NUMBERS OF CONJUGACY CLASSES IN SOME FINITE CLASSICAL GROUPS

I.G. Macdonald

In this paper we calculate the number of congugacy classes in the following finite classical groups: $\mathrm{GL}_{n}\left(F_{q}\right) ; \mathrm{PGL}_{n}\left(F_{q}\right)$, $S L_{n}\left(F_{q}\right)$, and more generally $G\left(F_{q}\right)$, where G is any algebraic group isogenous to $\mathrm{SL}_{n} ; \mathrm{PSL}_{n}\left(\mathrm{~F}_{q}\right) ; U_{n}\left(\mathrm{~F}_{q^{2}}\right) ; \mathrm{PU}_{n}\left(\mathrm{~F}_{q^{2}}\right)$, $\mathrm{SU}_{n}\left(\mathrm{~F}_{q^{2}}\right)$ and more generally $G\left(\mathrm{~F}_{q^{2}}\right)$ where G is any group isogenous to SU_{n} over F_{q}; and $\operatorname{PSU}_{n}\left(\mathrm{~F}_{q^{2}}\right)$.

Introduction

Let G be a semisimple algebraic group isogenous to S_{n} and let k be a finite field. In this paper we calculate the number of conjugacy classes in the finite group $G(k)$ of k-rational points of G, for all choices of G and k. The result is as follows. If G is the image of SL_{n} under a central isogeny of degree f, and $e=n / f$, then the number of conjugacy classes in $G(k)$ is

$$
(q-1)^{-1} \sum_{d_{1}, d_{2}} \phi_{1}\left(d_{1}\right) \phi_{2}\left(d_{2}\right) c_{n / d_{1} d_{2}}
$$

summed over all pairs of positive integers d_{1}, d_{2} such that d_{1} (respectively d_{2}) divides f and $q-1$ (respectively e and $q-1$),

Received 25 July 1980.
and the notation is as follows:- q is the number of elements in $k ; c_{n}$ is the number of conjugacy classes in $G L_{n}(k) ;$ and for any positive integers n and r,

$$
\phi_{r}(n)=n^{r} \prod_{p \mid n}\left(1-p^{-r}\right)
$$

(product over the primes dividing n), so that ϕ_{1} is Euler's ϕ-function.

In particular, the expression

$$
(q-1)^{-1} \sum_{d \mid(n, q-1)} \phi_{n}(d) c_{n / d}
$$

gives the number of conjugacy classes in $\mathrm{PGL}_{n}(k)$ (respectively $\mathrm{SL}_{n}(k)$) when $r=1$ (respectively $r=2$). These two formulas were also found by Wall [7].

For convenience of exposition, we deal with these two cases first, in §2 and §3 respectively, and the general case in $\S 4$. We also calculate in §5 the number of conjugacy classes in the simple group $\mathrm{PSL}_{n}(k)$. Finally, in §6, we establish analogous formulas for unitary groups. For example, if k_{2} is the quadratic extension of k and if γ_{n} is the number of conjugacy classes in the unitary group $U_{n}\left(k_{2}\right)$, the expression

$$
(q+1)^{-1} \sum_{d \mid(n, q+1)} \phi_{r}(d) \gamma_{n / d}
$$

gives the number of conjugacy classes in $P U_{n}\left(k_{2}\right)$ (respectively $S U_{n}\left(k_{2}\right)$) when $r=1$ (respectively $r=2$).

We conclude this introduction with a few remarks on notation and terminology. A partition is any finite or infinite sequence $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ of integers such that $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq 0$ and $|\lambda|=\sum \lambda_{i}<\infty$. The non-zero λ_{i} are called the parts of λ, and we denote by $m_{i}(\lambda)$, for each $i \geq 1$, the number of parts λ_{j} equal to i. If λ, μ are partitions, $\lambda \cup \mu$ denotes the partition for which
$m_{i}(\lambda \cup \mu)=m_{i}(\lambda)+m_{i}(\mu)$, and similarly for any set of partitions.
Finally, for any finite group G, we denote by $c(G)$ the number of conjugacy classes in G.

1. Conjugacy classes in $\mathrm{GL}_{n}(k)$

Let $g \in \mathrm{GL}_{n}(k)$. Then g acts on the vector space k^{n}, and hence defines on k^{n} a $k[t]$-module structure (where t is an indeterminate) such that $t . v=g v$ for $v \in k^{n}$. Let V_{g} denote this $k[t]$-module. It is clear that two elements $g, h \in \mathrm{GL}_{n}(K)$ are conjugate in $G L_{n}(k)$ if and only if the $k[t]$-modules V_{g} and V_{h} are isomorphic. The conjugacy classes in $\mathrm{GL}_{n}(k)$ are therefore in one-one correspondence with the isomorphism classes of $k[t]$-modules V such that
(i) $\operatorname{dim}_{k} V=n$,
(ii) $t v=0$ implies $v=0$.

Now $k[t]$ is a principal ideal domain, and therefore V_{g} is a direct sum of cyclic modules of the form $k[t] /(f)^{m}$, where $m \geq 1$ and f is an irreducible monic polynomial in $k[t]$, the polynomial t being excluded, and (f) is the ideal generated by f in $k[t]$. Let Φ denote the set of these polynomials. Then we may write

$$
\begin{equation*}
V_{g} \cong \oplus_{f, i} k[t] /(f)^{\lambda_{i}(f)} \tag{1.1}
\end{equation*}
$$

where the direct sum is over all $f \in \Phi$ and integers $i \geq 1$, and the exponents satisfy $\lambda_{1}(f) \geq \lambda_{2}(f) \geq \ldots \geq 0$, so that
$\lambda(f)=\left(\lambda_{1}(f), \lambda_{2}(f), \ldots\right)$ is a partition for each $f \in \Phi$. Since $\operatorname{dim}_{k}\left(k[t] /(f)^{m}\right)=m \operatorname{deg}(f)$, the partition-valued function λ on Φ must satisfy

$$
\begin{equation*}
\sum_{f \in \Phi}|\lambda(f)| \operatorname{deg}(f)=n . \tag{1.2}
\end{equation*}
$$

The conjugacy classes of $G L_{n}(k)$ are thus in one-one correspondence with the partition-valued functions λ on Φ which satisfy (1.2).

For later use it is convenient to modify this parametrization. Let \bar{k} be an algebraic closure of k, and let $M=\bar{k}^{*}$ be its multiplicative group. The Frobenius automorphism $F: x \rightarrow x^{q}$ (where $q=\operatorname{Card}(k)$) acts on M, and the roots in \bar{k} of a polynomial $f \in \Phi$ form a single F-orbit in M, and conversely. We may therefore replace λ by the partitionvalued function μ on M defined by $\mu(x)=\lambda(f)$, where f is the minimal polynomial of x over k. The condition (1.2) becomes

$$
\begin{equation*}
\sum_{x \in M}|\mu(x)|=n \tag{1.3}
\end{equation*}
$$

and moreover μ must satisfy

$$
\begin{equation*}
\mu(F x)=\mu(x) \tag{1.4}
\end{equation*}
$$

for all $x \in M$. The conjugacy classes in $G L_{n}(k)$ are now parametrized by partition-valued functions μ on M satisfying (1.3) and (1.4).

