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Summary

Effectiveness of marker-assisted selection (MAS) and quantitative trait loci (QTL) mapping using
population-wide linkage disequilibrium (LD) between markers and QTL depends on the extent of
LD and how it declines with distance in a population. Because marker–QTL LD cannot be observed
directly, the objective of this study was to evaluate alternative measures of observable LD between
multi-allelic markers as predictors of usable LD of multi-allelic markers with presumed biallelic
QTL. Observable LD between marker pairs was evaluated using eight existing measures and one
new measure. These consisted of two pooled and standardized measures of LD between pairs of
alleles at two markers based on Lewontin’s LD measure, two pooled measures of squared
correlations between alleles, one standardized measure using Hardy–Weinberg heterozygosities, and
four measures based on the chi-square statistic for testing for association between alleles at two loci.
In simulated populations with a range of LD generated by drift and a range of marker
polymorphism, marker–marker LD measured by a standardized chi-square statistic (denoted x2k)
was found to be the best predictor of useable marker–QTL LD for a group of multi-allelic markers.
Estimates of the level and decline of marker–marker LD with distance obtained from x2k were
linearly and highly correlated with usable LD of those markers with QTL across population
structures and marker polymorphism. Corresponding relationships were poorer for the other
marker–marker LD measures. Therefore, when LD is generated by drift, x2k is recommended to
quantify the amount and extent of usable LD in a population for QTL mapping and MAS based on
multi-allelic markers.

1. Introduction

Linkage disequilibrium (LD) is the condition in which
alleles at two loci are not independent. The extent of
LD is a topic of great interest in both humans and
livestock. Effectiveness of marker-assisted selection
(MAS) and fine mapping of quantitative trait loci
(QTL) using population-wide LD between markers
and QTL depends on the extent of LD and how it
declines with distance (Lande & Thompson, 1990;
Terwilliger & Weiss, 1998; Dekkers & Hospital,
2002). Although population-wide LD can be created
by crossing lines or breeds, here we focus on LD

within outbreeding populations. Because QTL cannot
be observed directly, LD between markers can be
used to predict marker–QTL LD, in order to evaluate
the extent of useful LD in a population (e.g. Farnir
et al., 2000; Pritchard & Przeworski, 2001).

The two most common LD measures for biallelic
markers are Dk and r2 (Lewontin, 1964; Hill &
Robertson, 1968; Ardlie et al., 2002), although other
measures have been used (Devlin & Risch, 1995;
Morton et al., 2001). Based on current research, the
square of the correlation coefficient between markers,
r2, is preferred to detect markers that might correlate
with the QTL of interest, because r2 quantifies the
amount of information about one locus provided by
the other (Ardlie et al., 2002; Flint-Garcia et al.,
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2003), although other optimal measures have been
proposed (Devlin & Risch, 1995; Morton et al., 2001).
For biallelic markers, the absolute value of LD is the
same between any pair of alleles across two loci.
However, this is not true when one or both markers
have more than two alleles, as is the case for the still
frequently used microsatellite markers. This makes
assessing the degree of LD between multi-allelic
markers more complicated.

A variety of statistics have been proposed to
measure LD between multi-allelic markers
(Yamazaki, 1977; Hedrick & Thomson, 1986;
Hedrick, 1987; Sabatti & Risch, 2002). Hedrick’s
(1987) multi-allelic extension of Lewontin’s (1964)
normalized LDmeasure,Dk, is commonly used. Using
Dk, extensive LD over a long range was observed in
dairy cattle, sheep and pigs (Farnir et al., 2000;
McRae et al., 2002; Tenesa et al., 2003; Nsengimana
et al., 2004). However, it is known that LD measured
by Dk tends to be inflated with small sample sizes and/
or low allele frequencies (Ardlie et al., 2002; McRae
et al., 2002; Flint-Garcia et al., 2003). A generally
satisfactory measure of LD between multi-allelic
markers has not been agreed upon, nor have alternate
measures of LD among multi-allelic markers been
compared for their ability to predict the extent of
usable LD for QTL mapping or MAS (see, however,
Devlin & Risch (1995), where disease and marker loci
were both assumed to have two alleles).

Random drift plays an important role in generating
LD in livestock breeding populations, which are ty-
pically of limited size (Flint-Garcia et al., 2003). The
objective of this study was, therefore, to evaluate, by
simulation, alternative measures of LD betweenmulti-
allelic markers as predictors of usable LD of multi-
allelic markers with QTL and, more generally, as
predictors of LD of multi-allelic markers with biallelic
single nucleotide polymorphisms (SNPs), when LD is
generated by drift. The ability to use LD between
multi-allelic markers to predict LD among SNPs or
usable LD of SNPs with QTL will be addressed in a
subsequent paper.

