,
where i = 0, . . . , n − 1.

An affine transform can be converted to a linear trans-
formby augmenting vector ã in S̃i via a = (ãT , 1)T .We use Si
to denote the augmented space of S̃i andDi = D̃i + 1. Then,
we have the following relationship

Sn ⊂ Sn−1 ⊂ · · · ⊂ S1 ⊂ S0, (1)

and
Dn < Dn−1 < · · · < D1 < D0. (2)

We use texture analysis and generation as an example to
explain this pipeline. To generate homogeneous texture, we
collect a number of texture patches cropped out of exem-
plary texture as the input set. Suppose that each texture
patch has three RGB color channels, and a spatial resolu-
tion P × P. The input set then has a dimension of 3P2 and
its augmented space S0 has a dimension of D0 = 3P2 + 1.
If P = 32, we have D0 = 3073 which is too high to find an
effective generation model directly.

To address this challenge, we build a sequence of sub-
spaces S0, S1, . . . , Sn with decreasing dimensions. We call S0
and Sn the “source” space and the “core” subspace, respec-
tively.Weneed to find an effective subspace Si+1 from Si, and
such an analysis model is denoted by Ei+1

i . Proper subspace
analysis is important since it determines how to decompose
an input space into the direct sum of two subspaces in the
forward analysis path. Although we choose one of the two

for further processing and discard the other one, we need to
record the relationship of the two decomposed subspaces so
that they are well-separated in the reverse generation path.
This forward process is called fine-to-coarse analysis.

In the reverse path, we begin with the generation of sam-
ples in Sn by studying its own statistics. This is accomplished
by generation model Gn. The process is called core sam-
ple generation. Then, conditioned on a generated sample in
Si+1, we generate a new sample in Si through a generation
model denoted by Gi

i+1. This process is called coarse-to-
fine generation. In Fig. 1, we use blue and red arrows to
indicate analysis and generation, respectively. This idea can
be implemented as a non-parametric method since we can
choose subspaces S1, . . . , Sn, flexibly in a feedforward man-
ner. One specific design is elaborated in the next section.

I V . TGHOP METHOD

The TGHop method is proposed in this section. An
overview of theTGHopmethod is given in SectionA).Next,
the forward fine-to-coarse analysis based on the two-stage
c/w Saab transforms is discussed in Section B). Afterwards,
sample generation in the core is elaborated in Section C).
Finally, the reverse coarse-to-fine pipeline is detailed in
Section D).

A) System overview
An overview of the TGHop method is given in Fig. 2. The
exemplary color texture image has a spatial resolution of
256 × 256 and three RGB channels. We would like to gen-
erate multiple texture images that are visually similar to the
exemplary one. By randomly cropping patches of size 32 ×
32 out of the source image, we obtain a collection of texture
patches serving as the input to TGHop. The dimension of
these patches is 32 × 32 × 3 = 3072. Their augmented vec-
tors form source space S0. The TGHop system is designed
to generate texture patches of the same size that are visually
similar to samples in S0. This is feasible if we can capture
both global and local patterns of these samples. There are
two paths in Fig. 2. The blue arrows go from left to right,
denoting the fine-to-coarse analysis process. The red arrows
go from right to left, denoting the coarse-to-fine genera-
tion process. We can generate as many texture patches as
desired using this procedure. In order to generate a texture

https://doi.org/10.1017/ATSIP.2021.15 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2021.15


4 xuejing lei et al.

Fig. 2. An overview of the proposed TGHop method. A number of patches are collected from the exemplary texture image, forming source space S0. Subspaces
S1 and S2 are constructed through analysis models E10 and E21 . Input filter window sizes to Hop-1 and Hop-2 are denoted as I0 and I1. Selected channel numbers of
Hop-1 and Hop-2 are denoted as K1 and K2. A block of size Ii × Ii of Ki channels in space/subspace Si is converted to the same spatial location of Ki+1 channels in
subspace Si+1. Red arrows indicate the generation process beginning from core sample generation followed by coarse-to-fine generation. The model for core sample
generation is denoted as G2 and the models for coarse-to-fine generation are denoted as G1

2 and G0
1 .

image of a larger size, we perform image quilting [13] based
on synthesized patches.

B) Fine-to-coarse analysis
The global structure of an image (or an image patch) can
be well characterized by spectral analysis, yet it is limited in
capturing local detail such as boundaries between regions.
Joint spatial-spectral representations offer an ideal solution
to the description of both global shape and local detail infor-
mation. Analysis model E1

0 finds a proper subspace, S1, in S0
while analysis model E2

1 finds a proper subspace, S2, in S1.
As shown in Fig. 2, TGHop applies two-stage transforms.
They correspond to E1

0 and E2
1 , respectively. Specifically, we

can apply the c/w Saab transform in each stage to conduct
the analysis. In the following, we provide a brief review on
the Saab transform [34] and the c/w Saab transform [27].