The function μ rather than λ arises when we decompose the $\bar{k}[t]$ module $\bar{V}_{g}=V_{g} \otimes_{k} \bar{k}$, for we have

$$
\begin{equation*}
\bar{V}_{g} \cong \underset{x, i}{\oplus} \bar{k}[t] /(t-x)^{\mu_{i}(x)} \tag{1.5}
\end{equation*}
$$

(direct sum over all $x \in M$ and $i \geq 1$).
Now define polynomials u_{i} by

$$
\begin{equation*}
u_{i}=\prod_{x \in M}(1-t x)^{m_{i}(\mu(x))} \tag{1.6}
\end{equation*}
$$

where $m_{i}(\mu(x))$ is the number of parts equal to i in the partition $\mu(x)$, for each $i \geq 1$. Clearly $u_{i}(0)=1$, and $u_{i} \in k[t]$ by virtue of (1.4). Moreover, if $g \in G L_{n}(k)$ is in the conjugacy class parametrized by μ, we have
(1.7)

$$
\operatorname{det}(1-t g)=\prod_{i \geq 1} u_{i}(t)^{i}
$$

For the characteristic polynomial of g is

$$
\operatorname{det}(t-g)=\prod_{f \in \Phi} f(t)|\lambda(f)|=\prod_{x \in M}(t-x)|\mu(x)|
$$

and therefore

$$
\operatorname{det}(1-t g)=\left.\prod_{x \in M}(1-t x)\right|^{|\mu(x)|}=\prod_{i \geq 1} u_{i}(t)^{i}
$$

The sequence of polynomials $u=\left(u_{1}, u_{2}, \ldots\right)$ determines the function μ by (1.6), and hence the conjugacy class. The u_{i} must satisfy

$$
\begin{equation*}
u_{i} \in k[t], \quad u_{i}(0)=1 \quad(i \geq 1) \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i \geq 1} i \operatorname{deg} u_{i}=n \tag{1.9}
\end{equation*}
$$

(by (1.3) or (1.7)). It follows that the conjugacy classes of $G L_{n}(k)$ are in one-one correspondence with the set of sequences $u=\left(u_{1}, u_{2}, \ldots\right)$ which satisfy (1.8) and (1.9).

If $\operatorname{deg}\left(u_{i}\right)=n_{i}$, so that by (1.7),

$$
v=\left(1^{n_{1}} n_{2}^{n_{2}} \ldots\right)
$$

is a partition of n, we call v the type of the conjugacy class corresponding to u. In terms of μ, we have

$$
\begin{equation*}
\nu=\underset{x \in M}{U} \mu(x) \tag{1.10}
\end{equation*}
$$

The number of polynomials u_{i} of degree n_{i} which satisfy (1.8) is $q^{n_{i}}-q^{n_{i}-1}$ if $n_{i}>0$ (and is 1 if $n_{i}=0$). Hence the number of conjugacy classes of type v in $\mathrm{GL}_{n}(k)$ is

$$
\begin{equation*}
c_{v}=\prod_{n_{i}>0}\left(q^{n_{i}}-q^{n_{i}-1}\right) \tag{1.11}
\end{equation*}
$$

and the total number of conjugacy classes in $\mathrm{GL}_{n}(k)$ is

$$
\begin{equation*}
c_{n}=c\left(\mathrm{GL}_{n}(k)\right)=\sum_{|\nu|=n} c_{\nu} . \tag{1.12}
\end{equation*}
$$

Since $q^{n}-q^{n-1}$ is the coefficient of t^{n} in $(1-t)(1-q t)^{-1}$, if $n>0$, it follows from (1.11) and (1.12) that the generating function for the numbers c_{n} is

$$
\begin{equation*}
C(t)=\sum_{n=0}^{\infty} c_{n} t^{n}=\prod_{r=1}^{\infty} \frac{1-t^{r}}{1-q t^{r}} \tag{1.13}
\end{equation*}
$$

This formula is due to Feit and Fine [1].
If we combine (1.13) with the well-known identity

$$
\prod_{r=1}^{\infty}\left(1-q t^{r}\right)^{-1}=\sum_{r=0}^{\infty} q^{r} t^{r} \prod_{k=1}^{r}\left(1-t^{k}\right)^{-1}
$$

we obtain

$$
\begin{equation*}
C(t)=\sum_{r=0}^{\infty} q^{r} t^{r} \prod_{k>r^{\infty}}\left(1-t^{k}\right) \tag{1.14}
\end{equation*}
$$

We can transform this further, as follows. From the identity

$$
\prod_{k=1}^{\infty}\left(1+a t^{k}\right)=\sum_{s \geq 0} a^{s} t^{s(s+1) / 2} \prod_{j=1}^{s}\left(1-t^{j}\right)^{-1}
$$

with $a=-t^{r}$, we obtain

$$
\prod_{k>r}\left(1-t^{k}\right)=\sum_{s \geq 0}(-1)^{s} t^{r s+s(s+1) / 2} \prod_{j=1}^{s}\left(1-t^{j}\right)^{-1}
$$

and hence (1.14) becomes

$$
\begin{aligned}
C(t) & =\sum_{r=0}^{\infty} q^{r} \sum_{s=0}^{\infty}(-1)^{s} t^{(s+1)(r+s / 2)} \prod_{j=1}^{s}\left(1-t^{j}\right)^{-1} \\
& =\sum_{r=0}^{\infty}\left\{q^{r} t^{r}-\frac{q^{r} t^{2 r+1}}{1-t}+\frac{q^{r} t^{3 r+3}}{(1-t)\left(1-t^{2}\right)}-\cdots\right)
\end{aligned}
$$

from which it follows that c_{n} is a polynomial in q of the form

$$
c_{n}=q^{n}-\left(q^{a}+q^{a-1}+\ldots+q^{b+1}+q^{b}\right)+\ldots
$$

where $a=\left[\frac{3}{2}(n-1)\right], b=\left[\frac{1}{3} n\right]$, and the terms not written at the end have degree less than b. Also, from Euler's pentagonal number theorem, the constant term in c_{n} is 0 unless n is of the form $\frac{1}{2} m(3 m+1)$ for some $m \in Z$, in which case $c_{n}=(-1)^{m}$.

Finally, all the $c_{n}(n \geq 1)$ are divisible by $q-1$, as one sees by putting $q=1$ in (1.13).

In Table 1 below we list the polynomials c_{n} for $0 \leq n \leq 12$, and in Table 2 the polynomials $c_{n}^{\prime}=c_{n} /(q-1)$ for $1 \leq n \leq 12$.