2. Materials and methods

(i) Measures of marker–marker LD

The standard measure of LD between two alleles at
two different loci is

Dij=p(AiBj)xp(Ai)p(Bj),

where p(Ai) is the frequency of allele Ai at locus A,
p(Bj) the frequency of allele Bj at locus B, and p(AiBj)
the frequency of haplotype AiBj. For loci with two
alleles, Dij completely describes LD between all pairs
of alleles. Because Dij depends on gene frequencies,
Lewontin (1964) suggested standardizing Dij by the

maximum absolute value it can attain, given the allele
frequencies :

Dijk=
Dij

Dmax
ij

,

where

Dmax
ij =min [p(Ai) p(Bj), (1xp(Ai)) (1xp(Bj))]

when Dij<0,

Dmax
ij =min [p(Ai) (1xp(Bj)), (1xp(Ai)) p(Bj)]

when Dijo0:

Hill & Robertson (1968) suggested using the square of
the correlation between Ai and Bj, denoted by rij

2 , as a
standardized measure of LD between biallelic loci.
This measure can be computed from Dij and allele
frequencies as follows:

r2ij=
D2

ij

p(Ai) (1xp(Ai)) p(Bj) (1xp(Bj))
:

Measures |Dijk | and rij
2 range from 0 to 1 but |Dijk | is

strongly inflated if some haplotypes are not observed,
which can occur for haplotypes of low-frequency
alleles in small samples (Flint-Garcia et al., 2003).
Compared with |Dijk |, rij2 is less inflated in small sam-
ples (Ardlie et al., 2002) and quantifies the infor-
mation one locus provides about the other. Current
researchers appear to prefer rij

2 for finding biallelic
markers that might correlate with QTL of interest
(Ardlie et al., 2002; Flint-Garcia et al., 2003), al-
though there are other viewpoints (Devlin & Risch,
1995; Morton et al., 2001).

As noted above, when markers have more than two
alleles, LD can differ between pairs of alleles and a
combined measure of LD across alleles is needed.
Several such measures have been proposed
(Yamazaki, 1977; Hedrick & Thomson, 1986;
Hedrick, 1987; Sabatti & Risch, 2002). In this study,
we compared eight existing measures and one new
measure of LD between multi-allelic markers. The
first two measures are based on pooling and stan-
dardizing Dij across loci based on allele frequencies,
following Hedrick (1987) :

Dk=g
k

i=1
g
m

j=1
p(Ai) p(Bj)

Dij

Dmax
ij

�����
�����, (1)

or based on haplotype frequencies, following Karlin
& Piazza (1981) :

Dhap= g
k

i=1
g
m

j=1
p(AiBj)

Dij

Dmax
ij

�����
�����, (2)

where k and m are the numbers of alternate alleles at
locus A and B, respectively.
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The next two measures are based on pooling rij
2

based on allele frequencies :

r2= g
k

i=1
g
m

j=1
p(Ai) p(Bj)r

2
ij, (3)

or based on haplotype frequencies :

r2hap= g
k

i=1
g
m

j=1
p(AiBj) r

2
ij: (4)

Using Hardy–Weinberg heterozygosities at two loci,
the fifth measure is

D*=
D2

HAHB

(5)

(Maruyama, 1982; Hedrick & Thomson, 1986;
Hedrick, 1987), where

D2= g
k

i=1
g
m

j=1
D2

ij, HA=1x g
k

i=1
p2(Ai)

and

HB=1x g
m

j=1
p2(Bj):

The final four measures are related to the chi-
square statistic to test for independence between
alleles at two loci. The chi-square statistic has been
discussed by Hedrick (1987) and Hill (1975) as a
measure of LD and is defined as

x2=2N g
k

i=1
g
m

j=1

D2
ij

p(Ai) p(Bj)
, (6)

where N is the sample size and 2N is the number of
haplotypes that occurs in the sample. Two standard-
ized measures of x2 have been proposed to quantify
LD with values between 0 and 1:

x2
df=

x2

2N(kx1)(mx1)
(7)

(Hedrick & Thomson, 1986; Hedrick, 1987), where
(kx1)(mx1) is equal to the degrees of freedom of x2,
and

x2k=
x2

2N(lx1)
(8)

(Yamazaki, 1977), where l=min(k, m). The quantity
2N(lx1) gives an upper bound for the maximum of x2

with given marginals (i.e. given allele frequencies) in a
classical x2 contingency table. In most cases, however,
2N(lx1) is much higher than the true maximum of x2

(Kalantari et al., 1993).
To standardize x2 by an upper bound closer to the

maximum of x2 than 2N(lx1), we developed the ninth

measure by casting maximization of x2 conditional on
marginal frequencies as a transportation problem (see
Appendix 1; Winston, 1991). The optimal solution to
the transportation problem provides a sharper bound,
xmax
2 , for the maximum of x2 (see Appendix 1;

Kalantari et al., 1993) and is used to standardize x2 :

x2
tr=

x2

x2
max

: (9)

Note that for biallelic markers, these nine measures
reduce to four because Dk=Dhap and
r2=rhap

2 =D*=xdf
2 =x2k.

(ii) Simulation

The nine measures of marker–marker LD were evalu-
ated for their ability to quantify LD of multi-allelic
markers with biallelic QTL in simulated populations.
The following criteria were used to determine the
most appropriate measure of LD between markers :
(1) the measure should have easy interpretation with
values between 0 and 1; (2) for a given population, the
measure should give a trend of marker–marker LD
across distance that is similar to that of marker–QTL
LD; and (3) estimates of the level and decline of LD
with distance obtained from marker–marker LD
should be linearly and highly correlated with the level
and decline of marker–QTL LD across population
structures and degrees of marker polymorphism.

