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1. Introduction

In the present work we find the necessary and sufficient conditions for the boundedness
and compactness of the operator

K(f)(x) =
∫ x

a

k(x, y)f(y) dy

from Lp(a, b) to Lqν(a, b) (p, q ∈ (1,∞) or 0 < q 6 1 < p < ∞, −∞ < a < b 6 ∞ and ν

is a non-negative σ-finite Borel measure on (a, b)).
Analogous problems for the Riemann–Liouville type operator

Rαf(x) =
∫ x

0

f(y)
(x− y)1−α dy,

with a = 0, b = +∞, p, q ∈ (1,∞) and α > 1/p are solved in [13,14] (for the case where
p = q = 2 and ν is absolute continuous see [15]). For the boundedness and compactness
criteria of operators with power-logarithmic kernels

Iα,β(f)(y) =
∫ x

0
(x− y)α−1 lnβ

(
γ

x− y
)
f(y) dy

with 0 < b 6 γ <∞, α > 1/p and β > 0 see [10].
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268 A. Meskhi

A complete description of the weight pairs (v, w), which guarantee the boundedness of
the operators with positive kernels from Lpw to Lqv when 1 < p < q < ∞, is given in [6]
(see also [7, Chapter 3]).

Two-weight criteria for the boundedness of the operator Rα from Lpw(0,∞) to Lqv(0,∞)
for α > 1 were found in [11] for 1 < p 6 q <∞ and in [19] for 1 < p, q <∞. An analogous
problem for the Hardy operator,

Hf(x) =
∫ x

0
f(t) dt,

was solved in [2,9,12] for 1 < p 6 q <∞, and in [12] for 1 < q < p <∞.
In the non-compact case we give the upper and the lower bound for the distance of K

from the subspace of compact operators from Lp(a, b) to Lqv(a, b) when 1 < p 6 q <∞.

2. Preliminaries

Let ν be a non-negative σ-finite Borel measure on (a, b). Denote by Lqν(a, b) (0 < q <∞)
a class of all ν-measurable functions g : (a, b)→ R1 for which

‖g‖Lqν(a,b) =
(∫

(a,b)
|g(x)|q dν

)1/q
<∞.

If ν is absolutely continuous (i.e. dν = v(x) dx, where v is a positive Lebesgue-measurable
function on (a, b)), then the symbol Lqv(a, b) is used instead of Lqν(a, b). If ν is the Lebesgue
measure, then we shall use the symbol Lq(a, b).

The following lemma is known for the case a = 0 and b = ∞ (see [12, § 1.3]), but we
give the proof in the case where −∞ < a < b 6 +∞ for completeness.

Lemma 2.1. Let −∞ < a < b 6 +∞, 1 < p 6 q < ∞ and let µ be a non-negative
Borel measure on (a, b). The inequality(∫

(a,b)

∣∣∣∣∫ x

a

f(y) dy
∣∣∣∣q dµ

)1/q
6 c
(∫ b

a

|f(y)|p dy
)1/p

, (2.1)

where the positive constant c does not depend on f , holds if and only if

A = sup
a<t<b

(µ([t, b)))1/q(t− a)1/p′ <∞,

where p′ = p/(p− 1). Moreover, if c is the best constant in (2.1), then A 6 c 6 4A.

Proof. Let f > 0, f ∈ Lp(a, b) and let∫ b

a

f(y) dy ∈ (2m, 2m+1]

for some integer m. Denote ∫ x

a

f(y) dy ≡ I(x),
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then for every x ∈ (a, b) we have I(x) 6 ‖f‖Lp(a,b)(x − a)1/p′ < ∞. The function I is
continuous on (a, b). Therefore, for every k ∈ Z, with k 6 m, there exists tk such that
2k = I(tk) =

∫ tk+1

tk
f(y) dy for k 6 m− 1 and 2m = I(tm).

It is easy to verify that the sequence {tk} is increasing. Let α = limk→−∞ tk. Then we
have (a, b) = (a, α] ∪ (∪k6mEk), where Ek = [tk, tk+1) and tm+1 = b. When∫ b

a

f(y) dy =∞

we have (a, b) = (a, α] ∪ (∪+∞
k=−∞Ek) (i.e. m = +∞). If t ∈ (a, α), then I(t) = 0 and if

t ∈ Ek, then I(t) 6 I(tk+1) 6 2k+1.
We have(∫

(a,b)

(∫ x

a

f(y) dy
)q

dµ
)p/q

=
(∑
k6m

∫
Ek

(I(x))q dµ
)p/q

6
∑
k6m

(∫
Ek

(I(x))q dµ
)p/q
6
∑
k6m

2(k+1)p
(∫

Ek

dµ
)p/q

= 4p
∑
k6m

2(k−1)p(µ(Ek))p/q = 4p
∑
k6m

(∫ tk

tk−1

f(y) dy
)p

(µ(Ek))p/q

6 4p
∑
k6m

(∫ tk

tk−1

(f(y))p dy
)

(tk − tk−1)p−1(µ(Ek))p/q

6 4pAp‖f‖pLp(a,b).

