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Abstract
Weak rotundity is defined. One version characterizes the duals of very
smooth spaces, another characterizes the duals of extremely smooth spaces.
Weak rotundity methods are used to investigate the differentiability of the
norm in E**, and to obtain information about quotient spaces, when
£** is smooth.

It is well known that in general smoothness and rotundity are dual concepts only ]
in reflexive spaces. However, Cudia (1964) has developed a type of rotundity which \
is dual to smoothness, even in the non-reflexive case. Recently, Sullivan (1975) !

has introduced two new types of smoothness, extreme smoothness and very
smoothness. The purpose of the first part of this paper is to construct rotundity
conditions which characterize the duals of these spaces.

In Section 1 the rotundity of Cudia is redefined in terms of sequences, and
renamed weak rotundity. It is shown that one type of weak rotundity characterizes
the duals of very smooth spaces, while another characterizes the duals of extremely
smooth spaces. In Section 2, weak rotundity methods are used to investigate the
F-differentiable and UG-differentiable analogs of very smoothness and extreme
smoothness. Section 3 obtains some information about quotient spaces.

This paper is based on part of a doctoral thesis submitted to the University of
Newcastle under the supervision of Associate Professor J. R. Giles.

1. Weak rotundity

NOTATION. Edenotes a real Banach space, E* its dual; is is the natural embedding
of E in £**; S(E), S(E*) and S0) denote the unit spheres of E, E* and £,
respectively; DE: E-*2E* is the duality map which assigns to each xeE the set
{feE*:\\f\\ = | |x | | and/(x) = \\f\\\\x\\}; Y± denotes {feE*:f(y) = 0 for all ye Y}.

As in Sullivan (1975), for x,yeS(E), let p(x,y) = \\x+y\\+\\x-y\\-2. The
norm of E is Gateaux differentiate (G-differentiable) at xs S(E) in the y e S{E)
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direction if for each A,

A-*0 \ A /

In this case, E will be said to be G-differentiable at x in the y direction. If E is
G-differentiable at x in the y direction for every y e S(E), E is G-differentiable at x.
If E is G-differentiable for every xeS(E), E is G-differentiable. E is Frechet
differentiable (F-differentiable) at xeS(E) if

A->0 ||y!l

E is F-differentiable if E is F-differentiable at every x e S(E). E is uniformly Gateaux
differentiable (UG-differentiable) in the yeS(E) direction if

If E is UG-differentiable in the y direction for every y e S(E), E is UG-differentiable.
E is smooth if DB(x) is a singleton for each x e S(is). is is G-differentiable at

xeS(E) if and only if E is smooth at x (see Giles, 1971, p. 109). E is rotanc? if
x,yeS(E) with||;c+j|| = 2, implies that x = y; that is, if is rotund if S(E) contains
no line segments. If E* is smooth (rotund), then is is rotund (smooth), but in general
this cannot be reversed.

E is very smooth if Ds,,(x) is a singleton for each x e S(E). E is extremely smooth
\fFeS(E**) and g,© eS(J£***) with 2f(F) = 1 = ©(F), implies that %-®eE\
E is extremely smooth if and only if E* * is G-differentiable in the S(E) directions
[see Sullivan, 1975, p. 16).
* Let f,geS(E*). E is said to be weakly rotund at f in the g direction if for any
Sequences {xn},{yn} in S(E) such that f(Kxn+yj)+l, then g(xn-yn)^0 as
(?->oo. If A and B are non-empty subsets of S(E*), then Is is weakly rotund at A
h the B directions if E is weakly rotund a t / i n the g direction for each/e ,4 and
re B. In this paper, the sets A and B will both be S(E*) when is is being considered,
l/hile for E*, the sets ̂  and B may be either S(E) or 5(£* *). If E is weakly rotund
aniformly at S(E*) in the SXE*) directions, E is weakly uniformly rotund (WUR).
U E is weakly rotund at S îs*) uniformly in the S(E*) directions, E is uniformly
rvtund (UK) at S(E*). When E* is weakly rotund uniformly at S(E**) in the S(E)
Erections, E* is said to be weak-* uniformly rotund (W*UR).

Therefore, including uniformity in both "slots", there are four types of weak
rotundity for E and sixteen for E*. However, the following proposition shows
that at most nine of these are distinct.

PROPOSITION 1. Let FeS(E**). Then
(/) E* is weakly rotund at F uniformly in the S(E* *) directions if and only if E*

is weakly rotund at F uniformly in the S(E) directions;
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(») E* is weakly rotund uniformly at S(E**) in the F direction if and only if E*
is weakly rotund uniformly at S(JE) in the F-direction.