TABLE 1

$$
\begin{aligned}
& c_{0}=1 \\
& c_{1}=q-1 \\
& c_{2}=q^{2}-1 \\
& c_{3}=q^{3}-q \\
& c_{4}=q^{4}-q \\
& c_{5}=q^{5}-q^{2}-q+1 \\
& c_{6}=q^{6}-q^{2} \\
& c_{7}=q^{7}-q^{3}-q^{2}+1 \\
& c_{8}=q^{8}-q^{3}-q^{2}+q \\
& c_{9}=q^{9}-q^{4}-q^{3}+q \\
& c_{10}=q^{10}-q^{4}-q^{3}+q \\
& c_{11}=q^{11}-q^{5}-q^{4}-q^{3}+q^{2}+q \\
& c_{12}=q^{12}-q^{5}-q^{4}+q^{2}+q-1
\end{aligned}
$$

TABLE 2

$$
\begin{aligned}
& c_{1}^{\prime}=1 \\
& c_{2}^{\prime}=q+1 \\
& c_{3}^{\prime}=q^{2}+q \\
& c_{4}^{\prime}=q^{3}+q^{2}+q \\
& c_{5}^{\prime}=q^{4}+q^{3}+q^{2}-1 \\
& c_{6}^{\prime}=q^{5}+q^{4}+q^{3}+q^{2} \\
& c_{7}^{\prime}=q^{6}+q^{5}+q^{4}+q^{3}-q-1 \\
& c_{8}^{\prime}=q^{7}+q^{6}+q^{5}+q^{4}+q^{3}-q \\
& c_{9}^{\prime}=q^{8}+q^{7}+q^{6}+q^{5}+q^{4}-q^{2}-q \\
& c_{10}^{\prime}=q^{9}+q^{8}+q^{7}+q^{6}+q^{5}+q^{4}-q^{2}-q \\
& c_{11}^{\prime}=q^{10}+q^{9}+q^{8}+q^{7}+q^{6}+q^{5}-q^{3}-2 q^{2}-q \\
& c_{12}^{\prime}=q^{11}+q^{10}+q^{9}+q^{8}+q^{7}+q^{6}+q^{5}-q^{3}-q^{2}+1
\end{aligned}
$$

2. $\mathrm{PGL}_{n}(k)$

The group k^{*} acts on $G L_{n}(k)$ by multiplication, and hence on the set of conjugacy classes in $G L_{n}(k)$. The conjugacy classes of $P G L_{n}(k)$ may be identified with the orbits of this action. If $\xi \in k^{*}$ is such that ξg is conjugate to g in $G L_{n}(k)$, then $\operatorname{det}(g)=\operatorname{det}(\xi g)=\xi^{n} \operatorname{det}(g)$, so that $\xi^{n}=1$.

If the conjugacy class of g in $\mathrm{GL}_{n}(k)$ is represented by a sequence $u=\left(u_{1}(t), u_{2}(t), \ldots\right)$ of polynomials as in $\S 1$, then the conjugacy class of ξg is represented by $\xi u=\left(u_{1}(\xi t), u_{2}(\xi t), \ldots\right)$.

For each d dividing n, let $\mu_{d}(k)$ denote the group of d th roots of unity in k. The order of $\mu_{d}(k)$ is

$$
h_{d}=(d, q-1)
$$

(highest common factor). A sequence $u=\left(u_{1}(t), u_{2}(t), \ldots\right)$ is fixed by $\boldsymbol{\mu}_{d}(k)$ if and only if $\xi u=u$ for all $\xi \in k^{*}$ such that $\xi^{d}=1$, that is to say if and only if $u_{i}(t) \in k\left[t^{d}\right]$ for all i. It follows that the number of conjugacy classes in $G L_{n}(k)$ fixed by $\mu_{d}(k)$ is $c_{n / d}$, and therefore the number for which the isotropy group is exactly $\mu_{d}(k)$ is

$$
\sum_{d^{\prime}} \mu\left(d^{\prime}\right) c_{n / d d^{\prime}}
$$

where μ is the Möbius function and the sum is over all divisors d^{\prime} of n / d. But if the isotropy group is $\mu_{d}(k)$, the number of elements in the orbit is $(q-1) / h_{d}$. Hence the total number of orbits, that is, the number of conjugacy classes in $\mathrm{PGL}_{n}(k)$, is

$$
\begin{align*}
\bar{c}_{n}=c\left(\text { PGL }_{n}(k)\right) & =\sum_{d} \frac{h_{d}}{q-1} \sum_{d^{\prime}} \mu\left(d^{\prime}\right) c_{n / d d^{\prime}} \tag{2.1}\\
& =\sum_{d, d^{\prime}}, h_{d^{\prime}} \mu\left(d^{\prime}\right) c_{n / d d^{\prime}}^{\prime},
\end{align*}
$$

where the sum is over all pairs of positive integers d, d^{\prime} such that $d d^{\prime}$ divides n.

An alternative formula for \bar{c}_{n} is

$$
\begin{equation*}
\bar{c}_{n}=\sum_{d} \phi(d) c_{n / d}^{\prime} \tag{2.2}
\end{equation*}
$$

where ϕ is Euler's function and the sum is over the divisors d of $(q-1, n)=h_{n}$.

This is a consequence of the following lemma. For each positive integer k and positive integer n we define

$$
\begin{equation*}
\phi_{r}(n)=n^{r} \prod_{p \mid n}\left(1-p^{-r}\right) \tag{2.3}
\end{equation*}
$$

where the product on the right is over the prime factors of $n ; \phi_{r}(n)$
is the number of elements of order n in the abelian group $(Z / n Z)^{r}$. When $r=1, \phi_{1}=\phi$ is Euler's function; when $r \geq 2, \phi_{r}$ is Jordan's generalization of Euler's function.
(2.4) Let N be a positive integer. Then

$$
\begin{array}{rlrl}
\sum_{d T_{n}}(N, d)^{r} \mu(n / d) & =\phi_{r}(n) & \text { if } n \mid N \\
& =0 & & \text { otherwise. }
\end{array}
$$

Proof. The function $d \rightarrow(N, d)^{r}$ is multiplicative, that is, $\left(N, d d^{\prime}\right)^{r}=(N, d)^{r}\left(N, d^{\prime}\right)^{r}$ if $\left(d, d^{\prime}\right)=1$. Hence if $n=\prod_{i} p_{i}^{v_{i}}$ is the prime factorization of n we have

$$
\sum_{d \prod_{n}}(N, d)^{r} \mu(n / d)=\prod_{i}\left(\left(N, p_{i}^{v_{i}}\right)^{r}-\left(N, p_{i}^{v_{i}-1}\right)^{r}\right)
$$

If n does not divide N, at least one of the factors on the right is zero. If n divides N, the product on the right is just $\phi_{r}(n)$. //

If we take $r=1$ and $N=q-1$ in (2.4), we have

$$
\begin{array}{rlrl}
\sum_{d T_{n}} h_{d} u(n / d) & =\phi(n) & \text { if } n \mid q-1 \\
& =0 & & \text { otherwise }
\end{array}
$$

Substitution of this result in (2.1) gives (2.2).
From (2.2), the generating function for the numbers \bar{c}_{n} is (with $\bar{c}_{0}=1$)

$$
\begin{equation*}
\bar{C}(t)=\sum_{n=0}^{\infty} \bar{c}_{n} t^{n}=\frac{1}{q-1} \sum_{d \mid q-1} \phi(d) C\left(t^{d}\right) \tag{2.5}
\end{equation*}
$$

where $C(t)$ is the generating function (1.13).
In Table 3 we list the values of \bar{C}_{n} for $1 \leq n \leq 10$. They are easily computed from (2.1) and Table 2.