To prove the necessity, we put f(y) = χ(a,t)(y) in (2.1), where t ∈ (a, b). Then we have
‖f‖Lp(a,b) = (t− a)1/p. On the other hand,(∫

(a,b)

(∫ x

a

f(y) dy
)q

dµ
)1/q
> (µ([t, b)))1/q(t− a),

and consequently we obtain A 6 c. �

We also need the following lemma.

Lemma 2.2. Let −∞ < a < b 6 +∞, 0 < q < p < ∞ and let p > 1. Then the
inequality (∫ b

a

∣∣∣∣∫ x

a

f(y) dy
∣∣∣∣qv(x) dx

)1/q
6 c
(∫ b

a

|f(y)|p dy
)1/p

, (2.2)

where the positive constant c does not depend on f , is fulfilled if and only if

Ā =
(∫ b

a

(∫ b

x

v(t) dt
)p/(p−q)

(x− a)p(q−1)/(p−q) dx
)(p−q)/pq

<∞.
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Moreover, there exist positive constants c1 and c2 depending only on p and q such that
if c is the best constant in (2.2), then

c1Ā 6 c 6 c2Ā.

This lemma can be proved in the same way as Lemma 1.3.2 of [12] (for the case
0 < q < 1 < p <∞, see, for example, [18]).

We also need the following theorem, which can be obtained, for example, from Lemma 2
in Chapter XI of [8].

Theorem A. Let 1 < p, q < ∞ and let −∞ < a < b 6 +∞. Suppose that T :
Lp(a, b)→ Lqν(a, b) is an integral operator of the type Tf(x) =

∫ b
a
T1(x, y)f(y) dy, where

ν is a σ-finite, separable measure on (a, b) (i.e. Lqν(a, b) is separable). If

Ā = ‖‖T1(x, ·)‖Lp′ (a,b)‖Lqν(a,b) <∞,

then the operator T is compact from Lp(a, b) to Lqν(a, b).

Definition 2.3. Let −∞ < a < b 6 +∞. A kernel k : {(x, y) : a < y < x < b} →
(0,∞) belongs to V (k ∈ V ) if there exists a positive constant d1 such that for all x, y, z
with a < y < z < x < b the inequality

k(x, y) 6 d1k(x, z)

holds.

Definition 2.4. Let −∞ < a < b 6 +∞. We say that k belongs to Vλ(k ∈ Vλ)
(1 < λ < ∞) if there exists a positive constant d2 such that for all x, x ∈ (a, b) the
inequality ∫ x

a+(x−a)/2
kλ
′
(x, y) dy 6 d2(x− a)kλ

′
(x, a+ (x− a)/2),

is fulfilled, where λ′ = λ/(λ− 1).

Let k1 be a positive measurable function on (0, b− a) (if b =∞, then we assume that
b− a =∞).

Definition 2.5. Let −∞ < a < b 6 +∞. We say that k1 belongs to V1λ(k1 ∈ V1λ)
(1 < λ <∞) if there exists a positive constant d3 such that the inequality∫ (x−a)/2

0
kλ
′

1 (y) dy 6 d3(x− a)kλ
′

1 ((x− a)/2), λ′ = λ/(λ− 1),

is fulfilled for all x, x ∈ (a, b).

It is easy to verify that if k1 is a non-increasing function on (0, b − a) and k1 ∈ V1λ,
then the kernel k(x, y) ≡ k1(x− y) belongs to V ∩ Vλ.

Now we give some examples of kernels satisfying the above-mentioned conditions.
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Let −∞ < a < b 6 +∞ and let k(y) = yα−1, where α > 0. If 1 < λ < ∞ and
1/λ < α 6 1, then k1 ∈ V1λ, and, consequently, the kernel k(x, y) ≡ k1(x− y) belongs to
V ∩ Vλ.

Assume that −∞ < a < b < +∞, b − a 6 γ < ∞, 1/λ < α 6 1 and β > 0. Let
k1(y) = yα−1 lnβ(γ/y). Then k1 ∈ V1λ and, therefore, k(x, y) ≡ k1(x − y) belongs to
V ∩ Vλ.

Now suppose that −∞ < a < b 6 +∞,

k(x, y) = (x− y)α−1 lnβ−1
(
x− a
y − a

)
,

where 1/λ < α 6 1 and 1− α+ 1/λ < β 6 1. Then k ∈ V ∩ Vλ.
Let a = 0, 0 < b 6 +∞ and let k(x, y) = x−σ(α+η)(xσ − yσ)α−1yση+σ−1 be the

Erdelyi–Kober kernel, where σ > 0 and 0 < α 6 1. It easy to see that if 1/λ < α 6 1
and η > 1/σ − 1, then k ∈ V ∩ Vλ.