We partition each input patch into non-overlapping
blocks, each of which has a spatial resolution of I0 × I0 with
K0 channels. We flatten 3D tensors into 1D vectors, and
decompose each vector into the sum of one Direct Cur-
rent (DC) and multiple Alternating Current (AC) spectral
components. The DC filter is a all-ones filter weighted by
a constant. AC filters are obtained by applying the PCA to
DC-removed residual tensor. By setting I0 = 2 and K0 = 3,
we have a tensor block of dimension 2 × 2 × 3 = 12. Filter
responses of PCA can be positive or negative. There is a sign
confusion problem [32, 33] if both of them are allowed to
enter the transform in the next stage. To avoid sign con-
fusion, a constant bias term is added to all filter responses
to ensure that all responses become positive, leading to
the name of the “subspace approximation with adjusted
bias (Saab)” transform. The Saab transform is a data-driven
transform, which is significantly different from traditional

transforms (e.g. Fourier and wavelet transforms) which are
data independent. We partition AC channels into two low-
and high-frequency bands. The energy of high-frequency
channels (shaded by gray color in Fig. 2) is low and they
are discarded for dimension reduction without affecting the
performance much. The energy of low-frequency channels
(shaded by blue color in Fig. 2) is higher. For a tensor of
dimension 12, we have one DC and 11 AC components. Typ-
ically, we select K1 = 6 to 10 leading AC components and
discard the rest. Thus, after E1

0, one 12-D tensor becomes a
K1-D vector, which is illustrated by dots in subspace S1. The
K1-D response vectors are fed into the next stage for another
transform.

The channel-wise (c/w) Saab transform [27] exploits the
weak correlation property between channels so that the
Saab transform can be applied to each channel separately
(see themiddle part of Fig. 2). The c/w Saab transformoffers
an improved version of the standard Saab transform with a
smaller model size.

One typical setting used in our experiments is shown
below.

• Dimension of the input patch (D̃0): 32 × 32 × 3 = 3072;
• Dimension of subspace S̃1 (D̃1): 16 × 16 × 10 = 2560
(by keeping 10 channels in Hop-1);

• Dimension of subspace S̃2 (D̃2): 8 × 8 × 27 = 1728
(by keeping 27 channels in Hop-2).

Note that the ratio between D̃1 and D̃0 is 83.3 while
that between D̃2 and D̃1 is 67.5. We are able to reduce
the dimension of the source space to that of the core sub-
space by a factor of 56.3. In the reverse path indicated by
red arrows, we need to develop a multi-stage generation

https://doi.org/10.1017/ATSIP.2021.15 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2021.15


tghop 5

Fig. 3. Generated grass texture image with and without spatial dimension reduction (SDR). (a) Without SDR, (b) with SDR.

process. It should also be emphasized that users can flex-
ibly choose channel numbers in Hop-1 and Hop-2. Thus,
TGHop is a non-parametric method.

The first-stage Saab transform provides the spectral
information on the nearest neighborhood, which is the first
hop of the center pixel. By generalizing from one to mul-
tiple hops, we can capture the information in the short-,
mid-, and long-range neighborhoods. This is analogous to
increasingly larger receptive fields in deeper layers of CNNs.
However, filter weights in CNNs are learned from end-to-
end optimization via backpropagation while weights of the
Saab filters in different hops are determined by a sequence
of PCAs in a feedforward unsupervised manner.

C) Core sample generation
In the generation path, we begin with sample generation in
core Sn which is denoted byGn. In the current design, n = 2.
We first characterize the sample statistics in the core, S2.
After two-stage c/w Saab transforms, the sample dimension
in S2 is less than 2000. Each sample contains K2 channels
of spatial dimension 8 × 8. Since there exist correlations
between spatial responses in each channel, PCA is adopted
for further Spatial Dimension Reduction (SDR).We discard
PCA components whose variances are lower than thresh-
old γ . The same threshold applies to all channels. SDR can
help reduce the model size and improve the quality of gen-
erated textures. For example, we compare a generated grass
texture with and without SDR in Fig. 3. The quality with
SDR significantly improves.

After SDR, we flatten the PCA responses of each chan-
nel and concatenate them into a 1D vector denoted by z. It
is a sample in S2. To simplify the distribution characteriza-
tion of a high-dimensional random vector, we group train-
ing samples into clusters and transform random vectors
in each cluster into a set of independent random vari-
ables. We adopt the K-Means clustering algorithm to clus-
ter training samples into N clusters, which are denoted by
{Ci}, i = 0, . . . ,N − 1. Rather than modeling probability
P(z) directly, we model condition probability P(z | z ∈ Ci)

with a fixed cluster index. The probability, P(z), can be
written as

P(z) =
N−1∑

i=0

P(z | z ∈ Ci) · P(z ∈ Ci), (3)

where P(z ∈ Ci) is the percentage of data points in cluster
Ci. It is abbreviated as pi, i = 0, . . . ,N − 1 (see the right part
of Fig. 2).

Typically, a set of independent Gaussian random vari-
ables is used for image generation. To do the same, we
convert a collection of correlated random vectors into a
set of independent Gaussian random variables. To achieve
this objective, we transform random vector z in cluster Ci
into a set of independent random variables through inde-
pendent component analysis (ICA), where non-Gaussianity
serves as an indicator of statistical independence. ICA finds
applications in noise reduction [46], face recognition [47],
and image infusion [48]. Our implementation is detailed
below.

(i) Apply PCA to z in cluster Ci for dimension reduction
and data whitening.

(ii) Apply FastICA [49], which is conceptually simple, com-
putationally efficient, and robust to outliers, to the PCA
output.

(iii) Compute the cumulative density function (CDF) of
each ICA component of randomvector z in each cluster
based on its histogram of training samples.

(iv) Match the CDF in Step 3 with the CDF of a Gaussian
random variable (see the right part of Fig. 2), where
the inverse CDF is obtained by resampling between
bins with linear interpolation. To reduce the model
size, we quantize N-dimensional CDFs, which have N
bins, with vector quantization and store the codebook
of quantized CDFs.

We encode pi in Eq. (3) using the length of a segment
in [0, 1]. All segments are concatenated in order to build
the unit interval. The segment index is the cluster index.
These segments are called the interval representation as
shown in Fig. 4. To draw a sample from subspace S2, we use
the uniform random number generator to select a random
number from interval [0, 1]. This random number indicates
the cluster index on the interval representation.