To allow generation of multiple comparisons
between pairs of markers and between markers and
QTL at different distances, multiple markers and
QTL were simulated on a 100 cM chromosome. In
generation zero, markers with 2, 4, 6, 8 or 10 equi-
frequent alleles were simulated at 0, 2, …, 100 cM,
and QTL with two equi-frequent alleles (Q and q)
were simulated at 1, 3, …, 99 cM. A total of 2N
haplotypes were randomly sampled by independently
selecting alleles at each locus. Thus, all markers and
QTL were in Hardy–Weinberg and linkage equilib-
rium in generation 0. Subsequent generations were
produced by randomly selecting and mating N par-
ents, allowing selfing. Recombination between loci
was simulated using the Haldane mapping function
(Haldane, 1919).

To generate populations with varying levels of LD,
data were generated for 20 combinations of popu-
lation size (N=50, 100, 150 or 200) and number of
marker alleles (2, 4, 6, 8 or 10) in generation 0.
Population size was constant across generations and
data on segregating loci in generation 100 were used
for analysis. Each population was replicated 100
times. Sved (1971) showed that when the number of
generations is large, the expected value of LD be-
comes steady as a function of the product of effective
population size and distance between loci. We verified
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that LD had reached a ‘steady-state ’ condition in
generation 100 by comparing the average amount of
LD for combinations that resulted in the same prod-
uct of effective population size and distance between
loci. These were found to be similar.

(iii) Quantification of marker–QTL LD

Marker–QTL LD at a given distance d in the final
generation of each simulated replicate was quantified
based on the ability to predict the allele at a biallelic
QTL from the observed allele at a linked marker at
distance d. To measure marker–QTL LD, presence
or absence of allele Q in a haplotype consisting of
a marker and QTL was treated as a Bernoulli random
variable with probability p(Q) of ‘success ’ (i.e. pres-
ence of Q), and usable marker–QTL LD was quanti-
fied as the R2 of the regression of Q on alleles (Ai) at a
single marker. An expression for this R2 (derived in
the Appendix 2) is :

R2= g
k

i=1
p(Ai)

[p(QjAi)xp(Q)]2

p(Q)(1xp(Q))
, (10)

where p(Q|Ai) is the frequency of Q given Ai. If
marker A and the QTL are in linkage equilibrium,
then p(Q|Ai)=p(Q) and R2=0. If p(Q|Ai)lp(Q),
the marker allele contains information about the
QTL allele and R2>0. Measure R2 was used as the
standard to evaluate the various LD measures be-
tween markers described in Section 2.i and quantified
in the simulated populations by regressing each QTL
allele separately on each marker. Note that al-
gebraically, R2=x2k for LD between a multi-allelic
and a biallelic locus, and R2=x2k=r2 when both loci
are biallelic.

(iv) Comparison of LD curves predicted from
marker–QTL and marker–marker LD

To assess and compare the decline in LD with dis-
tance (f20 cM) for marker–QTL LD and marker–
marker LD, the function

LDd=1=(1+4bd) (11)

(Sved, 1971; Hayes et al., 2003) was fitted to the LD
data that were generated for each replicate, where
LDd is LD at distance d morgans, as measured by the
marker–QTL R2 or by a marker–marker LD measure,
and b is a parameter that is related to effective popu-
lation size (Ne=actual population size for the ideal-
ized populations that were simulated: Falconer &
Mackay, 1996). Because the variance of LD tends to
decline with distance, a weighted least squares re-
gression, which took heterogeneity of variance of LD
into account, was used to estimate b for each simu-
lated data set. The LD data for loci separated by

20 cM or less were used for this purpose. At a given
distance (f20 cM), the weight used was the inverse of
the LD variance, which was estimated from the LD
data for each replicate by using the lowess function in
R software (Cleveland, 1979) to fit a smooth curve
through the scatterplot of the absolute difference of
the observed LD from the median LD at a given dis-
tance. The fraction of data used for smoothing at each
distance point was 0.6.

Two criteria were used to compare LD curves esti-
mated from marker–marker LD with those estimated
from marker–QTL LD. The first was a measure of the
correlation of estimates of b obtained from
marker–QTL LD (b̂MQ) with those from marker–
marker LD (b̂MM) for the various simulation con-
ditions. To evaluate whether this relationship was
consistent across population sizes and number of
marker alleles, estimates b̂MQ (i, j, k) obtained for
population size i (i=50, 100, 150 or 200), number of
marker alleles j ( j=2, 4, 6, 8 or 10) and replicate k
(k=1, 2, …, 100) were analysed using a model that
included b̂MM (i, j, k) as a covariate, population size i
and number of marker alleles j as class variables, and
all interactions among these three variables. The se-
cond criterion used to compare estimated LD curves
was the mean of the squared difference between LD
predicted based on marker–QTL LD and LD pre-
dicted using marker–marker LD over distances of 1,
2, …, 20 cM:

MSE=
g20

i=1 LD̂MQ(i)xLD̂MM(i)

� �2

20
, (12)

where LD̂MQ(i) and LD̂MM(i) are LD predicted at i cM
(i=1, 2, …, 20) using b̂MQ and b̂MM, respectively, in
equation (11).