Some results about integral transforms with the above-mentioned kernels can be found
in [17].

3. The boundedness criteria

In this section we find the boundedness criteria for the integral operators with positive
kernels.

Theorem 3.1. Let −∞ < a < b 6 +∞. Suppose that 1 < p 6 q <∞ and k ∈ V ∩Vp.
Then the operator K is bounded from Lp(a, b) to Lqν(a, b) if and only if

B ≡ sup
a<t<b

(∫
[t,b)

kq(x, a+ (x− a)/2) dν
)1/q

(t− a)1/p′ <∞.

Moreover, there exist positive constants b1 and b2 depending only on d1, d2, p and q such
that the inequality

b1B 6 ‖K‖ 6 b2B

is fulfilled. (If the constants d1 and d2 from Definitions 2.3 and 2.4 do not depend on a

and b, then the constants b1, b2 are independent of a and b.)

Proof. First we prove the theorem when b =∞. Let f > 0. Then we have

‖Kf‖Lqν(a,∞) 6
(∫

(a,∞)

(∫ a+(x−a)/2

a

k(x, y)f(y) dy
)q

dν
)1/q

+
(∫

(a,∞)

(∫ x

a+(x−a)/2
k(x, y)f(y) dy

)q
dν
)1/q
≡ I1 + I2.
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If a < y < a + (x − a)/2, then k(x, y) 6 k(x, a + (x − a)/2), and, consequently, using
Lemma 2.1, we obtain

I1 6 c1
(∫

(a,∞)
kq(x, a+ (x− a)/2)

(∫ x

a

f(y) dy
)q

dν
)1/q

6 c2B‖f‖Lp(a,∞).

Using Hölder’s inequality, the condition k ∈ Vp and the notation sj ≡ a+ 2j , we find
that

Iq2 6
∫

(a,∞)

(∫ x

a+(x−a)/2
(f(y))p dy

)q/p(∫ x

a+(x−a)/2
kp
′
(x, y) dy

)q/p′
dν

6 c3
∫

(a,∞)

(∫ x

a+(x−a)/2
(f(y))p dy

)q/p
(x− a)q/p

′
kq(x, a+ (x− a)/2) dν

6 c3
∑
j∈Z

∫
[sj ,sj+1)

(∫ x

a+(x−a)/2
(f(y))p dy

)q/p
(x− a)q/p

′
kq(x, a+ (x− a)/2) dν

6 c3
∑
j∈Z

(∫ sj+1

sj−1

(f(y))p dy
)q/p ∫

[sj ,sj+1)
(x− a)q/p

′
kq(x, a+ (x− a)/2) dν

6 c4Bq
∑
j∈Z

(∫ sj+1

sj−1

(f(y))p dy
)q/p

6 c5Bq‖f‖qLp(a,∞).

Now we prove the necessity. First we show that from the boundedness of the operator
K the following condition can be obtained:

B̃ ≡ sup
j∈Z

(∫
[sj ,sj+1)

kq(x, a+ (x− a)/2)(x− a)q/p
′
dν
)1/q

<∞. (3.1)

Let fj(y) = χ(a,sj+1)(y), where j ∈ Z. Then we have that

‖Kfj‖Lqν(a,∞) >
(∫

[sj ,sj+1)
(Kfj(x))q dν

)1/q
>
(∫

[sj ,sj+1)

(∫ x

a+(x−a)/2
fj(y)k(x, y) dy

)q
dν
)1/q

> c6
(∫

[sj ,sj+1)
kq(x, a+ (x− a)/2)(x− a)q dν

)1/q
.

Consequently, using the boundedness of K, we obtain B̃ < ∞. Now we show that
B 6 c7B̃. Denote(∫

[t,∞)
kq(x, a+ (x− a)/2) dν

)1/q
(t− a)1/p′ ≡ B(t).

Let t ∈ (a,∞); then t ∈ [sm, sm+1) for some m ∈ Z.
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We have

Bq(t) 6
(∫

[sm,∞)
kq(x, a+ (x− a)/2) dν

)
2(m+1)q/p′

= c82mq/p
′

+∞∑
j=m

∫
[sj ,sj+1)

kq(x, a+ (x− a)/2) dν

6 c9B̃q2mq/p
′

+∞∑
j=m

2−jq/p
′

= c10B̃,

where c10 depends only on q and p.
The case b 6∞ can be proved analogously. In this case we take sj = a+ (b− a)2j . (It

is clear that (a, b) = ∪j60[sj−1, sj).) �

Remark 3.2. There exist positive constants a1, a2, a3 and a4 depending only on p

and q such that

a1B 6 B̃ 6 a2B

if b =∞, where B̃ is from (3.1) and

a3B 6 B̄ 6 a4B

if b <∞, where

B̄ = sup
j60

(∫
[a+(b−a)2j−1,a+(b−a)2j)

kq(x, a+ (x− b)/2)(x− a)q/p
′
dν
)1/q

.