To generate a new sample in S2, we perform the following
steps:

(i) Select a random number from the uniform random
number generator to determine the cluster index.

(ii) Draw a set of samples independently from theGaussian
distribution.

https://doi.org/10.1017/ATSIP.2021.15 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2021.15


6 xuejing lei et al.

Fig. 4. Illustration of the interval representation, where the length of a segment in the unit interval represents the probability of a cluster, pi. A random number is
generated in the unit interval to indicate the cluster index.

Fig. 5. Illustration of the generation process.

(iii) Match histograms of the generated Gaussian samples
with the inverse CDFs in the chosen cluster.

(iv) Repeat Steps 1–3 if the generated sample of Step 3 has
no value larger than a pre-set threshold.

(v) Perform the inverse transform of ICA and the inverse
transform of PCA.

(vi) Reshape the 1D vector into a 3D tensor and this tensor
is the generated sample in S2.

The above procedure is named Independent Compo-
nents Histogram Matching (ICHM). To conclude, there
are two main modules in core sample generation: spatial
dimension reduction (SDR) and independent components
histogram matching as shown in Fig. 2.

D) Coarse-to-fine generation
In this section, we examine generation model Gi

i+1, whose
role is to generate a sample in Si given a sample in Si+1. Anal-
ysis model, Ei+1

i , transforms Si to Si+1 through the c/w Saab
transform in the forward path. In the reverse path, we per-
form the inverse c/w Saab transform on generated samples
in Si+1 to Si. We take generation model G1

2 as an example to
explain the generation process from S2 and to S1. A gener-
ated sample in S2 can be partitioned intoK1 groups as shown
in the left part of Fig. 5. Each group of channels is composed
of one DC channel and several low-frequency AC channels.
The kth group of channels in S2, whose number is denoted
by K(k)

2 , is derived from the kth channel in S1. We apply the
inverse c/w Saab transform to each group individually. The
inverse c/w Saab transform converts the tensor at the same
spatial location across K(k)

2 channels (represented by white
dots in Fig. 5) in S2 into a block of size Ii × Ii (represented
by the white parallelogram in Fig. 5) in S1, using the DC

andAC components obtained in the fine-to-coarse analysis.
After the inverse c/w Saab transform, the Saab coefficients
in S1 form a generated sample in S1. The same procedure is
repeated between S1 and S0.

Examples of several generated textures in core S2, inter-
mediate subspace S1, and source S0 are shown in Fig. 6.
The DC channels generated in the core offer gray-scale low-
resolution patterns of a generated sample.More local details
are added gradually from S2 to S1 and from S1 to S0.

V . EXPER IMENTS

A) Experimental setup
The following hyper parameters (see Fig. 2) are used in our
experiments.

• Input filter window size to Hop-1: I0 = 2,
• Input filter window size to Hop-2: I1 = 2,
• Selected channel numbers in Hop-1 (K1): 6 ∼ 10,
• Selected channel numbers in Hop-2 (K2): 20 ∼ 30.

The window size of the analysis filter is the same as the
generation window size. All windows are non-overlapping
with each other. The actual channel numbers K1 and K2 are
texture-dependent. That is, we examine the energy distri-
bution based on the PCA eigenvalues and choose the knee
point where the energy becomes flat.

B) An example: brick wall generation
We show generated brick_wall patches of size 32 × 32 and
64 × 64 in Figs 7(a) and 7(c). We performed two-stage
c/w Saab transforms on 32 × 32 patches and three-stage

https://doi.org/10.1017/ATSIP.2021.15 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2021.15


tghop 7

Fig. 6. Examples of generated DCmaps in core S2 (first column), generated samples in subspace S1 (second co-lumn), and the ultimate generated textures in source
S0 (third column).

c/w Saab transforms on 64 × 64 patches, whose core sub-
space dimensions are 1728 and 4032, respectively. Patches
in these figures were synthesized by running the TGHop
method in 100rounds. Randomness in each round primar-
ily comes from two factors: (1) randomcluster selection, and
(2) random seed vector generation.

Generated patches retain the basic shape of bricks and
the diversity of brick texture. We observe some unseen pat-
terns generated by TGHop, which are highlighted by red
squared boxes in Figs 7(a) and 7(c). As compared with
generated 32 × 32 patches, generated 64 × 64 patches were
sometimes blurry (e.g., the one in the upper right corner)
due to a higher source dimension.

As a non-parametric model, TGHop can choose multi-
ple settings under the same pipeline. For example, it can
select different channel numbers in S̃1 and S̃2 to derive dif-
ferent generation results. Four settings are listed in Table 1.
The corresponding generation results are shown in Fig. 8.
Dimensions decrease faster from (a) to (d). The quality of
generated results becomes poorer due to smaller dimen-
sions of the core subspace, S̃2, and the intermediate sub-
space, S̃1.

To generate larger texture images, we first generate 5000
texture patches and perform image quilting [13] with them.
The results after quilting are shown in Figs 7(b) and 7(d).
All eight images are of the same size, i.e., 256 × 256. They are
obtained using different initial patches in the image quilting
process. By comparing the two sets of stitched images, the

global structure of the brick wall is better preserved using
larger patches (i.e. of size 64 × 64) while its local detail is a
little bit blurry sometimes.