PROOF, (i) Let {fn},{gj be sequences in S(E*) with F(\(fn+gn))-+\ as «->oo.
Then||/B-£n||->-0 if and only if x(fn-gn)^0 uniformly for all xeS(E). But this
is equivalent to G(fn-gn)-+0 uniformly for all GeS(E**), hence the result.

(ii) is proved similarly.

PROPOSITION 2.

(/) E is smooth if and only ifE* is weakly rotund at S(E) in the S(E) directions.
(ii) E is very smooth if and only if E* is weakly rotund at S(E) in the S(E* *)

directions.
(Hi) E is extremely smooth if and only if E* is weakly rotund at S(E**) in the

S(E) directions.

PROO . All three proofs are similar so only the proof of (ii) will be given. Assume
that E not very smooth at some x e S(E). Then the norm of E is not G-differ-
entiable at x in the indirection, for some Fe S(E* *). Hence there is an s > 0, and a
sequence of positive real numbers {Xn}, with Xn -> 0, such that 0 < s < p((x, Xn F)/Xn).
Since Are->0 as n->oo, both ||x+XnF\[ and || x—Xn F\\ -»• 1. Thus there are sequences
{fj and {gn} in S(E*) such that

(x+\nF)(fn)>\\x+AnF\\-}?

and

(x-\nF)(gn)>\\x+\nF\\-\l

for all n. Therefore

-^ J^XnF\_\\x+\nF\\+\\x-XnF\\-2
\ K ) K

^ (x+XnF)(fn) + (x-XnF)(gn)-2+2Xl
K

+Sn) + KF(fn-gn)~2 + 2A»
X

KK
Now x(fn+gn)->2, but F(fn-gn)>e-2Xn for all n. Therefore F(fn-gn) remains
bounded away from zero, hence E* is not weakly rotund at x in the F-direction.

Conversely if E* is not weakly rotund at x in the Fe S(E* *) direction, there is
an s > 0, and sequences {/„}, {gn} in S(E*), such that x(fn +gn) -* 2 but F(fn -gn) Z s
for all n. Let 5 and (5 be o(E***,E**) cluster points of {/„} and {gn}, respectively.
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Then || g||< 1 and || ©||< 1. But x(fn) and x(gn) both converge to 1 as «-»oo, so
%(x) = ®(Jc) = 1. Thus || 5 | | = ||(51| = 1. But since (g-@)(F)>e>0, g cannot be
equal to ©. Thus E is not very smooth at x.

Comparing Proposition 2(i) with Cudia (1964, p. 294) gives that the weak
rotundity described here is equivalent to Cudia's rotundity.

Clearly, both very smoothness and extreme smoothness imply smoothness, with
all three of these concepts being equivalent in reflexive spaces. However, if is is not
reflexive, then very smoothness and extreme smoothness are not comparable, as
(ii) and (iii) of Proposition 2 show.

PROPOSITION 3. The following are equivalent:
(i) E is weakly rotund at S(E*) in the S(E*) directions;
(ii) E* is smooth;

(iii) E** is weakly rotund at S(E*) with S(E*) directions.

PROOF, (i) implies (ii). If E* is not smooth there is an e > 0, a sequence of positive
real numbers {Xn}, with An->•(), and / , g e S(E*) such that

Now proceed as in Proposition 2. Let {xn} and {yn} in S(E) be such that
(f+Kg)(xn)>\\f+ Kg\\~K and (/-Kg)(yn)>\\f-Kg\\-K for each n. Then

Hence g(xn—Xn) remains bounded away from zero, even though f(xn+yn)-> 2
as M->-OO. Thus (i) fails to hold.

(ii) implies (iii) by Proposition 2(i).
(iii) implies (i) obviously.
Therefore the weak rotundity of Proposition 2(i) and smoothness are dual

concepts, even in non-reflexive spaces (see Cudia, 1964, p. 294).
Proposition 2 shows that one version of weak rotundity gives a characterization

of the dual spaces of very smooth spaces, while another version characterizes the
duals of extremely smooth spaces. Proposition 3(i) shows that no amount of weak
rotundity on E, without uniformity in one of the "slots", is strong enough to
imply very smoothness or extreme smoothness in E* if E is not reflexive. Therefore
the weak rotundity of Proposition 2(ii) and very smoothness are dual concepts
only in the reflexive case. This remark also holds for the weak rotundity of
Proposition 2(iii) and extreme smoothness.
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PROPOSITION 4. If E is UG-differentiable, then E is extremely smooth.

PROOF. Eis UG-differentiable if and only if E* is W*UR (see Giles, 1976, p. 395).
If E* is W*UR, then E* is weakly rotund at S(E**) in the S(E) directions. The
result now follows by applying Proposition 2(iii).

