
J. Functional Programming 3 (2): 247-250, April 1993 © 1993 Cambridge University Press 247

Terminating comprehensions
CHRIS READE

Computer Science Department, Brunei University, Uxbridge, Middx. UB8 3PH, UK
and

S.E.D. Informatics Department, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX 11 OQX, UK

Abstract

List terminators are discussed as a new form of qualifier in list comprehensions for early
termination of a list. The semantics of list terminators is expressed in terms of an optimal
translation of list comprehensions (cf. Wadler, 1987) because it makes direct use of a
continuation list.

List comprehensions, as used in functional languages such as Haskell (Hudak et ah,
1992), are usually of the form [u\qx, .. .,qn] where u is an expression and qt are
qualifiers. Each qualifier is either a generator of the form x <-1, where x is a variable
and t an expression, or a filter of the form b (a boolean expression). For example

l(x,y)\x*-[l . . m],y^[\ ..n],x + y]

lists the co-ordinates of an m by n matrix excluding the diagonal.
A second form of boolean test as a qualifier is proposed here, whose purpose is to

terminate the list when a condition fails rather than to filter out elements when the
condition fails. The keyword while will be used to distinguish these termination
tests. For example, we might write

[Appendchan stdout {display (/«)) | s *- lines user Input,

while 5 =t= [], n -^findlnts s]

as part of a program to display fn for integers n entered by the user, terminating when
an empty line is found. As another example, consider the definition of a function to
convert positive integers to strings

stringof Posint n =

reverse[charof Digit (imod 10) | i<- iterate {div 10) n, while / 4= 0]

where iterate (div 10)n produces [n,ndiv 10, (ndiv 10)div 10, . . .] and the terminator
is used to cut this list off before the first occurrence of 0.

Sometimes, such a termination can be achieved using a function takeWhile outside
the list comprehension. This function can be regarded as a special case, where

take While p xs = [x \ x <- xs, while p x].

https://doi.org/10.1017/S095679680000071X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000071X

248 Chris Reade

However, if the terminator is embedded in the middle of a comprehension, it may not
be so simple to re-express it with take While. As a simple concrete example, consider
the expression

[z\x^[l . .],J>«-[1 . •*] , whilej;<4,z-6-[l • y]\

which would produce

[1,1,1,2,1,1,2,1,2,3,1,1,2,1,2,3].

In order to convert this using an application of takeWhile, we would have to split the
comprehension into two phases (generating the x and y values before the test using
takeWhile, and the subsequent generation of the z values), e.g.

[z\y+-takeWhile (<4)[y\x+-[\ ..],y<-[\ . . x]],z<-[l .. y]]

which loses some clarity.
We show below that the meaning of terminators relies on a continuation style

semantics rather than a direct semantics. This is analogous to constructs such as callcc
and goto which have their uses, but also complicate the semantics. Rather than
include such a construct in a programming language implementation, it is probably
better for programmers just to be aware of the translation. This would allow
terminators to be used while developing an algorithm, and translated out by hand
(assuming the use is infrequent). Indeed, for functional languages which do not
support comprehensions (such as SML) use of comprehensions along with hand
translations is still recommended for algorithm development (Reade, 1989).

The semantics for comprehensions are usually expressed with the following
equations (Wadler, 1990)

[«|] = M (1)
[u | ps, qs] = concat [[u \ qs] \ ps] (2)

[u | x <-1] = map (kx. u) t (3)

where map:: (a -> b) -»• [a] -»• [b] applies a function to each item in a list and concat:: [[a]]
-> [a] joins a list of lists into a single list (see, e.g., Hudak et al., 1992 for definitions).

In equation (2), ps and qs stands for sequences of qualifiers and ps, qs is the
concatenation of these sequences. (The choice of where to break a sequence into ps
and qs does not affect the semantics.)

Equations (l)-(3) can be used as left to right rewrite rules to translate list
comprehensions. Although rule 2 is applicable when ps or qs is empty, these cases
should be avoided in rewriting to prevent redundant or non-terminating translations.
To deal with filters, we just add

[M|6] = if6then[u]else[]. (4)

In Wadler (1987) more primitive one-step reduction rules are given for com-
prehensions along with a derivation of an optimal translation using a list continuation
(-H-c)-a list to be appended at the end which will initially be []. We re-express the
optimal translation with the following equations

[u | x <-1, qs]-U-c = foldr (Xx. Xnew. [u | qs\-W-new) ct (5)

https://doi.org/10.1017/S095679680000071X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000071X

Terminating comprehensions 249

= M:C (6)

[u | b, qs]-w-c = ifb then [«| qs]-ti-c else c (7)

where (-H-) is list append, (:) is list cons, and foldr is a standard list operation for
combining elements of a list using a (two argument) function and a default value for
the empty list.

In equation (5), a variable new is introduced which should be distinct from any free
variables in the comprehension being translated to avoid a clash. Note that these new
equations are more deterministic in that they no longer allow a choice in decomposing
a sequence of qualifiers. Equations (5)-(7) can be obtained from equations (l)-(4) by
doing some simple calculations. The key properties needed are

foldr g a (mapfxs) = foldr (g of) a xs

foldr (-H-) c xs = (concatxs)-H-c.

The new terminator construct can be expressed easily as an addition to rules (5)-(7)
(but not directly using (l)-(3))

[u | while b, qs]-H-c = ifb then [u \ qs]-H-c else []. (8)

This should be compared to equation (7) for filters. The only difference is in the else
clause, which produces the continuation list for filters and just the empty list for
terminators.

As an example, the comprehension

. .],y+-[l .. x], whiles < 4, z«-[l .. y]]
translates as

foldr (kx. knew .foldr (ky. knew. if y < 4

then foldr (kz .knew, z: new

)new[\. .y]

else []

)new[\. .x]

) [] [! . •] .

Finally, a note of caution. The introduction of terminators forces a switch from the
semantics given by rules (l)-(4) to the semantics given by rules (5)-(8) because rule
(2) is no longer valid. For example,

[x\x^[l..], while x < 2] = [1]

but [[je| while JC<2] | JC«- [1 . .]] = 1:1.

Acknowledgements

I thank Dave Martland for pointing out the need for list terminators, Brian Ritchie
for useful discussions, and Phil Wadler for advice on improving the presentation.

https://doi.org/10.1017/S095679680000071X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000071X

250 Chris Reade

References
Hudak, P., Peyton Jones, S., Wadler, P. eds. et al., 1992. The Haskell Report. ACM SIGPLAN

Notices, 27(5): May.
Reade, C. M. P. 1989. Elements of Functional Programming. Addison Wesley.
Wadler, P. 1987. List comprehensions. In S. Peyton Jones ed., The Implementation of

Functional Programming Languages. Prentice Hall.
Wadler, P. 1990. Comprehending monads. In Proceedings ACM Conference on Lisp and

Functional Programming, Nice, France.

https://doi.org/10.1017/S095679680000071X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000071X