C) Performance benchmarking with DL-based
methods
C.1 Visual quality comparison
The quality of generated texture is usually evaluated by
human eyes. Subjective user study is not a common choice
for texture synthesis because different people have different
standards to judge the quality of generated texture images.
Evaluation metrics such as Inception Score [50] or Fréchet
Inception Distance [51] are proposed for natural image gen-
eration. These metrics however demand sufficient number
of samples to evaluate the distributions of generated images
and real images, which are not suitable for texture synthe-
sis containing only one image for reference. The value of
loss function was used to measure texture quality or diver-
sity for CNN-based methods [23, 26]. A lower loss however
does not guarantee better generation quality. Since TGHop
dose not have a loss function, we show generated results of
two DL-based methods and TGHop side by side in Fig. 9
for 10 input texture images collected from [19, 20, 25] or the
Internet. The benchmarking DL methods were proposed
by Gatys et al. [20] and Ustyuzhaninov et al. [25]. By run-
ning their codes, we show their results in the second and
third columns of Fig. 9, respectively, for comparison. These

https://doi.org/10.1017/ATSIP.2021.15 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2021.15


8 xuejing lei et al.

Fig. 7. Examples of generated brick_wall texture patches and stitched images of larger sizes, where the image in the bottom-left corner is the exemplary texture image
and the patches highlighted by red squared boxes are unseen patterns. (a) Synthesized 32 × 32 patches. (b) Stitched images with 32 × 32 patches. (c) Synthesized
64 × 64 patches. (d) Stitched images with 64 × 64 patches.

results are obtained by default iteration numbers; namely,
2000 in [20] and 4000 in [20]. The results of TGHop are
shown in the last three columns. The left two columns
are obtained without SDR in two different runs while the
last column is obtained with SDR. There is little quality
degradation after dimension reduction of S2 with SDR. For
meshed and cloud textures, the brown fog artifact in [20,
25] is apparent. In contrast, it does not exist in TGHop.
More generated images usingTGHop are given in Fig. 10. As
shown in Figs 9 and 10, TGHop can generate high-quality
and visually pleasant texture images.

C.2 Comparison of generation time
We compare the generation time of different methods in
Table 2. All experiments were conducted on the same
machine composed of 12 CPUs (Intel Core i7-5930K CPU at

Table 1. The settings of four generation models.

Setting D̃0 D̃1 D̃2

a 3072 2560 2048
b 3072 1536 768
c 3072 1280 512
d 3072 768 192

3.50GHz) and 1 GPU (GeForce GTX TITAN X). GPU was
needed in two DL-based methods but not in TGHop. We
set the iteration number to 1000 for [20] and 100 for [25].
TGHop generated 10K 32 × 32 patches for texture quilt-
ing. For all three methods, we show the time needed in
generating one image of size 256 × 256 in Table 2, TGHop
generates one texture image in 291.25 s while Gatys’ method

https://doi.org/10.1017/ATSIP.2021.15 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2021.15


tghop 9

Fig. 8. Generated patches using different settings, where the numbers below the figure indicates the dimensions of S0, S1, and S2, respectively. (a)
3072 → 2560 → 2048. (b) 3072 → 1536 → 768. (c) 3072 → 1280 → 512. (d) 3072 → 768 → 192.

Table 2. Comparison of time needed to generate one texture image.

Methods Time (s) Factor

Ustyuzhaninov et al. [25] 949.64 4.62×
Gatys et al. [20] 513.98 2.50×
TGHop with analysis overhead 291.25 1.42×
TGHop w/o analysis overhead 205.50 1×

Table 3. The time of three processes in our method.

Processes Time (s)

Analysis (forward path) 85.75
Generation (reverse path) 197.42
Quilting 8.08

and Ustyuzhaninov’s method demand 513.98 and 949.64 s,
respectively. TGHop is significantly faster.

We break down the generation time of TGHop into
three parts: (1) successive subspace analysis (i.e. the
forward path), (2) core and successive subspace generation
(i.e. the reverse path), and (3) the quilting process. The time
required for each part is shown in Table 3. They demand
85.75, 197.42, and 8.08 s, respectively. To generate multiple
images from the same exemplary texture, we run the first
part only once, which will be shared by all generated tex-
ture images, and the second and third parts multiple times
(i.e. one run for a new image). As a result, we can view
the first part as a common overhead and count the last two
parts as the time for single texture image generation. This is
equal to 205.5 s. The two DL benchmarks do not have such
a breakdown and need to go through the whole pipeline to
generate one new texture image.

D) Comparison of model sizes
The model size is measured by the number of parameters.
The size of TGHop is calculated below.

• Two-stage c/w Saab Transforms
The forward analysis path and the reverse generation

path share the same two-stage c/w Saab transforms. For an
input RGB patch, the input tensor of size 2 × 2 × 3 = 12
is transformed into a K1-D tensor in the first-stage trans-
form, leading a filter size of 12K1 plus one shared bias. For
each of K1 channels, the input tensor of size 2 × 2 is trans-
formed into a tensor in the second stage transform. The

sum of the output dimensions is K2. The total parame-
ter number for all K1 channels is 4K1K2 plus K1 biases.
Thus, the total number of parameters in the two-stage
transforms is 13K1 + 4K1K2 + 1.

• Core Sample Generation
Sample generation in the core contains two modules:

SDR and ICHM. For the first module, SDR is imple-
mented byK2 PCA transforms, where the input of size 8 ×
8 = 64 and the output is aKri dimensional vector, yielding
the size of each PCA transformationmatrix to be 64 × Kri .
The total number of parameters is 64 × ∑K2

i=1 Kri = 64Dr,
where Dr is the dimension of the concatenated output
vector after SDR. For the second module, it has three
components:

• Interval representation p0, . . . , pN−1N parameters
are needed for N cluster.