Indeed, let b =∞. Then the inequality a1B 6 B̃ follows from the proof of Theorem 3.1.
Moreover,(∫

[a+2j ,a+2j+1)
kq(x, a+ (x− a)/2)(x− a)q/p

′
dν
)1/q

6 c1
(∫

[a+2j ,a+2j+1)
kq(x, a+ (x− a)/2) dν

)1/q
2j/p

′ 6 c1B

for every j ∈ Z. Consequently, B̃ 6 a2B, where a2 depends only on p and q. We have an
analogous result for B̄.

Let g be a ν-measurable positive function on (a, b) and let

K ′g(y) =
∫ b

y

k(x, y)g(x) dν,

where y ∈ (a, b).
From the duality arguments we can derive the following result.
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Theorem 3.3. Let −∞ < a < b 6 +∞ and let 1 < p 6 q < ∞. Suppose that
k ∈ V ∩ Vq′ . Then the operator K ′ is bounded from Lpν(a, b) to Lq(a, b) if and only if

B′ = sup
a<t<b

(∫
[t,b)

kp
′
(x, a+ (x− a)/2) dν

)1/p′
(t− a)1/q <∞.

Moreover, there exist positive constants b1 and b2 depending only on d1, d2, p and q such
that

b1B
′ 6 ‖K ′‖ 6 b2B′.

Now we consider the case q < p. We shall assume that v and w are Lebesgue-
measurable, a.e. positive functions on (a, b).

Theorem 3.4. Let −∞ < a < b 6 +∞, 0 < q < p <∞ and let p > 1. Suppose that
k ∈ V ∩ Vp. Then the operator K is bounded from Lp(a, b) to Lqv(a, b) if and only if

B1 =
(∫ b

a

(∫ b

x

kq(t, a+ (t− a)/2)v(t) dt
)p/(p−q)

(x− a)p(q−1)/(p−q) dx
)(p−q)/pq

<∞.

Moreover, there exist positive constants b1 and b2 such that

b1B1 6 ‖K‖ 6 b2B1.

Proof. We prove the theorem when b =∞. The case b <∞ can be proved similarly.
Let f > 0. Then we have

‖Kf‖q
Lqv(a,∞) 6 c1

∫ ∞
a

(∫ a+(x−a)/2

a

f(y)k(x, y) dy
)q
v(x) dx

+ c1

∫ ∞
a

(∫ x

a+(x−a)/2
f(y)k(x, y) dy

)q
v(x) dx = Ī1 + Ī2.

Using Lemma 2.2, we obtain Ī1 6 c2Bq1‖f‖qLp(a,∞), where c2 depends only on p, q and
d1. By Hölder’s inequality and the condition k ∈ Vp we find that

Ī2 6 c3
∫ ∞
a

(∫ x

a+(x−a)/2
(f(y))p dy

)q/p
(x− a)q/p

′
kq(x, a+ (x− a)/2)v(x) dx

= c3
∑
j∈Z

∫ sj+1

sj

(∫ x

a+(x−a)/2
(f(y))p dy

)q/p
(x− a)q/p

′
kq(x, a+ (x− a)/2)v(x) dx

6 c3
∑
j∈Z

(∫ sj+1

sj−1

(f(y))p dy
)q/p ∫ sj+1

sj

(x− a)q/p
′
kq(x, a+ (x− a)/2)v(x) dx,
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where sj = a+ 2j . Using Hölder’s inequality again, we have

Ī2 6 c3
(∑
j∈Z

∫ sj+1

sj−1

(f(y))p dy
)q/p

×
(∑
j∈Z

(∫ sj+1

sj

(x− a)q/p
′
kq(x, a+ (x− a)/2)v(x) dx

)p/(p−q))(p−q)/p
6 c4B̄q1‖f‖qLp(a,∞),

where

B̄1 ≡
(∑
j∈Z

(∫ sj+1

sj

(x− a)q/p
′
kq(x, a+ (x− a)/2)v(x) dx

)p/(p−q))(p−q)/pq
.

