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COMBINATORIAL PROPERTY OF A SPECIAL
POLYNOMIAL SEQUENCE

BY

L. CARLITZ

1. Leeming [4] has defined a sequence of polynomials {Q,(x)} and a
sequence of integers {Qy,} by means of

M eyrea WC T
and
2 Qurn = Q4 (0).
Thus
o g4
2 W ; “an)”

Leeming showed that the Q,, are all odd and that
C)) (-1)"Q4n>0  (n=0,1,2,...).

It is proved in [3] that
(5) Qun= 1—2n+8(g) (mod 16).

Let k and t be fixed integers, k=2, t=0 and consider permutations
(a1, @z, . .., QGenst) Of Zpnae=1{1,2,3,..., kn+1} such that

©) { Apj+1 < Ajr2 <* * * < Aij+ks Aicj+k = Aicj+k+1 (G=0,1,...,n-1)
An+1 < Ain+2 <" * " < An+t-

This is best indicated by the sketch

Let A, (kn+t) denote the number of permutations of Z, .. that satisfy (6). It
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is proved in [1], [2] that

) kn 1
(7) 2 Alhkm) = i
-0 (kn)!
while
kn+t
© xkn+t 0('_ )n(k +t)'
®) L Aulln+) G = v (1=1).
n=0 )(kny

In particular, for k=2, the permutations that satisfy (6) are so-called
up-down permutations:

00 20 0 T T e e N

For this special case (7) and (8) reduce to the well-known result of André [5,

105-112]
9) Z Az(n) ~—=sec z +tan z.
n=0
In what follows we take k=4, t—O 1,2, 3. Put
(10) e=e""®=(1+1i)/2:.
Since
o Z4n
L(cosh z +cos z) = nZO @
it follows that
4n
(11) Lcosh ez +cos ez) = Z -t (4 N
Differentiation yields
’ 1e(sinh ez —sin ez) = i =n*? _zi'f_
2 = (4n+3)!
4n+2
(12) { 3e*(cosh ez —cos gz) = n; (=n"*! (_4—2;1T2?
3&3(sinh ez +sin ez) = i 1t —ﬁ—
& = (4n+1)!°

On the other hand, it follows from (3) that

4n 2
(4n)! “coshez+cos ez’

(13) Z (—1)"Qun
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while differentiation of (1) with respect to x gives

4n

8

smh xz —sin xz

; Qinx) (4n)' 2 cosh z+cos z
i " () , cosh xz —cos xz
n=1 (4 )' —Z cosh z +cos z
< 5 Sinh xz +sin xz
,,Z Qin(x )(4 ) ~?% Coshz+cosz

Replacing z by ez and taking x =1, the last three formulas become

4n+4

(& z sinh £z —sin ez
1 n+1 n 1 -
ng 1™ Qanl )(4n +4)! 8cosh €z+cos €z
00 4n+4
h ez —cos ez
1 1 n+1 ”n 1 Z -2 COs
(14) 1 ,,z‘o( )" Qan )(4n+4)! € cosh €z +cos €z
i ( 1)n+1 m (1) 4n+4 83 sinh ez +sin £€Z
[ n=0 (4n+4)! cosh ez +cos ez

Hence by (11), (12), (13), and (14) we get
(=1)"Qun=As44n)
(=1)""'Qin+a(1) = (4n+4)A4(4n +3)
(1" Qinra(1) =(4n+4)(4n+3)A4(4n+2)
D" Qhnrs(1)=(4n+4)4n+3)4n+2)As4n+1).

(15)

2. Leeming noted that

(16) 4rQu= 3 1 (30) (37 )Enon-
where the E,, are the Euler numbers defined by

2n
(17) secz = ZO( 1)"Ezp— oo

Thus, by (9)
(18) A(2n)=(—1)"Ez,.
Since [6, Ch. 2]

2n—1

(19) tanz—Z( " cz,,l(———ﬁ,

where

Ban
Cona =27(1-27) 2
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and the B, are the Bernoulli numbers defined by

z 3 z"
= B,—,
(20) e’—1 n;() n!

it follows that

1) Asan—1) =1y 2 -1 22,
Note also that by the first of (15), together with (16), (17), and (18), we have
(22) 4" Ay (4n) = :g'o (—l)k(;:)Az(Zk)Azmn —2k).

Since

cosh z+cos z =2 cosh3(1+i)z cosh3(1—i)z
cosh z—cos z =—2 sinh 3(1 + i)z sinh 3(1—i)z,

cosh ez —cos ez . .
— = " =—tanhie(1+i)z tanhie(1—i)z
cosh €z +cos €z

1 1
=—tanh— iz tanh— z

J2 J2
i tan L tanh 1
=—i —z — Z.
V2 V2
Hence, by (11) and (12)
Z4n+2
n=0(—1)" ———+
ta tanh 0 (4n+2)!
n—z —_—z= R
J2 J2 = (—1)" z*n
=0 (4n)!
so that
i 4n+2 1 1
o As(4n+2) m— tanﬁ z tanhz z,
or better
oo 22n+lz4n+2
+2)=—="—= :
(23) Z A4s(4n+2) @n+2)! tan z tanh z
Since
) 2n+1
= + _—
tan z nZO A>2n+1) ETENE
o Z2n+1
= — n + O
tanh z ngo( 1)"A(2n+1) i
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it follows from (23) that

& 4n+2
2n+1 + - _ k(
(24)  2°"*'A,(4n+2) kgo( Dt 1

)A2(2k +1)A,(4n—-2k+1).
For example, for n =1, this gives
8A4(6) =6A,(1)Ax(5)—20A,(3)A2(3) +6A(5)Ax(1).

Since A,(1)=1, A,(3)=2, A,(5)=16, A4(6)=14, this is correct.
We shall now show that

- (25) ALQn+1)=2"A2n+1).

By (8) and (9), (25) is equivalent to

oo (21/22)2n+1

212 ¢ =) ALn+1)—"—"——

an z ,.Z*o «@n+ D)7
. " (21/22)4n+1 " (21/22)4n+3
n= - _—+ n= - n_——_—
_Z o(=1) (4n+1)! Ln-o (=1) (4n+3)!

- 1/2 _\4n
= o (-1 22

(4n)!

Replacing z by £z, this becomes

_¢(sinh z +sin z) + &(sinh z —sin z)

22 tan ez
cosh z +cos z

. sin z+sin iz

=e(l-i)————

cos z +cos iz

_ 1 sin3(1+i)z cos3(1—i)z
cos3(1+i)z cos3(1—i)z

=2"tani(1+1i)z.

This evidently proves (25).
It is easily verified that

A,(3)=2, A,(5)=16, A(7)=272, A,(9)=7936,
while
As3)=1, Ai5)=4, Al7)=34,  A49)=496,

in agreement with (25).
It would be of interest to find a direct, combinatorial proof of (25).
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