TABLE 3

$$
\begin{aligned}
& \bar{c}_{1}=1 \\
& \bar{c}_{2}=q+h_{2} \\
& \bar{c}_{3}=q^{2}+q+h_{3}-1 \\
& \bar{c}_{4}=q^{3}+q^{2}+h_{2} q+h_{4}-1 \\
& \bar{c}_{5}=q^{4}+q^{3}+q^{2}+h_{5}-2 \\
& \bar{c}_{6}=q^{5}+q^{4}+q^{3}+h_{2} q^{2}+\left(h_{2}+h_{3}-2\right) q+h_{6}-h_{2} \\
& \bar{c}_{7}=q^{6}+q^{5}+q^{4}+q^{3}-q+h_{7}-2 \\
& \bar{c}_{8}=q^{7}+q^{6}+q^{5}+q^{4}+h_{2} q^{3}+\left(h_{2}-1\right) q^{2}+\left(h_{4}-2\right) q+h_{8}-h_{2} \\
& \bar{c}_{9}=q^{8}+q^{7}+q^{6}+q^{5}+q^{4}+\left(h_{3}-2\right)\left(q^{2}+q\right)+h_{9}-h_{3} \\
& \bar{c}_{10}=q^{9}+q^{8}+q^{7}+q^{6}+q^{5}+h_{2} q^{4}+\left(h_{2}-1\right) q^{3}+\left(h_{2}-2\right) q^{2} \\
&
\end{aligned}
$$

3. $s 1_{n}(k)$

For each partition $v=\left(\nu_{1}, \ldots, \nu_{r}\right)$ of n, let h_{ν} denote the highest common factor of $q-1$ and $v_{1}, v_{2}, \ldots, v_{r}$.
(3.1) The number of $\mathrm{GL}_{n}(k)$-conjugacy classes of type v contained in $S_{n}(k)$ is $h_{\nu} c_{v}^{\prime}=h_{\nu} c_{v} /(q-1)$.

Proof. Consider a conjugacy class c of type v represented as in $\S 1$ by a sequence of polynomials $u=\left(u_{1}(t), u_{2}(t), \ldots\right)$, where $u_{i}=a_{i} t^{n_{i}}+\ldots+1\left(a_{i} \in k^{*}, n_{i}=m_{i}(v)\right)$. From (1.7), the class c is contained in $\mathrm{SL}_{n}(k)$ (that is, its elements have determinant I) if and only if $\prod_{i} a_{i}^{i}=(-1)^{n}$.

Let S be the set of positive integers i such that $n_{i}>0$, so
that $s=|S|$ is the number of different parts of v. Consider the homomorphism $\phi:\left(k^{*}\right)^{s} \rightarrow k^{*}$ defined by

$$
\left(a_{i}\right)_{i \in S} \rightarrow(-1)^{n} \prod a_{i}^{i}
$$

If C and K are the cokernel and kernel of ϕ, the exact sequence

$$
1 \rightarrow K \rightarrow\left(k^{*}\right)^{s} \rightarrow k^{*} \rightarrow C \rightarrow 1
$$

shows that $|K|=(q-1)^{s-1}|C|$. Also C is the quotient of k^{*} by the subgroup generated by the i th powers for all $i \in S$, that is to say by the v_{j} th powers $(1 \leq j \leq r)$. Hence C is a cyclic group of order h_{ν}, and so $|K|=(q-1)^{s-1} h_{\nu}$. It follows that the number of $G l_{n}(k)-$ conjugacy classes of type v contained in $\operatorname{SL}_{n}(k)$ is

$$
(q-1)^{s-1} h_{v} \prod_{i \in S} q^{n_{i}-1}=h_{v} c_{v} /(q-1)
$$

Next we need to know how many $\mathrm{SL}_{n}(k)$-conjugacy classes are contained in a $\mathrm{GL}_{n}(k)$-class. For this purpose we shall use the following lemma:
(3.2) Let G, H be finite groups, $\delta: G \rightarrow H$ a surjective homomorphism, K the kernel of δ. Let X be a set on which G acts. Then for each $x \in X$, the G-orbit of x in X splits up into

$$
n_{x}=\left|\operatorname{Coker}\left(\delta \mid G_{x}\right)\right|
$$

K-orbits, where G_{x} is the subgroup of G which fixes x.
Proof. Since K is a normal subgroup of G, the K-orbits contained in $G . x$ are permuted transitively by G, and therefore the number of them is

$$
n_{x}=\frac{|G \cdot x|}{|K . x|}=\frac{\left|G / G_{x}\right|}{\mid K / K} x_{x}\left|=\frac{|G / K|}{\left|G_{x} / K_{x}\right|}=\frac{|H|}{\left|\delta\left(G_{x}\right)\right|}=\left|\operatorname{Coker}\left(\delta \mid G_{x}\right)\right|,\right.
$$

since $K_{x}=K \cap G_{x}$ is the kernel of $\delta \mid G_{x}$. //
We shall apply (3.2) with $G=\mathrm{GL}_{n}(k), H=k^{*}$ and δ the determinant homomorphism (so that $K=\mathrm{SL}_{n}(k)$) and $X=\mathrm{SL}_{n}(k)$ with G
acting by inner automorphisms.
(3.3) Let $g \in \mathrm{SL}_{n}(k)$ and let $Z(g)$ be the centralizer of g in $\mathrm{GL}_{n}(k)$. If $v=\left(v_{1}, \ldots, v_{p}\right)$ is the type of g, then $\operatorname{det}(2(g))$ is the subgroup P_{v} of k^{*} generated by the v_{1} th, ..., v_{r} th powers.

$$
\text { Proof. As in } \S l, \text { let } \bar{V}=\bar{V}_{g} \text { be the } \bar{k}[t] \text {-module defined by } g \text {. We }
$$ have

$$
\bar{V}=\underset{x \in M}{\oplus} \bar{V}(x)
$$

where

$$
\begin{equation*}
\bar{V}(x) \cong \bigoplus_{i \geq 1} \bar{k}[t] /(t-x)^{\mu_{i}(x)} \tag{1}
\end{equation*}
$$

is the characteristic submodule of \bar{V} consisting of the elements of \bar{V} killed by some power of $t-x$.