(v) Relationship of marker–QTL LD with local
marker–marker LD

The previous comparisons quantify the extent of LD
in a population, as measured by marker–marker LD
in relation to marker–QTL LD, as a function of dis-
tance. This quantifies the general magnitude and ex-
tent of LD within a population. It is, however, well
known that the extent of LD within a population can
differ from region to region, even if variability of LD
is quantified against map distance (Heifetz et al.,
2005) rather than physical distance (Taillon-Miller
et al., 2000; Nordborg & Tavar, 2002). It is, therefore,
of interest to determine whether local marker–marker
LD can be used to identify genomic regions with high
marker–QTL LD. To assess this, LD between two
linked markers was compared with the LD of these
same markers with a QTL that is bracketed by these
markers. For this purpose, usable LD between a pair
of markers and a bracketed QTL was quantified by
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regressing each QTL allele on the haplotype of its two
flanking markers. The R2 of regression of Q on
flanking marker haplotype AiBj was calculated as:

R2
hap= g

k

i=1
g
m

j=1
p(AiBj)

[p(QjAiBj)xp(Q)]2

p(Q)(1xp(Q))
, (13)

where p(Q|AiBj) is the frequency of Q given AiBj. The
correlation of marker–marker LD measures with
marker–QTL LD was used to indicate whether
marker–QTL LD was greater in marker intervals that
showed strong marker–marker LD. This was done for
various levels of effective population size.

3. Results

(i) Decline of LD with distance

Fig. 1 illustrates observed relationships of several LD
measures with distance for a representative replicate
with a population size of 100 and 4 alleles per marker.
Extensive LD between markers and QTL existed at
short distances but declined rapidly with distance
(Fig. 1A). Similar declines were observed when using
r2, rhap

2 , D*, x2, xdf
2 , x2k (Fig. 1C) and xtr

2 .
Marker–marker LD measured by Dk (Fig. 1B) and
Dhap was strongly inflated relative to marker–QTL
LD (Fig. 1A), and high values were obtained even for
markers in near equilibrium.

To assess the decline of LD with distance, equation
(11) was fitted to the sample data for the replicate
pictured in Fig. 1. Estimates were b̂=53.3 for
marker–QTL LD, and 5.4, 5.4, 92.0, 89.8, 93.5, 110.4,
42.6 and 24.1 for Dk, Dhap, r

2, rhap
2 , D*, xdf

2 , x2k and xtr
2 ,

respectively. Measure x2 was not used to estimate b
because of its non-standardized scale. Estimate b̂ ob-
tained from x2k was most similar to b̂ obtained from
marker–QTL LD (42.6 vs 53.3) and resulted in very
similar estimated LD curves (Fig. 1C). Based on mean
LD at a given distance, the estimated curves appeared
to provide a good fit to the data for marker–QTL LD
(Fig. 1A) and for all marker–marker LD measures
except for Dk (Fig. 1B) and Dhap due to their inflated
values at larger distances.

(ii) Comparison of LD curves predicted from
marker–QTL and marker–marker LD

Results in this section are based on analysing 100 re-
plicates for each of the 20 combinations of population
size and number of marker alleles. All LD measures
were evaluated except x2.

Table 1 shows the mean b̂ across 100 replicates
obtained from marker–QTL and marker–marker LD
for each simulated scenario. Comparing simulations
with 2 and 10 alleles per marker in generation 0, the
average number of marker alleles still segregating in
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Fig. 1. Observed relationships of marker–QTL LD (A)
and marker–marker LD measured by Dk (B) and x2k (C)
against map distance for a representative replicate with a
population size of 100 and four alleles per marker. The
legend for (B) is the same as that for (C). LD at distance d
morgans was predicted from LD̂d=1=(1+4b̂d), where b̂
was obtained from the simulated data for each LD
measure.
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generation 100 for N=50 were 2 and 2.4, respectively,
and corresponding mean estimates of b̂ for usable
marker–QTL LD (R2) decreased from 52.2 to 34.5
(Table 1). As population size increased, LD due to
drift decreased. However, less drift also increased the
number of alleles per marker that remained at segre-
gating loci, e.g. to 2.4 forN=50 and to 5.7 forN=200
when starting with 10 alleles (Table 1), which in-
creased LD by providing more information about
the amount of association between alleles at different
loci. The combination of these two processes resulted
in a decline in mean estimates of b̂ for R2 for a given
population size with an increase in the number of
marker alleles that remained (Table 1). This
phenomenon was more obvious for larger population
sizes (Table 1). These changes were best captured by
mean estimates of b̂ obtained from marker–marker
x2k, which was very close to the mean b̂ for R2

(Table 1).
For biallelic markers, r2 provided good estimates

of Ne (recall that the population size is equal to Ne in
our simulation) (Table 1). For multi-allelic markers,
neither R2 nor x2k provided good estimates of Ne

(Table 1). Instead, mean b̂ for xdf
2 was closest to the

true Ne for most cases, with an upward bias of less
than 12% from the true Ne (Table 1). Although
slightly worse than xdf

2 , mean b̂ for r2 andD* were also
good estimates of Ne, but were biased downward

(Table 1). Mean b̂ for Dk and Dhap were very low and
did not reflect Ne (Table 1).