• Transform matrices of FastICAIf the input vector is
of dimension Dr and the output dimension of Fas-
tICA is Kci for the ith cluster, i = 1, . . . ,N, the total
parameter number of all transform matrices is DrF,
where F = ∑N

i=1 Kci is the number of CDFs.
• Codebook size of quantized CDFsThe codebook

contains the index, themaximum and theminimum
values for each CDF. Furthermore, we haveW clus-
ters of CDF, where all CDFs in each cluster share the
same bin structure of 256 bins. As a result, the total
parameter number is 3F + 256W.

By adding all of the above together, the total param-
eter number in core sample generation is 64Dr + N +
(Dr + 3)F + 256W.

The above equations are summarized and an example is
given in Table 4 under the experiment setting of N = 50,
K1 = 9, K2 = 22, Dr = 909, F = 2518, and W = 200. The
model size of TGHop is 2.4M. For comparison, the model
sizes of [20] and [25] are 0.852 and 2.055M, respectively.
A great majority of TGHop model parameters comes from
ICHM(ii). Further model size reduction without sacrificing
generated texture quality is an interesting extension of this
work.

As compared with [28], SDR is a new module intro-
duced in this work. It helps remove correlations of spa-
tial responses to reduce the model size. We examined the
impact of using different threshold γ in SDRon texture gen-
eration quality and model size with brick_wall texture. The
same threshold is adopted for all channels to select PCA

https://doi.org/10.1017/ATSIP.2021.15 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2021.15


10 xuejing lei et al.

Fig. 9. Comparison of texture images generated by two DL-based methods and TGHop (from left to right): exemplary texture images, texture images generated by
[20], by [25], two examples by TGHop without spatial dimension reduction (SDR) and one example by TGHop with SDR.

https://doi.org/10.1017/ATSIP.2021.15 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2021.15


tghop 11

Fig. 10. More texture images generated by TGHop.

Table 4. The number of parameters of TGHop, under the setting of
γ = 0.01, N = 50 K1 = 9, K2 = 22, Dr = 909, F = 2, 518 andW = 200.

Module Equation Num. of param.

Transform - stage 1 12K1 + 1 109
Transform - stage 2 4K1K2 + K1 801
Core - SDR 64Dr 58 176
Core - ICHM(i) N 50
Core - ICHM(ii) FDr 2 288 862
Core - ICHM(iii) 3F + 256W 58 754
Total 2 406 752

components. The dimension of reduced space, Dr, and the
cluster number,N, are both controlled by threshold γ , used
in SDR. γ = 0 represents all 64 PCA components are kept
in SDR. We can vary the value of γ to get a different cluster
number and the associated model size. The larger the value
of γ , the smaller Dr and N and, thus, the smaller the model
size as shown in Table 5. The computation given in Table 4
is under the setting of γ = 0.01.

A proper cluster number is important since too many
clusters lead to larger model sizes while too few clus-
ters result in bad generation quality. To give an exam-
ple, consider the brick_wall texture image of size 256 ×
256, where the dimension of S2 is 8 × 8 × 22 = 1408 with
K2 = 22. We extract 12 769 patches of size 32 × 32 (with
stride 2) from this image. We conduct experiments with
N = 50, 80, 110, and 200 clusters and show generated

Table 5. The reduced dimension, Dr , and the model size as a function of
threshold γ used in SDR.

γ Dr Number of parameters

0 1408 3.72M
0.0005 1226 3.26M
0.005 1030 2.74M
0.01 909 2.41M
0.02 718 1.88M
0.03 553 1.43M
0.04 399 1.00M
0.05 289 0.69M
0.1 102 0.19M

patches in Fig. 11. As shown in (a), 50 clusters were too
few and we see the artifact of over-saturation in gener-
ated patches. By increasing N from 50 to 80, the artifact
still exists but is less apparent in (b). The quality improves
furthermore when N = 100 as shown in (c). We see lit-
tle quality improvement when N goes from 100 to 200.
Furthermore, patches generated using different thresholds
γ are shown in Fig. 12.We see little quality degradation from
(a) to (f) while the dimension is reduced from 1408 to 553.
Image blur shows up from (g) to (i), indicating that some
details were discarded along with the corresponding PCA
components.

https://doi.org/10.1017/ATSIP.2021.15 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2021.15


12 xuejing lei et al.

Fig. 11. Generated brick_wall patches using different cluster numbers in independent component histogrammatching. (a) 50 clusters. (b) 80 clusters. (c) 110 clusters.
(d) 200 clusters.

Fig. 12. Generated brick_wall patches using different threshold γ values in SDR. (a) γ = 0. (b) γ = 0.0005. (c) γ = 0.005. (d) γ = 0.01. (e) γ = 0.02. (f) γ = 0.03.
(g) γ = 0.04. (h) γ = 0.05. (i) γ = 0.1.

V I . CONCLUS ION AND FUTURE
WORK

An explainable, efficient, and lightweight texture genera-
tion method, called TGHop, was proposed in this work.
Texture can be effectively analyzed using the multi-stage
c/w Saab transforms and expressed in the form of joint
spatial-spectral representations. The distribution of sam-
ple texture patches was carefully studied so that we can

generate samples in the core. Based on generated core sam-
ples, we can go through the reverse path to increase its
spatial dimension. Finally, patches can be stitched to form
texture images of a larger size. It was demonstrated by exper-
imental results that TGHop can generate texture images
of superior quality with a small model size and at a fast
speed.