If $h \in Z(g)$, each submodule $\bar{V}(x)$ is stable under h and therefore decomposes relative to the action of h : say

$$
\begin{equation*}
\bar{V}(x)=\underset{y \in M}{\oplus} \bar{V}(x, y) \tag{2}
\end{equation*}
$$

where $\bar{V}(x, y)$ is the subspace of elements of $\bar{V}(x)$ killed by some power of $h-y$, and is a submodule of $\bar{V}(x)$ because h is a module automorphism of \bar{V}. Let $\pi(x, y)$ be the type of $\bar{V}(x, y)$, so that

$$
\begin{equation*}
\bar{V}(x, y) \cong \bigoplus_{i \geq 1} \bar{k}[t] /(t-x)^{\pi_{i}(x, y)} \tag{3}
\end{equation*}
$$

From (1), (2) and (3) it follows that

$$
\mu(x)=\bigcup_{y \in M} \pi(x, y)
$$

and therefore
(4)

$$
\nu=\bigcup_{x \in M} \mu(x)=\bigcup_{x, y} \pi(x, y)
$$

On the other hand, the determinant of $h \mid \bar{V}(x, y)$ is

$$
y^{\operatorname{dim} \bar{V}(x, y)}=y^{|\pi(x, y)|}
$$

and therefore

$$
\begin{equation*}
\operatorname{det}(h)=\prod_{x, y} y^{|\pi(x, y)|} \tag{5}
\end{equation*}
$$

From (4) and (5) it is clear that $\operatorname{det}(h) \in P_{v}$, for all $h \in Z(g)$.
To show that $\operatorname{det}(Z(g))$ is the whole of P_{v}, it is enough to show that we can choose $h \in Z(g)$ so that $\operatorname{det}(h)=\xi^{\nu}$ for any $\xi \in k^{*}$ and any $j \geq 1$. Suppose that $\nu_{j}=\lambda_{i}(f)$ in the notation of §1. Then V_{g} has a direct summand isomorphic to $k[t] /(f)^{\nu_{j}}$, and it is enough to produce an automorphism of this cyclic module with determinant $\xi^{v j}$. In the field $k_{f}=k[t] /(f)$, choose an element ζ whose norm (from k_{f} to k) is ξ; if ζ is the image in k_{f} of a polynomial $z(t) \in k[t]$, then multiplication by $z(t)$ will induce an automorphism of $k[t] /(f)^{v_{j}}$ with the required determinant. //

From (3.2) and (3.3) it follows that each $G L_{n}(k)$-conjugacy class of type v contained in $\mathrm{SL}_{n}(k)$ is the union of

$$
\left(k^{*}: P_{v}\right)=h_{v}
$$

$S L_{n}(k)$-conjugacy classes. Hence from (3.1) the total number of conjugacy classes in $\mathrm{SL}_{n}(k)$ is

$$
\begin{equation*}
\tilde{c}_{n}=c\left(\mathrm{SL}_{n}(k)\right)=\sum_{|v|_{=n}} h_{v}^{2} c_{v}^{\prime} . \tag{3.4}
\end{equation*}
$$

Now it is clear from (1.1l) that if k divides each part v_{i} of v we have $c_{v}^{\prime}=c_{v / k}^{\prime}$, where v / k is the partition $\left(v_{1} / k, v_{2} / k, \ldots\right)$. Hence if we define

$$
c_{n}^{\prime \prime}=\sum_{v} c_{v}^{\prime}
$$

summed over all partitions v of n such that the highest common factor
of v_{1}, v_{2}, \ldots is 1 , we have

$$
c_{n}^{\prime}=\sum_{\mid v T_{=n}} c_{v}^{\prime}=\sum_{d T_{n}} c_{d}^{\prime \prime},
$$

and therefore by Möbius inversion

$$
c_{n}^{\prime \prime}=\sum_{d T n} \mu(d) c_{n / d}^{\prime}
$$

Now in (3.4) the possible values of h_{v} are h_{d}, for d dividing n, and hence (3.4) takes the form

$$
\tilde{c}_{n}=\sum_{d\lceil n} h_{d c_{n / d}^{\prime \prime}}^{2}
$$

that is,

$$
\begin{equation*}
\tilde{c}_{n}=\sum_{d, d^{\prime}} h_{d^{\prime}}^{2} \mu\left(d^{\prime}\right) c_{n / d d^{\prime}}^{\prime} . \tag{3.5}
\end{equation*}
$$

Comparison of (3.5) with (2.1) shows that \tilde{c}_{n} is derived from \bar{c}_{n} by replacing each coefficient h_{d} by h_{d}^{2}. Hence \tilde{c}_{n} for $1 \leq n \leq 10$ can be read off from Table 3.

From (3.5) and (2.4) we deduce an alternative formula for \tilde{c}_{n} :

$$
\begin{equation*}
c_{n}=\sum_{d} \phi_{2}(d) c_{n / d}^{\prime} \tag{3.6}
\end{equation*}
$$

summed over all divisors d of $(q-1, n)=h_{n}$. Hence the generating function for the \tilde{c}_{n} (with $\tilde{c}_{0}=1$) is

$$
\begin{equation*}
\tilde{c}(t)=\sum_{n=0}^{\infty} \tilde{c}_{n} t^{n}=\frac{1}{q-1} \sum_{\left.d\right|_{q-1}} \phi_{2}(d) C\left(t^{d}\right)-q+2 \tag{3.7}
\end{equation*}
$$

(since $\left.\sum_{d \mid q-1} \phi_{2}(d)=(q-1)^{2}\right)$.
REMARKS. 1. From (3.1) it follows that the number of GL n (k)-classes contained in $\mathrm{SL}_{n}(k)$ is

$$
\sum_{|v|=n} h_{v} c_{v}^{\prime}
$$

which by the same argument that led from (3.4) to (3.5) is equal to

$$
\sum_{d^{\prime}, d^{\prime}} h_{d^{\prime}} \mu\left(d^{\prime}\right) c_{n / d d^{\prime}}^{\prime}
$$

and hence is equal to \bar{c}_{n} : in other words, the number of $G L_{n}(k)$-classes contained in $S L_{n}(k)$ is equal to the number of conjugacy classes in $\mathrm{PGL}_{n}(k)$. This fact was first observed by Lehrer [2].
2. Instead of counting conjugacy classes we could instead have counted the irreducible representations of $\mathrm{SL}_{n}(k)$, using the parametrization of [3], §5. The details are rather similar to those of this section and lead (fortunately) to the same result (3.5) or (3.6).