Moreover,

B̄
pq/(p−q)
1

6 c5
∑
j∈Z

2jq(p−1)/(p−q)
(∫ sj+1

sj

kq(x, a+ (x− a)/2)v(x) dx
)p/(p−q)

6 c5
∑
j∈Z

∫ sj

sj−1

(y − a)p(q−1)/(p−q)
(∫ sj+1

y

kq(x, a+ (x− a)/2)v(x) dx
)p/(p−q)

dy

6 c5
∫ ∞
a

(y − a)p(q−1)/(p−q)
(∫ ∞

y

kq(x, a+ (x− a)/2)v(x) dx
)p/(p−q)

dy

= c5B
pq/(p−q)
1 .

Consequently, Ī2 6 c6B
q
1‖f‖qLp(a,∞), where the positive constant c6 depends only on d2,

p and q.
Now we prove the necessity. Let the operator K be bounded from Lp(a,∞) to Lqv(a,∞).

If we repeat the arguments used in the proof of Theorem 3.1, then we can obtain that,
for every x ∈ (a,∞), ∫ ∞

x

v(t)kq(t, a+ (t− a)/2) dt <∞.

Let vn(t) = v(t)χ(a+1/n,a+n)(t), where n is an integer with n > 2. Suppose that

fn(x) =
(∫ ∞

x

vn(t)kq(t, a+ (t− a)/2) dt
)1/(p−q)

(x− a)(q−1)/(p−q).
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Then, by integration by parts we obtain

‖fn‖Lp(a,∞) =
(∫ ∞

a

(∫ ∞
x

vn(t)kq(t, a+ (t− a)/2) dt
)p/(p−q)

(x− a)(q−1)p/(p−q) dx
)1/p

= c7

(∫ ∞
a

(∫ ∞
x

vn(t)kq(t, a+ (t− a)/2) dt
)q/(p−q)

× (x− a)(p−1)q/(p−q)vn(x)kq(x, a+ (x− a)/2) dx
)1/p

<∞.

On the other hand,

‖Kfn‖Lqv(a,∞)

> c8
(∫ ∞

a

v(x)
(∫ x

a+(x−a)/2
fn(t)k(x, t) dt

)q
dx
)1/q

> c9
(∫ ∞

a

vn(x)kq(x, a+ (x− a)/2)
(∫ ∞

x

vn(t)kq(x, a+ (t− a)/2) dt
)q/(p−q)

×
(∫ x

a+(x−a)/2
(t− a)(q−1)/(p−q) dt

)q
dx
)1/q

> c10

(∫ ∞
a

vn(x)kq(x, a+ (x− a)/2)

×
(∫ ∞

x

vn(t)kq(t, a+ (t− a)/2) dt
)q/(p−q)

(x− a)(p−1)q/(p−q) dx
)1/q

= c11

(∫ ∞
a

(∫ ∞
x

vn(t)kq(t, a+ (t− a)/2) dt
)p/(p−q)

(x− a)p(q−1)/(p−q) dx
)1/q

.

From the boundedness of the operator K we get(∫ ∞
a

(∫ ∞
x

kq(t, a+ (t− a)/2)vn(t) dt
)p/(p−q)

(x− a)p(q−1)/(p−q) dx
)(p−q)/pq

6 c,

where the positive constant c does not depend on n. By Fatou’s Lemma we finally obtain
B1 <∞. �

Now let

K̃f(x) =
∫ b

x

f(y)k(y, x)w(y) dy,

where w is a Lebesgue-measurable a.e. positive function on (a, b). From the duality
arguments and from Theorem 3.4 we obtain the following theorem.

Theorem 3.5. Let −∞ < a < b 6 +∞ and let 1 < q < p < ∞. Suppose that
k ∈ V ∩ Vq′ . Then the operator K̃ is bounded from Lpw(a, b) to Lq(a, b) if and only if

B̃1 =
(∫ b

a

(∫ b

x

kp
′
(t, (t− a)/2)w(t) dt

)q(p−1)/(p−q)
(x− a)q/(p−q) dx

)(p−q)/pq
<∞.
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Moreover, there exist positive constants b̃1 and b̃2 such that

b̃1B̃1 6 ‖K̃‖ 6 b̃2B̃1.

4. The compactness criteria

In this section we investigate the compactness of the operators K and K ′. The following
theorem is true.

Theorem 4.1. Let −∞ < a < b < +∞, 1 < p 6 q <∞ and let k ∈ V ∩ Vp. Suppose
that ν is a separable measure (i.e. Lqν(a, b) is a separable space). Then the following
statements are equivalent:

(i) the operator K is compact from Lp(a, b) to Lqν(a, b);

(ii) B <∞ and limc→a+Bc = 0, where

Bc ≡ sup
a<t<c

(∫
[t,c)

kq(x, a+ (x− a)/2) dν
)1/q

(t− a)1/p′ ;

(iii) B̄ <∞ and limj→−∞ B̄(j) = 0, where

B̄(j) =
(∫

[sj−1,sj)
kq(x, a+ (x− a)/2)(x− a)q/p

′
dν
)1/q

and sj = a+ (b− a)2j .