To obtain a better understanding of the relation-
ship of marker–marker LD with marker–QTL LD for
a given population, estimates b̂ obtained from each
replicate were analysed and results are shown in Fig. 2
and Table 2. Fig. 2 illustrates the relationship of b̂ for
marker–QTL LD (b̂MQ) with b̂ for marker–marker
LD (b̂MM) across the 20 simulated cases with varying
population size and number of marker alleles. Results
for biallelic markers were distinctly different from
those for multi-allelic markers for Dk (Fig. 2A). The
same was true for Dhap, r

2, rhap
2 ,D *, xdf

2 and xtr
2 (results

not shown). Fig. 2B shows a good linear relationship
of b̂MM for x2k with b̂MQ, and the regression lines for
biallelic and multi-allelic markers were almost over-
lapping.

Table 2 shows the correlation and slope of the
regression of b̂MQ on b̂MM pictured in Fig. 2 for bial-
lelic, multi-allelic and all markers. Correlations and
slopes differed greatly between biallelic and multi-
allelic markers for all LD measures except for x2k
(Table 2). For x2k, the correlation of b̂MM with b̂MQ

was consistently high (o0.95) and the slope was
close to 1, regardless of the number of marker alleles
(Table 2). Using all markers, the regression line for x2k
in Fig. 2B was b̂MQ=6�22+0�98b̂MM, with a corre-
lation of 0.98, showing good correspondence of this

Table 1. Mean estimates of the decline in LD with distance (b) over 100 replicates based on a measure of
marker–QTL LD (R2) and eight measures of marker–marker LD for simulated data based on different
combinations of number of marker alleles in generation 0 (g0) and population size

No. of
marker
alleles (g0)

Population
size

No. of marker
alleles (g100) R2 Dk Dhap r2 r2hap D* xdf

2 x2k x2tr

2 50 2 52.2 2.5 2.5 55.7 55.7 55.7 55.7 55.7 13.1
100 2 102.0 4.2 4.2 101.5 101.5 101.5 101.5 101.5 24.6
150 2 152.4 6.6 6.6 148.6 148.6 148.6 148.6 148.6 40.5
200 2 199.4 9.9 9.9 193.0 193.0 193.0 193.0 193.0 62.9

4 50 2.2 39.9 2.7 2.7 49.1 48.8 49.3 51.1 35.5 12.8
100 2.8 55.0 5.5 5.6 92.6 89.7 93.8 104.6 46.2 25.6
150 3.3 64.2 8.7 9.1 130.3 123.4 133.0 156.1 56.0 37.0
200 3.6 75.6 11.3 12.2 176.4 164.6 178.9 207.0 69.0 48.5

6 50 2.3 36.8 2.8 2.8 47.8 47.2 48.0 50.5 31.6 12.8
100 3.2 44.4 5.7 5.9 89.4 83.9 91.3 106.3 37.4 23.7
150 4.0 48.1 8.0 8.7 130.1 115.4 133.4 161.4 42.5 31.0
200 4.6 53.7 9.3 10.7 174.1 148.2 178.5 218.1 49.0 37.3

8 50 2.4 35.8 2.7 2.7 46.9 46.3 47.2 49.8 29.8 12.4
100 3.5 39.5 5.7 6.0 87.3 79.6 89.6 107.5 33.1 22.5
150 4.4 42.2 7.4 8.3 128.3 109.1 131.7 162.6 37.3 28.0
200 5.2 45.1 8.3 10.0 170.8 137.9 175.5 219.0 41.5 32.4

10 50 2.4 34.5 2.9 2.9 47.1 46.3 47.7 51.4 29.4 13.0
100 3.6 37.4 5.7 6.0 87.9 79.1 90.4 107.8 31.5 21.8
150 4.7 38.4 7.0 8.1 127.1 105.0 131.0 165.5 34.3 26.2
200 5.7 40.2 7.4 9.3 170.4 130.8 175.3 222.7 37.3 29.4

The number of marker alleles in generation 100 (g100) is the average of the mean number of alleles across markers still
segregating in g100 over 100 replicates.
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measure of marker–marker LD with marker–QTL
LD.

The effects of population size and number of mar-
ker alleles on the relationship between b̂MQ and b̂MM

pictured in Fig. 2 were tested using analysis of vari-
ance. The proportion of variance in b̂MQ that was
explained by simple regression on b̂MM across the 20
simulated cases was 0.96 for x2k and ranged from 0.07
to 0.49 for the other LD measures. After including
effects of population size, number of marker alleles,
and all interactions among them and b̂MM, these pro-
portions increased slightly for x2k (from 0.96 to 0.98)
but greatly (from as low as 0.07 to 0.97) for other
measures. Although population size and number of
marker alleles explained significant (P<0.001)
amounts of variance in b̂MQ for all LD measures (in-
cluding x2k), the relationship between b̂MQ and b̂MM

was relatively independent of the effects of population
size and number of marker alleles for x2k.