4. Other groups isogenous to $S L_{n}$

Let e, f be positive integers such that $e f=n$. Let A_{e} be the kernel of the homomorphism $\delta: \mathrm{GL}_{n} \times \mathrm{GL}_{1} \rightarrow \mathrm{GL}_{1}$ defined by

$$
\delta(g, x)=x^{-e} \operatorname{det}(g)
$$

and let B_{e} be the image of the homomorphism $\varepsilon: G L_{1} \rightarrow G L_{n} \times \mathrm{GL}_{1}$ defined by

$$
\varepsilon(x)=\left(x l_{n}, x^{f}\right)
$$

Then B_{e} is isomorphic to GL_{1}, and is a closed normal subgroup of A_{e}. Let $G_{e}=A_{e} / B_{e}$.

The mapping $g \rightarrow(g, 1)$ embeds SL_{n} in A_{e}, hence defines a homomorphism $\mathrm{SL}_{n} \rightarrow A_{e} \rightarrow G_{e}$, which is easily seen to be surjective, with kernel $\mu_{f}{ }^{1_{n}}$, where μ_{f} is the group of f th roots of unity. Hence G_{e} is a connected algebraic group isogenous to SL_{n}. In particular, $G_{1}=\mathrm{PGL}_{n}$ and $G_{n}=\mathrm{SL}_{n}$.

Now let k be a finite field, and consider the group $A_{e}(k)$ of k-rational points of the algebraic group A_{e}. We define the type of an element (g, x) in $G L_{n}(k) \times k^{*}$ (or of its conjugacy class) to be the type of g (hence a partition of n).
(4.1) For each partition $v=\left(v_{1}, \ldots, v_{r}\right)$ of n, the number of conjugacy classes of type v in $A_{e}(k)$ is

$$
h_{e, v}^{2} v_{v}
$$

where $h_{e, v}$ is the highest common factor of $q-1, e$, and ν_{1}, \ldots, ν_{r}.
Proof. The same argument as in (3.1) shows that the number of $\mathrm{GL}_{n}(k) \times k^{*}$-conjugacy classes of type v contained in $A_{e}(k)$ is $h_{e, v} v_{v}$. Next, by applying the lemma (3.2) to the homomorphism $\delta: G L_{n}(k) \times k^{*} \rightarrow k^{*}$, we see that the $G L_{n}(k) \times k^{*}$-conjugacy class of an element $(g, e) \in A_{e}(k)$ of type v splits up into $\left|\operatorname{Coker}\left(\delta \mid \cdot Z(g) \times k^{*}\right)\right|$ $A_{e}(k)$-conjugacy classes. By (3.3), the group $\delta\left(Z(g) \times k^{*}\right)$ is the subgroup $P_{e, v}$ of k^{*} generated by the ν_{1} th, ..., v_{r} th and e th powers, and therefore

$$
\left|\operatorname{Coker}\left(\delta \mid z(g) \times k^{*}\right)\right|=\left(k^{*}: P_{e, v}\right)=h_{e, v} .
$$

We have now to pass from $A_{e}(k)$ to the group $G_{e}(k)$. Since B_{e} is connected, it follows from Lang's theorem ([5], §10) that $G_{e}(k) \cong A_{e}(k) / B_{e}(k) \cong A_{e}(k) / k^{*}$. The conjugacy classes of $G_{e}(k)$ may therefore be identified with the orbits of k^{*} acting on the set of conjugacy classes of $A_{e}(k)$, the action of k^{*} on $A_{e}(k)$ being given by $\xi .(g, x)=\left(\xi g, \xi^{f} x\right)$.

If $\xi \in k^{*}$ fixes the class of (g, x) in $A_{e}(k)$, we must have $x=\xi^{f_{x}}$, so that $\xi \in \mu_{f}(k)$. As in $\S 2$, if the conjugacy class of g in $G L_{n}(k)$ is represented by a sequence $u=\left(u_{1}(t), u_{2}(t), \ldots\right)$ of polynomials $u_{i} \in k[t]$, then the conjugacy class of ξg is represented by
$\xi u=\left(u_{1}(\xi t), u_{2}(\xi t), \ldots\right) ;$ also $\operatorname{deg} u_{i}=m_{i}(v)$ where v is the type of g.

Suppose that $\mu_{d}(k)$, where d is a divisor of f, fixes the conjugacy class of (g, x) in $A_{e}(k)$. Then each u_{i} must be a polynomial in t^{d}, and therefore d divides each $m_{i}(v)$. Let $d \backslash v$ denote the partition of n / d such that $m_{i}(d \backslash v)=m_{i}(v) / d$. Since v and $d \backslash v$ have the same parts (with different multiplicities), we have $h_{e, \nu}=h_{e, d \backslash \nu}$. Hence the number of $A_{e}(k)$-conjugacy classes of type v for which the isotropy group is exactly $\boldsymbol{\mu}_{d}(k)$ is, by (4.1),

$$
h_{e, v}^{2} \sum_{d^{\prime}} \mu\left(d^{\prime}\right) c d d^{\prime} \backslash v
$$

summed over all divisors d^{\prime} of f / d such that $d d^{\prime}$ divides each $m_{i}(v)$ (so that the partition $d d^{\prime} \backslash v$ is defined). Since $\left|\mu_{d}(k)\right|=h_{d}$, there are $(q-1) / h_{d}$ elements in each orbit, and hence the total number of conjugacy classes in the group $G_{e}(k)$ is

$$
\begin{equation*}
c\left(G_{e}(k)\right)=\sum_{\mid \nu T=n} h_{e, v}^{2} \sum_{d, d^{\prime}} h_{d^{\mu}}\left(d^{\prime}\right) c_{d d^{\prime} \backslash v}^{\prime} \tag{4.2}
\end{equation*}
$$

in which the first sum is over all partitions v of n, and the second is over all pairs of positive integers d, d^{\prime} such that $d d^{\prime}$ divides f and each $m_{i}(v)$. By (2.4), the expression (4.2) is equal to

$$
\begin{equation*}
\left|v \sum_{=n} h_{e, v}^{2} \sum_{d_{1}} \phi\left(d_{1}\right) c_{d_{1}}^{\prime}\right| v \tag{4.3}
\end{equation*}
$$

where d_{1} runs through the common divisors of $f, q-1$ and the $m_{i}(v)$. Since $h_{e, v}=h_{e, d_{1}} l_{\nu},(4.3)$ can be rewritten in the form

$$
\sum_{d_{1}} \phi\left(d_{1}\right) \sum_{v} h_{e, v^{c}}^{2} v_{v}^{\prime}
$$

where d_{l} runs through the divisors of h_{f} and v through the partitions
of n / d_{1}. As in $\S 3$, the inner sum is equal to

$$
\sum_{d_{2}} \phi_{2}\left(d_{2}\right) c_{n / d_{1}}^{\prime} d_{2}
$$

where d_{2} runs through the divisors of h_{e}. Hence
(4.4) The number of conjugacy classes in the group $G_{e}(k)$ is

$$
c\left(G_{e}(k)\right)=\sum_{d_{1}, d_{2}} \phi\left(d_{1}\right) \phi_{2}\left(d_{2}\right) c_{n / d_{1} d_{2}}
$$

surmed over pairs of positive integers d_{1}, d_{2} such that d_{1} divides h_{f} and d_{2} divides h_{e}.