Proof. First we prove that (ii) implies (i). Let c ∈ (a, b) and represent K as follows:

K = χ(a,c)K + χ[c,b)K = P1c + P2c.

For P2c we have

P2cf(x) = χ[c,b)(x)
∫ b

a

T1(x, y) dy,

where T1(x, y) = k(x, y) when a < y < x < b and T1(x, y) = 0 if a < x 6 y < b.
Consequently,

S ≡
∫

[c,b)

(∫ b

a

(T1(x, y))p
′
dy
)q/p′

dν

=
∫

[c,b)

(∫ x

a

(k(x, y))p
′
dy
)q/p′

dν

6 c1
∫

[c,b)

(∫ a+(x−a)/2

a

(k(x, y))p
′
dy
)q/p′

dν

+ c1

∫
[c,b)

(∫ x

a+(x−a)/2
(k(x, y))p

′
dy
)q/p′

dν

≡ S1 + S2.
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If a < y < a+ (x− a)/2, then k(x, y) 6 d1k(x, a+ (x− a)/2) and therefore we have

S1 6 c2
∫

[c,b)
kq(x, a+ (x− a)/2)((x− a)/2)q/p

′
dν

6 c2
(∫

[c,b)
kq(x, a+ (x− a)/2) dν

)
((b− a)/2)q/p

′
<∞.

Using the condition k ∈ Vp, for S2 we obtain

S2 6 c3
∫

[c,b)
kq(x, a+ (x− a)/2)(x− a)q/p

′
dν <∞.

Finally, we have S <∞ and, by Theorem A, we conclude that P2c is compact. Moreover,
by virtue of Theorem 3.1 we have ‖P1c‖ 6 c4Bc, where the positive constant c4 does not
depend on c. Consequently,

‖K − P2c‖ 6 c4Bc → 0

as c→ a and the operator K is compact as a limit of compact operators. Now we prove
that (i) implies (iii). Let j ∈ Z, j 6 0 and let

fj(y) = χ(a,a+(b−a)2j)(y)((b− a)2j)−1/p.

Then for ϕ ∈ Lp′(a, b) we have∣∣∣∣∫ b

a

fj(y)ϕ(y) dy
∣∣∣∣ 6 (∫ sj

a

|fj(y)|p dy
)1/p(∫ sj

a

|ϕ(y)|p′ dy
)1/p′

=
(∫ sj

a

|ϕ(y)|p′ dy
)1/p′

→ 0

as j → −∞ (here sj = a+ (b− a)2j). On the other hand,

‖Kfj‖Lqν(a,b) >
(∫

[sj−1,sj)
(Kfj(x))q dν

)1/q
>
(∫

[sj−1,sj)
kq(x, a+ (x− a)/2)

(∫ x

a+(x−a)/2
fj(y) dy

)q
dν
)1/q

> c5
(∫

[sj−1,sj)
kq(x, a+ (x− a)/2)(x− a)q dν

)1/q
((b− a)2j)−1/p

> c6B̄(j).

As a compact operator maps a weakly convergent sequence into a strongly convergent
form, we have that limj→−∞ B̄(j) = 0. The fact that B̄ < ∞ follows from Remark 3.2
and Theorem 3.1.

Now we prove that (ii) follows from (iii). Let c ∈ (a, b). Then there exists an integer
m with m 6 0 such that c ∈ [sm−1, sm). We have

Bc 6 sup
a<t<sm

(∫
[t,sm)

kq(x, a+ (x− a)/2) dν
)1/q

(t− a)1/p′ = Bsm .
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Denote

Bsm(t) ≡
(∫

[t,sm)
kq(x, a+ (x− a)/2) dν

)1/q
(t− a)1/p′ .

Let t ∈ (a, sm), then t ∈ [sn−1, sn) for some integer n 6 m. We obtain

Bqsm(t) 6
(∫

[sn−1,sm)
kq(x, a+ (x− a)/2) dν

)
[(b− a)2n]q/p

′

= [(b− a)2n]q/p
′
m∑
j=n

∫
[sj−1,sj)

kq(x, a+ (x− a)/2) dν

6 c7[(b− a)2n]q/p
′
m∑
j=n

[(b− a)2j ]−q/p
′

×
∫

[sj−1,sj)
kq(x, a+ (x− a)/2)(x− a)q/p

′
dν

6 c7(sup
j6m

B̄(j))q[(b− a)2n]q/p
′
m∑
j=n

[(b− a)2j ]−q/p
′

6 c8(sup
j6m

B̄(j))q ≡ c8B̄qm.

Consequently,
Bsm 6 c9B̄m.