Future research can be extended in several directions.
Controlling the growth of dimensions of intermediate

https://doi.org/10.1017/ATSIP.2021.15 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2021.15


tghop 13

subspaces in the generation process appears to be impor-
tant. Is it beneficial to introduce more intermediate sub-
spaces between the source and the core? Can we apply the
same model for the generation of other images such as
human faces, digits, scenes, and objects? Is it possible to gen-
eralize the framework to image inpainting? How does our
generationmodel compare toGANs? These are all open and
interesting questions for further investigation.

ACKNOWLEDGEMENTS

This research was supported by a gift grant from
Mediatek. Computation for the work was supported by the
University of Southern California’s Center for High Perfor-
mance Computing (hpc.usc.edu).

REFERENCES

[1] Tuceryan, M.; Jain, A.K.: Texture Analysis, Handbook of Pattern
Recognition and Computer Vision. Singapore, World Scientific, 1993,
235–276.

[2] Chang, T.; Kuo, C.-C.J.: Texture analysis and classification with tree-
structuredwavelet transform. IEEETrans. Image Process., 2 (4) (1993),
429–441.

[3] Arivazhagan, S.; Ganesan, L.: Texture classification using wavelet
transform. Pattern Recognit. Lett., 24 (9–10) (2003), 1513–1521.

[4] Zhu, S.C.; Wu, Y.; Mumford, D.: Filters, random fields andmaximum
entropy (frame): towards a unified theory for texture modeling. Int.
J. Comput. Vis., 27 (2) (1998), 107–126.

[5] Wang, J.; Zhong, Y.; Li, Y.; Zhang, C.;Wei, Y.: Re-identification super-
vised texture generation, in Proc. of the IEEE/CVF Conf. on Computer
Vision and Pattern Recognition. IEEE, Long Beach, CA, USA, 2019,
11846–11856.

[6] Zhang, K.; Chen, H.-S.; Wang, Y.; Ji, X.; Kuo, C.-C.J.: Texture analy-
sis via hierarchical spatial-spectral correlation (HSSC), in 2019 IEEE
Int. Conf. on Image Processing (ICIP). IEEE, Taipei, Taiwan, 2019,
4419–4423.

[7] Zhang, K.; Chen, H.-S.; Zhang, X.; Wang, Y.; Kuo, C.-C.J.: A data-
centric approach to unsupervised texture segmentation using prin-
ciple representative patterns, in ICASSP 2019–2019 IEEE Int. Conf.
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, Brighton,
UK, 2019, 1912–1916.

[8] Oechsle,M.;Mescheder, L.; Niemeyer,M.; Strauss, T.; Geiger, A.: Tex-
ture fields: learning texture representations in function space, in Proc.
of the IEEE/CVF Int. Conf. on Computer Vision. IEEE, Seoul, Korea,
2019, 4531–4540.

[9] Hsu, C.-C.; Kang, L.-W.; Lin, C.-W.: Temporally coherent superres-
olution of textured video via dynamic texture synthesis. IEEE Trans.
Image Process., 24 (3) (2015), 919–931.

[10] De Bonet, J.S.: Multiresolution sampling procedure for analysis and
synthesis of texture images, in Proc. of the 24th Annual Conf. on Com-
puter Graphics and Interactive Techniques. ACMPress, NewYork,NY,
USA, 1997, 361–368.

[11] Efros, A.A.; Leung, T.K.: Texture synthesis by non-parametric sam-
pling, in Proc. of the Seventh IEEE Int. Conf. on Computer Vision,
vol. 2. IEEE, Kerkyra, Greece, 1999, 1033–1038.

[12] Wei, L.-Y.; Levoy, M.: Fast texture synthesis using tree-structured
vector quantization, in Proc. of the 27th Annual Conf. on Computer

Graphics and Interactive Techniques.ACMPress, NewYork, NY,USA,
2000, 479–488.

[13] Efros, A.A.; Freeman, W.T.: Image quilting for texture synthesis and
transfer, in Proc. of the 28th Annual Conf. on Computer Graphics
and Interactive Techniques. ACM Press, New York, NY, USA, 2001,
341–346.

[14] Liang, L.; Liu, C.; Xu, Y.-Q.; Guo, B.; Shum, H.-Y.: Real-time tex-
ture synthesis by patch-based sampling. ACM Trans. Graphics (ToG),
20 (3) (2001), 127–150.

[15] Cohen, M.F.; Shade, J.; Hiller, S.; Deussen, O.: Wang tiles for image
and texture generation. ACM Trans. Graphics (TOG), 22 (3) (2003),
287–294.

[16] Kwatra, V.; Schödl, A.; Essa, I.; Turk, G.; Bobick, A.: Graphcut tex-
tures: image and video synthesis using graph cuts. ACM Trans.
Graphics (ToG), 22 (3) (2003), 277–286.

[17] Kwatra, V.; Essa, I.; Bobick, A.; Kwatra, N.: Texture optimization for
example-based synthesis, in ACM SIGGRAPH 2005 Papers. Associa-
tion for Computing Machinery, New York, NY, USA, 2005, 795–802.

[18] Heeger, D.J.; Bergen, J.R.: Pyramid-based texture analysis/synthesis,
in Proc. of the 22nd Annual Conf. on Computer Graphics and Inter-
active Techniques. Association for Computing Machinery, New York,
NY, USA, 1995, 229–238.

[19] Portilla, J.; Simoncelli, E.P.: A parametric texturemodel based on joint
statistics of complex wavelet coefficients. Int. J. Comput. Vis., 40 (1)
(2000), 49–70.