REMARKS. 1. When $f=1$ and $e=n$ (respectively $e=1$ and $f=n$) the group $G_{e}(k)$ is $\operatorname{SL}_{n}(k)$ (respectively $\operatorname{PGL}_{n}(k)$), and the expression (4.4) reduces to (3.6) (respectively (2.2)).
2. From (4.4) and (2.4) we deduce an alternative formula for $c\left(G_{e}(k)\right):$
summed over all quadruples $a_{1}, a_{2}, b_{1}, b_{2}$ of positive integers such that $a_{1} a_{2} b_{1} b_{2}$ divides n, where $h_{b_{1}, f}$ (respectively $h_{b_{2}, e}$) is the highest common factor of b_{1}, f and $q-1$ (respectively b_{2}, e and $q-1$). When $e=n$ and $f=1$ (respectively $e=1$ and $f=n$), the formula (4.5) reduces to (3.5) (respectively (2.1)).
3. The group $\mathrm{GL}_{n}(k)$ acts by inner automorphisms on $A_{e}(k)$: $h .(g, x)=\left(h g h^{-1}, x\right)$. This action fixes $B_{e}(k)$ pointwise, and hence defines an action of $G L_{n}(k)$ on the group $G_{e}(k)$. The method used to prove (4.4) shows that the number of $\mathrm{GL}_{n}(k)$-orbits in $G_{e}(k)$ is

$$
\begin{equation*}
\sum_{d_{1}, d_{2}} \phi\left(d_{1}\right) \phi\left(d_{2}\right) c_{n / d_{1} d_{2}} \tag{4.6}
\end{equation*}
$$

summed over pairs of positive integers d_{1}, d_{2} such that d_{1} divides h_{f} and d_{2} divides h_{e}. Since (4.6) is unaltered by interchange of e and f, it follows that the number of $G L_{n}(k)$-orbits is the same in $G_{e}(k)$ and $G_{f}(k)$. This result generalizes Remark 1 of $\S 3$.

For a related result, see Lehrer [2].

5. $\mathrm{PSL}_{n}(k)$

Let $\mathrm{PSL}_{n}(k)$ denote the quotient of $\mathrm{SL}_{n}(k)$ by its centre $\mu_{n}(k) .1_{n}$. The conjugacy classes of $\mathrm{PSL}_{n}(k)$ may be identified with the orbits of $\mu_{n}(k)$ acting on the set of conjugacy classes of $\mathrm{SL}_{n}(k)$. From $\S 3$, the number of conjugacy classes of type v in $\mathrm{SL}_{n}(k)$ is $h_{v}^{2} c_{v}^{\prime}$, for each partition v of n. It follows as in $\S 4$ that the number of $\mathrm{SL}_{n}(k)$ classes for which the isotropy group is $\mu_{d}(k)$, where d is a divisor of n, is

$$
h_{v}^{2} \sum_{d^{\prime}} \mu\left(d^{\prime}\right) c_{d d^{\prime} \backslash v}^{\prime}
$$

summed over all divisors d^{\prime} of n / d such that $d d^{\prime}$ divides each $m_{i}(v)$. The number of elements in each orbit is $\left(\mu_{n}(k): \mu_{d}(k)\right)=h_{n} / h_{d}$, and hence we obtain the total number of conjugacy classes in $\mathrm{PSL}_{n}(k)$:

$$
\hat{c}_{n} \doteq c\left(\operatorname{PSL}_{n}(k)\right)=\frac{1}{h_{n}} \sum_{|\nu|=n} h_{v}^{2} \sum_{d, d^{\prime}} h_{d^{\prime}} \mu\left(d^{\prime}\right) c_{d d^{\prime} \backslash v}^{\prime}
$$

in which the first sum is over all partitions v of n, and the second is over all pairs of positive integers d, d^{\prime} such that $d d^{\prime}$ divides n and each $m_{i}(v)$. This formula can be turned around in the same way as in $\S 4$ to give

$$
\begin{equation*}
\hat{c}_{n}=\frac{1}{h_{n}} \sum_{d_{1}, d_{2}} \phi\left(d_{1}\right) \phi_{2}\left(d_{2}\right) c_{n / d_{1}}^{\prime} d_{2} \tag{5.1}
\end{equation*}
$$

summed over all pairs of divisors d_{1}, d_{2} of $q-1$ such that $d_{1} d_{2}$ divides n; and equivalently

$$
\begin{equation*}
\hat{c}_{n}=\frac{1}{h_{n}} \sum_{a_{1}, a_{2}, b_{1}, b_{2}} \mu\left(a_{1}\right) \mu\left(a_{2}\right) h_{b_{1}} h_{b_{2}}^{2} c_{n / a_{1} a_{2} b_{1} b_{2}}^{\prime} \tag{5.2}
\end{equation*}
$$

summed over all quadruples $a_{1}, a_{2}, b_{1}, b_{2}$ of positive integers such that $a_{1} a_{2} b_{1} b_{2}$ divides n.

In Table 4 below we list the values of \hat{c}_{n} for $1 \leq n \leq 8$; these are straightforward to calculate from (5.2) and Table 2.

TABLE 4

$$
\begin{aligned}
& \hat{c}_{1}=1 \\
& \hat{c}_{2}=\frac{1}{h_{2}}\left(q+4 h_{2}-3\right) \\
& \hat{c}_{3}=\frac{1}{h_{3}}\left(q^{2}+q+5 h_{3}-5\right) \\
& \hat{c}_{4}=\frac{1}{h_{4}}\left(q^{3}+q^{2}+q\left(4 h_{2}-3\right)+h_{4}^{2}+h_{4}+3 h_{2}-5\right) \\
& \hat{c}_{5}=\frac{1}{h_{5}}\left(q^{4}+q^{3}+q^{2}+7 h_{5}-8\right) \\
& \hat{c}_{6}=\frac{1}{h_{2} h_{3}}\left(q^{5}+q^{4}+q^{3}+q^{2}\left(4 h_{2}-3\right)+q\left(4 h_{2}+5 h_{3}-9\right)+5\left(4 h_{2}-3\right)\left(h_{3}-1\right)\right) \\
& \hat{c}_{7}=\frac{1}{h_{7}}\left(q^{6}+q^{5}+q^{4}+q^{3}-q+9 h_{7}-10\right) \\
& \hat{c}_{8}=\frac{1}{h_{8}}\left[q^{7}+q^{6}+q^{5}+q^{4}+q^{3}\left(4 h_{2}-3\right)+q^{2}\left(4 h_{2}-4\right)+q\left(h_{4}^{2}+h_{4}+3 h_{2}-6\right)\right. \\
& \left.+h_{2} h_{4}^{2}+h_{8}^{2}-h_{4}^{2}+3 h_{2} h_{4}+h_{8}-3 h_{4}-11 h_{2}+9\right) .
\end{aligned}
$$

6. Unitary groups

Let k_{2} be the unique quadratic extension of k contained in \bar{k}. The unitary group $U_{n}\left(k_{2}\right)$ is the subgroup of all $g \in \mathrm{GL}_{n}\left(k_{2}\right)$ such that $F g=t_{g}^{-1}$, where $\quad(F g)_{i j}=g_{i j}^{q}$.
(6.1) Every conjugacy class of $G=\mathrm{GL}_{n}(k)$ which intersects $U=U_{n}\left(k_{2}\right)$ does so in a single conjugacy class of U.