If c → a, then sm → a. Therefore B̄m → 0 as limj→−∞ B̄(j) = 0. Finally, we get
limc→a+Bc = 0. The condition B < ∞ follows from Remark 3.2. So we conclude that
(ii) =⇒ (i) =⇒ (iii) =⇒ (ii). �

From the duality argument we obtain the following theorem.

Theorem 4.2. Let −∞ < a < b < +∞ and let 1 < p 6 q < ∞. Suppose that ν
is a separable measure (i.e. Lp

′
ν (a, b) is separable) and k ∈ V ∩ Vq′ . Then the following

statements are equivalent:

(i) the operator K ′ is compact from Lpν(a, b) to Lq(a, b);

(ii) B′ <∞ and limc→a+B
′
c = 0, where

B′c = sup
a<t<c

(∫
[t,c)

kp
′
(x, a+ (x− a)/2) dν

)1/p′
(t− a)1/q;

(iii)

B̄′ ≡ sup
j60

(∫
[sj−1,sj)

kp
′
(x, a+ (x− a)/2)(x− a)p

′/q dν
)1/p′

<∞
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and limj→−∞ B̄′(j) = 0, where

B̄′(j) =
(∫

[sj−1,sj)
kp
′
(x, a+ (x− a)/2)(x− a)p

′/q dν
)1/p′

and
sj = a+ (b− a)2j .

Theorem 4.3. Let −∞ < a < b 6 +∞, 0 < q < p < ∞ and let p > 1. Suppose
that k ∈ V ∩ Vp. Then the operator K is compact from Lp(a, b) to Lqv(a, b) if and only if
B1 <∞.

Proof. The sufficiency of the theorem can be derived in the same way as in the proof
of Theorem 4.1. (It also follows from the well-known Ando’s Theorem [1].) Theorem 3.4
implies the necessity. �

The following theorem can be derived from Theorem 4.3.

Theorem 4.4. Let −∞ < a < b 6 +∞ and let 1 < q < p < ∞. Suppose that
k ∈ V ∩ Vq′ . Then the operator K̃ is compact from Lpw(a, b) to Lq(a, b) if and only if
B̃1 <∞.

5. The measure of non-compactness

In the non-compact case it is useful to estimate the distance of the operator K from the
space of compact operators.

Let X and Y be Banach function spaces. Denote by B(X,Y ) the space of all linear
bounded operators from X to Y . Let K(X,Y ) be a class of all linear compact operators
from X to Y . Suppose that Fr(X,Y ) is a space of operators with finite rank.

We shall assume that v is a Lebesgue-measurable a.e. positive function on (a, b), where
−∞ < a < b 6 +∞.

The following lemma is true (see [16] and [3, Corollary V.5.4]).

Lemma 5.1. Let 1 6 p < ∞, −∞ < a < b 6 +∞ and let P ∈ B(X,Y ), where
Y = Lpv(a, b). Then

dist(P,K(X,Y )) = dist(P,Fr(X,Y )).

We also need the following lemma (see [16] and [3, Lemma V.5.6]).

Lemma 5.2. Let 1 6 p <∞, −∞ < a < b 6 +∞ and let Y = Lpv(a, b). Suppose that
P ∈ Fr(X,Y ) and ε > 0. Then there exist T ∈ Fr(X,Y ) and [α, β] ⊂ (a, b) such that

‖P − T‖ < ε

and
suppTf ⊂ [α, β]

for every f ∈ X.
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Theorem 5.3. Let 1 < p 6 q < ∞, −∞ < a < b < +∞ and let k ∈ V ∩ Vp.
Suppose that K is bounded from X to Y , where X = Lp(a, b) and Y = Lqv(a, b). Then
the inequality

b1J 6 dist(K,K(X,Y )) 6 b2J (5.1)

is fulfilled, where the positive constants b1 and b2 depend only on p, q, d1 and d2,
J = limc→a+Rc and

Rc = sup
a<t<c

(∫ c

t

kq(x, a+ (x− a)/2)v(x) dx
)1/q

(t− a)1/p′

(d1 and d2 are from Definitions 2.3 and 2.4).

Proof. As we know from the proof of Theorem 4.1,

‖K − P̄c‖ 6 c1Rc,
where P̄c is a compact operator for every c. From the last inequality we can obtain

dist(K,K(X,Y )) 6 c1J,

where c1 depends only on p, q, d1 and d2. Now we show that

dist(K,K(X,Y )) > b1J. (5.2)

Let λ > dist(K,K(X,Y )). Then by Lemma 5.1 there exists P ∈ Fr(X,Y ) such that
‖K −P‖ < λ. On the other hand, using Lemma 5.2, for ε = (λ−‖K −P‖)/2 there exist
T ∈ Fr(X,Y ) and [α, β] ⊂ (a, b) such that

‖P − T‖ < ε (5.3)

and
suppTf ⊂ [α, β]. (5.4)