Zizler (1969, p. 203) has given an example of a non-reflexive smooth space
which is not UG-differentiable. In Giles (1976, p. 407) there is an example
of a reflexive smooth space, hence extremely smooth space, which is not
UG-differentiable.

2. Differentiability of the norm in E**

It follows from the definition that E* being very smooth is equivalent to E*
being smooth in E* * *. Since this implies that E is reflexive, if E is non-reflexive
there must be a point of non-smoothness on S(E*) (Giles, 1974, p. 118). However,
since every F-differentiable space is very smooth (Giles, 1975), a space may be
smooth at every xeS(E) and not reflexive. In fact, Smith (1976) has given an
example of a non-reflexive space which is smooth at every Fe S{E* *).

This section looks at the F-differentiability and UG-differentiability of the
embedding E in E**, by considering the F-differentiable and UG-differentiable
analogs of very smoothness and extreme smoothness.

PROPOSITION 5. E is F-differentiable at xeS(E) if and only if E* is UR at x.

PROOF. Assume that E is not F-differentiable at x, and let {/m},{gn},{AB}, and
let e be as in Proposition 2. Then

SUP

{
11011=1

Therefore although x(fn+gn)->2, as n->oo, \\fn—gn\\ remains bounded away from
zero for all n. Thus E* is not UR at x.

This argument is reversible. If E* is not UR at x there are sequences {/„) and \
{gn} in S(E*) such that x(fn+gn)->2, but | | /B-£B| |^£ for some £>0. Since'

2, there is a sequence of positive real numbers {An}, with Aw-»-0, with
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the property that 2-x(fn+gn) < \% for all n. Thus

K

< sup p
l lwll=l

Hence

lim

so E is not F-differentiable at x.
This shows that E is F-differentiable if and only if E* is UR at S(E). Therefore

this type of weak rotundity and F-differentiability are dual concepts, as Proposition
5 and the next proposition show (see Cudia, 1964, p. 296).

PROPOSITION 6. LetfeS(E*). Then the following are equivalent:
(/) Eis URatf;

(li) E* is F-differentiable atf;
(Hi) E** is UR atf.

Using the methods of Proposition 5, the proof is similar to Proposition 3, so
will be omitted.

Now consider the F-differentiable analog of very smoothness; that is, the
F-differentiability of E in E* *.

PROPOSITION 7. E is F-differentiable at xeS(E) if and only ifE is F-differentiable
at x.

PROOF. By Proposition 5 it is sufficient to prove that if E* is UR at x, then E
is F-differentiable at x. If E is not F-differentiable at x e S(E), there is an e > 0 and
a sequence of positive real numbers {An}, with An->0, such that

lim sup p p - ^ - : FeS(E**)}>e>0.

Now proceed as in Propositions 2 and 5. This gives

Once again £(/n+£„)->• 2 as «->-oo, but ||/B—gn\\ remains bounded away from
zero. Hence E* is not UR at X.

Therefore E is F-differentiable exactly when E is F-differentiable.
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If E is very smooth, then E may only be G-differentiable in E*. Therefore
Proposition 7 shows that the embedding of an F-differentiable space inherits a
stronger property than the embedding of a very smooth space.

Next look at the F-differentiable analog of extreme smoothness, the F-differ-
entiability of E** in the S(E) directions.

PROPOSITION 8. E** is F-differentiable at GeS(E**) if and only if E** is
F-differentiable at G in the S(E) directions.

PROOF. By Proposition 6, E** is F-differentiable at G if and only if E* is UR
at G. Therefore it is sufficient to show that if E** is F-differentiable at G in the
S(E) directions, then E* is UR at G. If E* is not UR at G there is an e>0, and
sequences {/„} and {gn} in S(E*), such that G(Jn+gn)^2, but \\fn-gn\\>e for
all n. Let {An} be a sequence of positive real numbers, with An->-0, such that
2-G(fn+gn)^ A| for all n. Then

^ sup

Therefore

p/> ^ - 2

lim
A»->0 ll£ll

so E** cannot be F-differentiable at G in the S{E) directions.
Thus E* * need only be F-differentiable in the S(E) directions to imply that E

is reflexive.
So E is "very F-differentiable" exactly when E is F-differentiable, while E is

"extremely F-differentiable" is equivalent to E* * being F-differentiable. Therefore,
in one sense, "very F-differentiability" is too "weak" to be a distinct concept,
while "extreme F-differentiability" is too "strong".