[20] Gatys, L.; Ecker, A.S.; Bethge, M.: Texture synthesis using convolu-
tional neural networks, in Advances in Neural Information Processing
Systems.MIT Press, Cambridge, MA, USA, 2015, 262–270.

[21] Liu, G.; Gousseau, Y.; Xia, G.-S.: Texture synthesis through convo-
lutional neural networks and spectrum constraints, in 2016 23rd Int.
Conf. on Pattern Recognition (ICPR). IEEE, Cancun, Mexico, 2016,
3234–3239.

[22] Risser, E.; Wilmot, P.; Barnes, C.: Stable and controllable neural tex-
ture synthesis and style transfer using histogram losses, arXiv preprint
arXiv:1701.08893, 2017.

[23] Li, Y.; Fang, C.; Yang, J.; Wang, Z.; Lu, X.; Yang, M.-H.: Diversified
texture synthesis with feed-forward networks, in Proc. of the IEEE
Conf. on Computer Vision and Pattern Recognition. IEEE, Honolulu,
HI, USA, 2017, 3920–3928.

[24] Li, Y.; Fang, C.; Yang, J.; Wang, Z.; Lu, X.; Yang, M.-H.: Universal
style transfer via feature transforms, in Advances in Neural Informa-
tion Processing Systems. Curran Associates Inc., Red Hook, NY, USA,
2017, 386–396.

[25] Ustyuzhaninov, I.; Brendel, W.; Gatys, L.A.; Bethge, M.: What does it
take to generate natural textures?. Presented at ICLR, 2017. [Online]
Available: https://openreview.net/forum?id=BJhZeLsxx

[26] Shi, W.; Qiao, Y.: Fast texture synthesis via pseudo optimizer, in Proc.
of the IEEE/CVF Conf. on Computer Vision and Pattern Recogni-
tion. IEEE, Virtual, 2020, 5498–5507.

[27] Chen, Y.; Rouhsedaghat, M.; You, S.; Rao, R.; Kuo, C.-C.J.:
Pixelhop++: a small successive-subspace-learning-based (ssl-based)
model for image classification, arXiv preprint arXiv:2002.03141, 2020.

[28] Lei, X.; Zhao, G.; Kuo, C.-C.J.: Nites: a non-parametric interpretable
texture synthesis method, in 2020 Asia-Pacific Signal and Informa-
tion Processing Association Annual Summit and Conf. (APSIPA ASC).
IEEE, Virtual, 2020, 1698–1706.

[29] Ulyanov, D.; Lebedev, V.; Vedaldi, A.; Lempitsky, V.S.: Texture net-
works: feed-forward synthesis of textures and stylized images, in
Proc. of the 33rd Int. Conf. on Int. Conf. on Machine Learning,
vol. 48. JMLR.org, New York, NY, USA, 2016, 1349–1357.

https://doi.org/10.1017/ATSIP.2021.15 Published online by Cambridge University Press

https://openreview.net/forum?id=BJhZeLsxx
https://doi.org/10.1017/ATSIP.2021.15


14 xuejing lei et al.

[30] Choo, J.; Liu, S.: Visual analytics for explainable deep learning. IEEE
Comput. Graph. Appl., 38 (4) (2018), 84–92.

[31] Monga, V.; Li, Y.; Eldar, Y.C.: Algorithm unrolling: Interpretable, effi-
cient deep learning for signal and image processing. IEEE Signal
Process. Mag., 38 (2) (2021), 18–44.

[32] Kuo, C.-C.J.: Understanding convolutional neural networks with a
mathematical model. J. Vis. Commun. Image Represent., 41, (2016),
406–413.

[33] Kuo, C.-C.J.: The CNN as a guided multilayer recos transform [lec-
ture notes]. IEEE Signal Process. Mag., 34 (3) (2017), 81–89.

[34] Kuo, C.-C.J.; Zhang, M.; Li, S.; Duan, J.; Chen, Y.: Interpretable con-
volutional neural networks via feedforward design. J. Vis. Commun.
Image Represent, 60 (2019), 346–359.

[35] Chen, Y.; Kuo, C.-C.J.: Pixelhop: A successive subspace learning (ssl)
method for object recognition. J. Vis. Commun. Image Represent. 70
(2020), 102749.

[36] Chen, H.-S.; Rouhsedaghat, M.; Ghani, H.; Hu, S.; You, S.; Kuo,
C.-C.J.: Defakehop: a light-weight high-performance deepfake detec-
tor, in 2021 IEEE Int. Conf. on Multimedia and Expo (ICME). IEEE,
Virtual, 2021, 1–6.

[37] Zhang, K.; Wang, B.; Wang,W.; Sohrab, F.; Gabbouj, M.; Kuo, C.-C.J.:
Anomalyhop: an ssl-based image anomaly localizationmethod, arXiv
preprint arXiv:2105.03797, 2021.

[38] Kadam, P.; Zhang, M.; Liu, S.; Kuo, C.-C.J.: R-pointhop: a green,
accurate and unsupervised point cloud registration method, arXiv
preprint arXiv:2103.08129, 2021.

[39] Liu, X.; Xing, F.; Yang, C.; Kuo, C.-C.J.; Babu, S.; Fakhri, G.E.; Jenkins,
T.; Woo, J.: Voxelhop: successive subspace learning for ALS disease
classification using structural MRI, arXiv preprint arXiv:2101.05131,
2021.

[40] Zhang, M.; Wang, Y.; Kadam, P.; Liu, S.; Kuo, C.-C.J.: Pointhop++:
a lightweight learning model on point sets for 3D classification, in
2020 IEEE Int. Conf. on Image Processing (ICIP). IEEE, Virtual, 2020,
3319–3323.