From (5.3) we obtain
‖Kf − Tf‖Y 6 λ‖f‖X

for every f ∈ X. Consequently, we have∫ α

a

|Kf(x)|qv(x) dx+
∫ b

β

|Kf(x)|qv(x) dx 6 λq‖f‖qX (5.5)

for every f ∈ X.
Let us choose n ∈ Z such that a + (b − a)2n < α. Assume that j ∈ Z, j 6 n and

fj(y) = χ(a,sj)(y), where sj = a+ (b− a)2j . Then we obtain∫ sj

sj−1

|Kfj(x)|qv(x) dx >
∫ sj

sj−1

(∫ x

a+(x−a)/2
k(x, y)f(y) dy

)q
v(x) dx

> c2
∫ sj

sj−1

kq(x, a+ (x− a)/2)(x− a)qv(x) dx.
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On the other hand,
‖fj‖qX = ((b− a)2j)q/p,

and by (5.5) we find

c3R(j) ≡ c3
(∫ sj

sj−1

kq(x, a+ (x− a)/2)(x− a)q/p
′
v(x) dx

)1/q
6 λ

for every integer j, j 6 n. Consequently, supj6nR(j) 6 c4λ for every integer n with the
condition a+ (b− a)2n < α. Therefore we have

lim
n→−∞ sup

j6n
R(j) 6 c4λ.

Let c ∈ (a, α); then c ∈ [sm−1, sm) for some m = m(c), m ∈ Z. We obtain (see the
proof of Theorem 4.1)

Rc 6 c5 sup
n6m

R(n) ≡ c5R̄m.

From the last inequality we have

lim
c→a+

Rc 6 c5 lim
m→−∞ R̄m 6 c6λ,

where c6 does not depend on a and b. Finally, we obtain inequality (5.2) and consequently
(5.1) is fulfilled. �

Now we give the estimate of measure of non-compactness for the Riemann–Liouville
operator Rα. The following theorem is true.

Theorem 5.4. Let 1 < p 6 q < ∞ and let α > 1/p. Suppose that Rα is bounded
from X to Y , where X = Lp(0,∞), Y = Lqv(0,∞). Then the inequality

b1I 6 dist(Rα,K(X,Y )) 6 b2I

holds, where I = limc→0 Ic + limd→∞ Id,

Ic = sup
0<t<c

(∫ c

t

v(x)
x(1−α)q dx

)1/q
t1/p

′
,

Id = sup
t>d

(∫ ∞
t

v(x)
x(1−α)q dx

)1/q
(t− d)1/p′ ,

and the positive constants b1 and b2 depend only on p, q and α.

Proof. If we repeat the arguments used in the proof of Theorem 5 in [13], then we
can obtain

dist(Rα,K(X,Y )) 6 b2I.
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Now let λ > dist(Rα,K(X,Y )). Then by Lemma 5.1 there exists P ∈ Fr(X,Y ) such that
‖Rα−P‖ < λ. By virtue of Lemma 5.2 for ε = (λ−‖Rα−P‖)/2 there are T ∈ Fr(X,Y )
and [α, β] ⊂ (0,∞) such that (5.3) and (5.4) hold. From (5.3) we obtain

‖Rαf − Tf‖Y 6 λ‖f‖X (5.6)

for every f ∈ X. Further, from (5.3), (5.4) and (5.6) we can obtain∫ α

0
|Rαf(x)|qv(x) dx+

∫ ∞
β

|Rαf(x)|qv(x) dx 6 λq‖f‖qLp(0,∞).

Let d > β and let t ∈ (d,∞). Then for ft(y) = χ(d/2,t/2)(y) we have∫ ∞
t

|Rαft(x)|qv(x) dx >
∫ ∞
t

(∫ t/2

d/2

ft(y)
(x− y)1−α dy

)q
v(x) dx

> c1
(∫ ∞

t

x(α−1)qv(x) dx
)

(t− d)q.

On the other hand,
‖f‖qLp(0,∞) = c2(t− d)q/p,

whence

λ > c3
(∫ ∞

t

x(α−1)qv(x) dx
)1/q

(t− d)1/p′

for t > d. Consequently, λ > c3Id for every d, d > β. From the last inequality we have

c3 lim
d→∞

Id 6 λ.

As λ is an arbitrary number greater than dist(Rα,K(X,Y )), we conclude that

c3 lim
d→∞

Id 6 dist(Rα,K(X,Y )).

Analogously we can show that

c4 lim
c→0

Ic 6 dist(Rα,K(X,Y )).

Consequently,

b1I 6 dist(Rα,K(X,Y )).

�

An analogous theorem with two weights for the Hardy operator is proved in [5], while
the similar problem for the Riemann–Liouville transforms Rα with α > 1 and for more
general operators was solved in [4], [16].
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