Table 3 shows the average mean square error
(MSE) (*1000) over 100 replicates for various mar-
ker–marker LD measures. The MSE was largest for
Dk and smallest for x2k for all 20 simulated cases (Table
3). This implies that, regardless of population size and
number of marker alleles in the ranges we considered,
LD curves predicted from x2k were very close to LD
curves predicted from marker–QTL LD.

(iii) Relationship of marker–QTL LD with local
marker–marker LD

Relationship of marker–QTL LD with local mar-
ker–marker LD was tested for different combinations
of population size (25, 50, 75 or 100) and
marker–QTL distance (0.5, 1 or 2 cM). The corre-
lation of x2k between two biallelic markers with LD of
these same markers with a bracketed QTL increased
as population size decreased (Table 4). For a popu-
lation size of 50, correlations were 0.06, 0.11 and 0.10
for marker–QTL distances of 0.5, 1 and 2 cM, re-
spectively (Table 4). The low correlation implies that,
in a population with LD generated by drift alone, LD
between markers and QTL will be determined by the
overall degree of LD in the population, but will not
necessarily be greater in marker intervals that show
strong LD between markers.

4. Discussion and conclusions

Various measures of LD between multi-allelic mar-
kers were evaluated as predictors of usable LD of
multi-allelic markers with QTL for the purpose of
QTL detection and MAS. The R2 of the regression
of QTL allele on alleles at a single marker was used
as the standard for evaluation of the various LD
measures between markers, because it quantifies the
ability to predict the allele at a linked biallelic QTL
based on the observed marker allele. Although bial-
lelic QTL were simulated in this study, the results are
expected to hold for multi-allelic QTL as well, because
QTL alleles can always be grouped into favourable
and unfavourable alleles. Although the focus was on
predicting marker–QTL LD, our conclusions also
apply to relating multi-allelic marker LD to LD of
multi-allelic markers with SNPs. However, results do
not apply to predicting LD among SNPs or between
SNPs and biallelic QTL, which will be addressed in a
subsequent paper.

Our study showed that x2k is the best measure of LD
among multi-allelic markers to predict the extent of
LD of those markers with QTL across population
sizes and number of marker alleles. Estimates of the
decline of LD with distance (b) based on x2k were
highly and linearly related to those obtained for
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Fig. 2. Regression of estimates of the decline of LD with
distance (b) obtained from each replicate for marker–QTL
LD on estimates of b for marker–marker LD measured by
Dk (A) and x2k (B) for biallelic (open circles) and multi-
allelic (filled circles) markers. Dashed and unbroken lines
indicate the regression lines for biallelic and multi-allelic
markers, respectively. Data are based on 100 replicates
simulated for each of the 20 combinations of population
size (50, 100, 150 or 200) and number of marker alleles
(2, 4, 6, 8 or 10).

Linkage disequilibrium measures 83

https://doi.org/10.1017/S001667230500769X Published online by Cambridge University Press

https://doi.org/10.1017/S001667230500769X


marker–QTL LD across population structures and
number of marker alleles, and resulted in very similar
LD curves. Corresponding relationships were poorer
for the other marker–marker LD measures.

In the simulated populations, extensive marker–
QTL LD existed at short distances but declined rap-
idly with distance. Similar declines were observed for
all LD measures between markers, except for Dk and
Dhap. Due to haplotypes of low or zero frequencies
in small samples, these measures gave rise to LD

estimates that were strongly inflated relative to
marker–QTL LD and could be high for markers that
were in near equilibrium. Therefore, Dk and Dhap are
not good for high-resolution LD mapping of QTL.
Measure Dk was used to study the extent of LD in the
Dutch black-and-white dairy cattle population by
Farnir et al. (2000), in Coopworth and Romney sheep
populations by McRae et al. (2002), in the UK dairy
cattle population by Tenesa et al. (2003), and in five
populations of commercial pigs by Nsengimana et al.
(2004). Using this measure, substantial LD was ob-
served over a long range in all four studies, but it is
not clear to what extent this may be a result of the
above artefact.

Although b is related to Ne, estimates of b obtained
from x2k and marker–QTL LD (R2) were not useful
estimates of Ne, because they reflect not only Ne but
also the number of marker alleles that remained in the
generation under consideration. Sved (1971) showed
that for biallelic markers, the decline in LD measured
by r2 estimates Ne, which was also observed in our
study (Table 1). For multi-allelic markers, r2, D* and
xdf
2 all provided good estimates of Ne.
The upper bound for the maximum of x2 used in

our new measure xtr
2 is sharper than the upper bound

Table 3. The mean of the squared difference (MSE)
between LD predicted based on marker–marker and
marker–QTL LD at 1, 2, …, 20 cM for simulated
data generated from different combinations of
population size and number of marker alleles in
generation 0 (g0)

No. of marker
alleles (g0)

Population
size Dk r2 x2k xtr

2

2 50 242.4 0.3 0.3 30.5
100 168.6 0.1 0.1 15.9
150 115.4 0.0 0.0 7.9
200 75.5 0.0 0.0 3.6