[41] Zhang, M.; You, H.; Kadam, P.; Liu, S.; Kuo, C.-C.J.: Pointhop: an
explainable machine learning method for point cloud classification.
IEEE Trans. Multimedia, 22 (7) (2020), 1744–1755.

[42] Zhang,M.; Kadam, P.; Liu, S.; Kuo, C.-C.J.: Unsupervised feedforward
feature (UFF) learning for point cloud classification and segmenta-
tion, in 2020 IEEE Int. Conf. on Visual Communications and Image
Processing (VCIP). IEEE, Virtual, 2020, 144–147.

[43] Kadam, P.; Zhang, M.; Liu, S.; Kuo, C.-C.J.: Unsupervised point
cloud registration via salient points analysis (SPA), in 2020 IEEE Int.
Conf. on Visual Communications and Image Processing (VCIP). IEEE,
Virtual, 2020, 5–8.

[44] Rouhsedaghat,M.;Wang, Y.; Ge, X.;Hu, S.; You, S.; Kuo, C.-C.J.: Face-
hop: a light-weight low-resolution face gender classification method,
arXiv preprint arXiv:2007.09510, 2020.

[45] Rouhsedaghat, M.; Monajatipoor, M.; Azizi, Z.; Kuo, C.-C.J.: Succes-
sive subspace learning: an overview, arXiv preprint arXiv:2103.00121,
2021.

[46] Hyvärinen, A.; Hoyer, P.O.; Oja, E.: Sparse code shrinkage: denoising
by nonlinear maximum likelihood estimation, in Advances in Neu-
ral Information Processing Systems.MITPress, Cambridge,MA,USA,
1999, 473–479.

[47] Bartlett, M.S.; Movellan, J.R.; Sejnowski, T.J.: Face recognition by
independent component analysis. IEEE Trans. Neural Netw., 13 (6)
(2002), 1450–1464.

[48] Mitianoudis, N.; Stathaki, T.: Pixel-based and region-based image
fusion schemes using ICA bases. Inf. Fusion, 8 (2) (2007), 131–142.

[49] Hyvärinen, A.; Oja, E.: Independent component analysis: algorithms
and applications. Neural Netw., 13 (4–5) (2000), 411–430.

[50] Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Radford, A.;
Chen, X.: Improved techniques for training gans, inAdvances in Neu-
ral Information Processing Systems.CurranAssociates Inc., RedHook,
NY, USA, 2016, 2234–2242.

[51] Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S.:
Gans trained by a two time-scale update rule converge to a local
nash equilibrium, in Advances in Neural Information Processing Sys-
tems. Curran Associates Inc., Red Hook, NY, USA, 2017, 6626–6637.

Xuejing Lei received the B.E. degree in Automation fromXi’an
Jiaotong University, Xi’an, China, in 2016, and the M.S. degree
in Electrical Engineering from the University of Southern
California, Los Angeles, USA, in 2018. She is currently
pursuing the Ph.D. degree in Electrical and Computer
Engineering from the University of Southern California,
Los Angeles, USA. Her research interests lie in machine learn-
ing and computer vision including video segmentation and
tracking, image generative modeling, and 3D object recon-
struction.

Ganning Zhao received her B.E. degree in Automation from
Guangdong University of Technology, Guangzhou, China, in
2019. She is currently pursuing the Ph.D. degree in Electrical
Engineering from the University of Southern California, Los
Angeles, USA. Her research interests lie in machine learning
and computer vision including image generative modeling and
3D point cloud.

Kaitai Zhang received the B.S. degree in Physics from Fudan
University, Shanghai, China, in 2016, and the Ph.D. degree in
Electrical and Computer Engineering from the University of
Southern California (USC), Los Angeles, USA, in 2021. He was
fortunate enough to join the Media Communication Lab at
USC and have Prof. C.-C. Jay Kuo as his Ph.D. advisor, and his
research interests include image processing, computer vision,
and machine learning.

C.-C. JayKuo (F’99) received the B.S. degree in Electrical Engi-
neering from theNational TaiwanUniversity, Taipei, Taiwan, in
1980, and the M.S. and Ph.D. degrees in Electrical Engineering
from theMassachusetts Institute of Technology, Cambridge, in
1985 and 1987, respectively. He is currently the Director of the
Multimedia Communications Laboratory and a Distinguished
Professor of electrical engineering and computer science at the
University of Southern California, Los Angeles. His research
interests include digital image/video analysis and modeling,
multimedia data compression, communication and network-
ing, and biological signal/image processing. He is a co-author
of 310 journal papers, 970 conference papers, 30 patents, and
14 books. Dr. Kuo is a Fellow of the American Association for
the Advancement of Science (AAAS) and The International
Society for Optical Engineers (SPIE).

https://doi.org/10.1017/ATSIP.2021.15 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2021.15

	I. INTRODUCTION
	II. RELATED WORK
	A) Early work on texture generation
	B) DL-based texture generation
	C) Successive subspace learning

	III. SUCCESSIVE SUBSPACEANALYSIS AND GENERATION
	IV. TGHop METHOD
	A) System overview
	B) Fine-to-coarse analysis
	C) Core sample generation
	D) Coarse-to-fine generation

	V. EXPERIMENTS
	A) Experimental setup
	B) An example: brick wall generation
	C) Performance benchmarking with DL-based methods
	C.1 Visual quality comparison
	C.2 Comparison of generation time

	D) Comparison of model sizes

	VI. CONCLUSION AND FUTUREWORK