Now consider the UG-differentiable case. It is implicit in Theorem 2 of Giles
(1976) that E** is UG-differentiable if and only if the embedding E is UG-
differentiable in E**. Thus E is "very UG-differentiable" if and only if E** is
UG-differentiable. The next result, therefore, is not surprising.

PROPOSITION 9. Let y e S{E). E* * is UG-differentiable in they direction if and only
ifE is UG-differentiable in the y direction.

PROOF. Since the latter condition is equivalent to E* being WUR in the y
direction (Giles, 1976, p. 395), it is sufficient to show that if E* is WUR in the
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y direction, E** is UG-differentiable in the y direction. If E** is not UG-differ-
entiable in the y eS(E) direction, there is an e>0 and a sequence of positive real
numbers {An}, with An->0, such that

0 < e < lim sup ip(^^\: Fe S(E* *)).

Now letting {/„} and {gn} be as in Proposition 2,

0<^suP{ir^+g") + W " - ^ - 2 + 2 A " : FeS(E**)}.

Now let n->oo. Then y(fn—gn) remains bounded away from zero, even though
H/n+SnlK2- Hence E* is not WUR in the y direction.

Thus E is "extremely UG-differentiable" if and only if E is UG-differentiable.
So in contrast to the F-differentiable case, "very UG-differentiability" is too
"strong" to be a distinct concept, while "extremely UG-differentiable" is too
"weak".

Zizler (1968, p. 424) has shown that any separable dual space admits an equiva-
lent UG-differentiable norm. Thus cj = lx admits an equivalent norm such that /,*
is UG-differentiable in the 5(4) directions. However, /£ = c j** must be non-
smooth for some/e 5(4), since c0 is not reflexive.

3. Quotient spaces

In this section, the term "subspace" means "norm closed subspace". For a
subspace L of E, the quotient space E/L is the space of cosets of L in E, with the
norm ||JC+.L|| = inf{||x+/||: leL}. If every two-dimensional quotient space of
E is smooth (rotund), then E is smooth (rotund), but the converse is not true,
unless E* is rotund (smooth) (Day, 1973, p. 145). Day (1973) has given an example
of a rotund space with a non-rotund quotient space. Klee (1959, p. 62) has shown
that any separable space admits a smooth norm such that E/L is non-smooth,
where L is any non-reflexive subspace of E with dim E/L 3* 2.

This section uses weak rotundity to look at the quotient spaces of extremely
smooth and very smooth spaces. First, however, it is interesting to see how much
weak rotundity is needed on E* to imply rotundity.

PROPOSITION 10. IfE* is weakly rotund at S{E**) in the S(E) direction, then E*
is rotund.

,

PROOF. Assume that E* is not rotund. Then there are / , g e S(E*) with
such that | | /+g|| = 2. By the Hahn-Banach Theorem there is an FeS(E**) with
F(f+g) = 2. But since fag, there is an xeS{E) with x(f-g)7ze>0 for some
£>0. Thus E* is not weakly rotund at Fin the x direction.
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Note that Klee's (1959) example shows that in E* weak rotundity at S(E) in
the S(E) direction is strictly weaker than rotundity.

PROPOSITION 11. Let Ybea subspace ofE*. Then ifE* is weakly rotund at S(E**)
in the S(E**) directions, Y is weakly rotund at S(Y*) in the S(Y*) directions.

PROOF. If Y is not weakly rotund at S(Y*) in the S(Y*) directions, there is
an £>0, F,GeS(Y*) and sequences {fn},{gn} in S(Y) such that F(fn+gn)^2,
but G(fn—gn)^s for all n. By an application of the Hahn-Banach Theorem, there
are functionals F1,G1eS(E**) such that F1 = F and G1 = G on Y. Hence
*i(/*n+&.)-*"2, but G1(Jn-g^>e for all n. Thus E* is not weakly rotund at Fx

in the G1 direction.
If E* * is smooth, then E* is rotund, so every quotient space of E is smooth.

The next proposition improves this.

PROPOSITION 12. IfE* * is smooth then every quotient space ofE is both very smooth
and extremely smooth.

PROOF. If E* * is smooth, then Proposition 3 gives that E* is weakly rotund at
S(E**) in the S(E**) directions. Thus by Proposition 2, E is both very smooth
and extremely smooth. Let L be any subspace of E. Then (E/L)* is isometrically
isomorphic to U- (Day, 1973, p. 30). Since V- is a subspace of E*, Proposition 10
gives that/--1- is weakly rotund at 5((LX)*) in the S^L2-)*) directions. Now applying
Proposition 2 gives the result.

In conclusion, note that if E is extremely smooth Proposition 9 implies that E*
is rotund, so every quotient space ofEis smooth. However, this does not necessarily
imply that every quotient space is extremely smooth.
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