4 50 197.7 0.5 0.3 22.0
100 103.0 1.2 0.3 5.9
150 59.0 1.6 0.1 2.2
200 43.5 1.6 0.0 1.1

6 50 183.1 0.8 0.4 19.4
100 86.2 2.5 0.3 4.5
150 55.6 3.8 0.1 1.8
200 47.1 4.0 0.1 1.0

8 50 186.2 0.8 0.6 20.0
100 81.7 3.6 0.3 3.9
150 56.6 5.2 0.2 1.7
200 50.1 6.0 0.1 1.0

10 50 173.5 1.0 0.4 17.2
100 78.0 4.3 0.3 3.7
150 57.6 6.5 0.1 1.6
200 54.6 7.6 0.1 1.0

Values are the average MSE over 100 replicates multiplied
by 1000 for each combination. Results for Dhap (not shown)
were similar to those for Dk, and results for rhap

2 , D* and xdf
2

were similar to those for r2.

Table 4. The correlation of observable LD between
two markers using x2k with LD of these same markers
with a bracketed QTL

Population
size

Marker–QTL distance (cM)

0.5 1 2

25 0.19 0.21 0.19
50 0.06 0.11 0.10
75 0.02 0.07 0.07
100 0.02 0.06 0.06

Markers and QTL were biallelic and segregating in gener-
ation 100. Population size was 25, 50, 75 or 100.
Marker–QTL distance was 0.5, 1 or 2 cM. Results are based
on 10 000 replicates.

Table 2. Correlation and slope of the regression of the decline of LD with distance (b) estimated from
marker–QTL LD on b estimated from different measures of marker–marker LD for biallelic, multi-allelic
(4, 6, 8 or 10) and all markers across four population sizes (50, 100, 150 or 200), with 100 replicates for each
combination of population size and number of marker alleles

Dk Dhap r2 rhap
2 D* xdf

2 x2k xtr
2

Biallelic markers Correlation 0.87 0.87 0.95 0.95 0.95 0.95 0.95 0.87
Slope 16.05 16.05 1.01 1.01 1.01 1.01 1.01 2.37

Multi-allelic markers Correlation 0.69 0.61 0.57 0.69 0.56 0.49 0.95 0.79
Slope 3.15 2.40 0.14 0.22 0.14 0.09 1.02 0.93

All markers Correlation 0.36 0.26 0.50 0.65 0.47 0.29 0.98 0.70
Slope 5.55 3.53 0.43 0.64 0.40 0.20 0.98 2.19
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used in x2k. Nevertheless, xtr
2 was a poorer predictor of

usable marker–QTL LD than x2k. The reason for this
is that marker–QTL LD measured by R2 attains 1.0 if
and only if there is a perfect dependence of QTL al-
leles on marker alleles. This can only occur when each
QTL allele frequency is equal to the sum of the fre-
quencies of one or more alleles at the marker. When
this condition is not satisfied, the maximum possible
R2 is less than 1.0, yet the maximum of xtr

2 will be close
to 1.0 because x2 is standardized by a relatively sharp
upper bound to x2, conditional on marker allele fre-
quencies. Thus, xtr

2 over-standardizes x2 in predicting
marker–QTL LD. Nevertheless, xtr

2 might be of in-
terest for other circumstances where the x2-metric is
used.

In summary, x2k is recommended to quantify the
amount and extent of usable LD in a population for
QTL mapping and MAS for a group of multi-allelic
markers when LD is generated by drift alone.
However, it must be noted that, while marker–marker
LD enables assessment of the general extent of usable
LD in populations, high marker–marker LD in spe-
cific regions may not necessarily identify regions with
high marker–QTL LD; in the simulated data, with
LD generated by drift alone, observed LD between
two markers was not correlated with LD of these
same markers with a bracketed QTL. This implies
that, for a given population and when quantified
against map distance rather than physical distance,
LD between markers and QTL will not necessarily
be greater in marker intervals that show strong
LD between markers.

The populations under study were simulated with
maximum QTL segregation in the founder generation
and LD generated by drift alone. Under these cir-
cumstances, the effect of mutation on marker–QTL
LD should not change our conclusions because
mutation rates are generally very low (Falconer &
Mackay, 1996). Although selection also causes LD
(Bulmer, 1971), it preferentially generates LD be-
tween QTL affecting the selected trait rather than
between markers and QTL (Farnir et al., 2000).
Selection decreases Ne, which accordingly increases
LD through the effect of drift. Therefore, our con-
clusions are expected to hold for populations that are
under selection or mutation. Selection can, however,
result in differences in LD between genomic regions
on the linkage map scale because of selective sweeps
(Kim & Nielsen, 2004). This would result in some
ability of local marker–marker LD to predict the ex-
tent of marker–QTL LD relative to other regions in
the genome, unlike what was observed here for LD
generated by drift alone.
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their help and valuable discussion. The editor and reviewers
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Appendix 1. Derivation of sharp bounds for the

maximum of x2

Consider 2N haplotypes with two loci : locus A with k
alleles and locus B with m alleles. The frequency of
allele Ai at locus A is ai (i=1, …, k), the frequency of
allele Bj at locus B is bj ( j=1, …, m), and
gk

i=1ai=gm

j=1bj=2N. The frequency of haplotype
AiBj is xij such that gm

j=1xij=ai, g
k

i=1xij=bj, xijo0.
The classical x2 contingency table is :

B1 . . . . . . Bm

A1 x11 x1m a1

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

Ak xk1 . . . . . . xkm ak

b1 . . . . . . bm 2N

The chi-square statistic for testing for association
between alleles is :

x2= g
k

i=1
g
m

j=1

(xijxaibj
�
(2N))2

aibj
�
(2N)

=2N g
k

i=1
g
m

j=1

x2
ij

aibj
x1

 !
=2N(g(x)x1),

where

g xð Þ= g
k

i=1
g
m

j=1

x2
ij

aibj
:

In order to standardize x2, we want to find the set of
x=(x11, …, xkm) that can maximize g(x) under the
constraints :

g
m

j=1
xij=ai, g

k

i=1
xij=bj and xijo0

(i=1, . . ., k; j=1, . . ., m):

(A1)

However, this is computationally hard (Kalantari
et al., 1993). The idea that Kalantari et al. (1993)
introduced is to replace g(x) by an upper plane h(x)
such that h(x)og(x) :

h(x)= g
k

i=1
g
m

j=1
hij(xij)= g

k

i=1
g
m

j=1

r gij(lij)+
gij(uij)xgij(lij)

uijxlij
(xijxlij)

� �
,
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where gij(xij)=
x2
ij

aibj
, lij=max(0, ai+bjx2N), uij=min

(ai, bj) and lijfxijfuij.
Now the question is how to find the set of

x=(x11, …, xkm) that can maximize h(x) under the
constraints in (A1). Maximizing h(x) is equivalent to
maximizing

g
k

i=1
g
m

j=1

gij(uij)xgij(lij)

uijxlij
xij

� �
= g

k

i=1
g
m

j=1
{cijxij};

where cij=
gij(uij)xgij(lij)

uijxlij
:

Maximizing gk

i=1g
m

j=1{cijxij} under the constraints in
(A1) is an ordinary linear transportation problem
(Winston, 1991) where cij can be considered as the
‘cost ’ for cell (i, j) in the x2 contingency table. It can
be solved by the transportation simplex method
(Winston, 1991).

If x̂ is the optimal solution to this transportation
problem, then x2

max=2N(h(x̂)x1) is an upper bound
for the maximum of x2. Kalantari et al. (1993) proved
that this upper bound is never worse than the upper
bound used in x2k, that is x2

maxf(2N)min (kx1,mx1):
A C++ program was developed to solve the

transportation problem and to obtain x2max given the
allele frequencies at two loci.

Appendix 2. Derivation of regression R2 for

marker–QTL LD

Consider 2N haplotypes with two loci : marker A with
k alleles and a QTL with two alleles (Q and q). The
estimated frequency of alleleAi (i=1, 2, …, k) is p(Ai),
and the estimated frequency of allele Q is p(Q).

Let Yj=1 ( j=1, 2, …, 2N) if the allele Q is present
in the jth haplotype and Yj=0 otherwise.

Let Xij=1 (i=1, 2, …, k ; j=1, 2, …, 2N) if the
allele Ai is present in the jth haplotype and Xij=0
otherwise.

Let Y=[Y1, …, Y2N]k, Xi=[Xi1, …, Xi(2N)]k and
X=[X1, …, Xk].

Then the R2 for the regression of Y on X (i.e. the
proportion of QTL variance explained by marker A)
is :

R2=
(Ŷx1Y )k(Ŷx1Y )

(Yx1Y )k(Yx1Y )
, (A2)

where 1 denotes a vector of 2N ones,
Ŷ=X(XkX)x1XkY, andY= 1

2N
g2N

j=1Yj.
First, we calculate the numerator in (A2). Because

XkX=(2N)diag[p(A1), …, p(Ak)] and XkY=2N
[p(QA1), …, p(QAk)]k where p(QAi) is the estimated
frequency of haplotype QAi (i=1, 2, …, k), we obtain
(XkX)x1XkY=[p(Q|A1), …, p(Q|Ak)]k and Ŷj=
gk

i=1[Xijp(QjAi)] where p(Q|Ai) is the estimated

conditional probability of allele Q given Ai (i=1,
2, …, k). Therefore,

(Ŷx1Y )k(Ŷx1Y )= g
2N

j=1
g
k

i=1
[Xijp(QjAi)]xp(Q)

� �2

=2N g
k

i=1
p(Ai)[p(QjAi)xp(Q)]2:

(A3)

Second, we calculate the denominator in (A2):

(Yx1Y )k(Yx1Y )= g
2N

j=1
[Yjxp(Q)]2

=(2N)p(Q)[1xp(Q)]:

(A4)

From equations (A2), (A3) and (A4), we obtain

R2=
gk

i=1p(Ai) p(QjAi)xp(Q)½ �2

p(Q) 1xp(Q)½ � :
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