Proof. Let σ be the endomorphism of G defined by $g^{\sigma}={ }^{t}(F g)^{-1}$, so that U is the group of fixed points of σ. Suppose that $u \in U$ and $g \in G$ are such that $g u g^{-1} \in U$; we have to show that u and $g u g^{-1}$ are conjugate in U.

Since $g u g^{-1} \in U$, we have $g u g^{-1}=g^{\sigma} u g^{-\sigma}$, so that $g^{-1} g^{\sigma} \in G_{u}$, the centralizer of u in G. Now centralizers in G are connected ([4], III, 3.22), and $\sigma\left(G_{u}\right) \subset G_{u}$ because $u=u^{\sigma}$; since the kernel of σ is finite it follows that σG_{u} is surjective, and hence by Lang's theorem ([5], §10) the mapping $h \rightarrow h^{-1} h^{\sigma}$ from $G u$ to $G u$ is surjective. Hence we have $g^{-1} g^{\sigma}=h^{-1} h^{\sigma}$ for some $h \in G_{u}$, which shows that $v=g^{-1} \in U$ and therefore $g u g^{-1}=g h^{-1} u h g^{-1}=v u v^{-1}$. Hence u and $g u g^{-1}$ are conjugate in U. //

In particular, if two elements of $U_{n}\left(k_{2}\right)$ are conjugate in $\mathrm{GL}_{n}\left(k_{2}\right)$, they are conjugate in $U_{n}\left(k_{2}\right)$. It follows that the conjugacy classes of $U_{n}\left(k_{2}\right)$ are parametrized bijectively by the partition-valued functions μ on $M=\bar{k}^{*}$ which satisfy (1.3) and $\mu\left(x^{-q}\right)=\mu(x)$ for all $x \in M$ in place of (1.4). Equivalently, as in §l, each conjugacy class of $U_{n}\left(k_{2}\right)$ may be represented by a sequence of polynomials $u=\left(u_{1}(t), u_{2}(t), \ldots\right)$ with coefficients in k_{2} which satisfy (1.9) and are such that $u_{i}(0)=1$ and the set of roots of each' u_{i} is stable under $x \rightarrow x^{-q}$ (in place of (1.8)). We define the type v of a conjugacy class in $U_{n}\left(k_{2}\right)$ as in $\S 1$ to be the partition $\left(1^{n_{1}}{ }^{n_{2}} \ldots\right)$ of n, where $n_{i}=\operatorname{deg} u_{i}$. It is easily seen that the number of possibilities for u_{i} of degree n_{i} is $q^{n_{i}}+q^{n_{i}^{-1}}$ if $n_{i}>0$ (and 1 if $n_{i}=0$), so that the number of conjugacy classes of type v in $U_{n}\left(k_{2}\right)$ is

$$
\begin{equation*}
\gamma_{v}=\prod_{n_{i}>0}\left(q^{\left.n_{i}+q^{n_{i}-1}\right)}\right. \tag{6.2}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\gamma_{v}=q^{z(v)-p(v)}(q+1)^{p(v)} \tag{6.2'}
\end{equation*}
$$

where $Z(v)$ is the number of parts of v and $p(v)$ is the number of unequal parts. Hence the total number of conjugacy classes in $U_{n}\left(k_{2}\right)$ is

$$
\begin{equation*}
\gamma_{n}=c\left(U_{n}\left(k_{2}\right)\right)=\sum_{|v|_{=n}} \gamma_{v} . \tag{6.3}
\end{equation*}
$$

Since $q^{n}+q^{n-1}$ is the coefficient of t^{n} in $(1+t) /(1-q t)^{-1}$, if $n>0$, it follows from (6.2) and (6.3) that the generating function for the numbers γ_{n} is

$$
\begin{equation*}
\Gamma(t)=\sum_{n=0}^{\infty} \gamma_{n} t^{n}=\prod_{r=1}^{\infty} \frac{1+t^{r}}{1-q t^{r}} . \tag{6.4}
\end{equation*}
$$

This formula is due to Wall [6].
Each $\gamma_{n}(n \geq 1)$ is a polynomial in q, divisible by $(q+1)$, as one sees for example by putting $q=-1$ in (6.4). Let $\gamma_{n}^{\prime}=\gamma_{n} /(q+1)$, so that from (6.2') and (6.3) we have

$$
\begin{equation*}
\gamma_{n}^{\prime}=\sum_{\mid \nu T=n} q^{2(\nu)-p(\nu)}(q+1)^{p(\nu)-1} . \tag{6.5}
\end{equation*}
$$

In Table 5 (.p. 46) we list the polynomials γ_{n}^{\prime} for $1 \leq n \leq 10$. They are easily calculated from the formula (6.5).

The formulas of §§2-5 all have their analogues for the unitary groups. Since the proofs are the same, we shall merely state the results.

For any positive integer d, let η_{d} denote the highest common factor of d and $q+1$.
(i) $\mathrm{PU}_{n}\left(k_{2}\right)$. Corresponding to (2.1) we have

$$
\begin{equation*}
\bar{\gamma}_{n}=c\left(\mathrm{PU}_{n}\left(k_{2}\right)\right)=\sum_{d, d^{\prime}} n_{d^{\prime}}{ }^{\left(d^{\prime}\right) \gamma_{n / d d^{\prime}}^{\prime}} \tag{6.6}
\end{equation*}
$$

summed over all pairs of positive integers d, d^{\prime} such that $d d^{\prime}$ divides n, or alternatively

$$
\begin{equation*}
\bar{\gamma}_{n}=\sum_{d} \phi(d) \gamma_{n / d}^{\prime} \tag{6.7}
\end{equation*}
$$

summed over the divisors d of $\eta_{n}=(n, q+1)$. Hence the generating function for the $\bar{\gamma}_{n}$ is (with $\bar{\gamma}_{0}=1$)

$$
\begin{equation*}
\bar{\Gamma}(t)=\sum_{n=0}^{\infty} \bar{\gamma}_{n} t^{n}=\frac{1}{q^{+1}} \sum_{d \mid q+1} \phi(d) \Gamma\left(t^{d}\right) \tag{6.8}
\end{equation*}
$$

where $\Gamma(t)$ is the generating function (6.4).

TABLE 5

$$
\begin{aligned}
& r_{1}^{\prime}=1 \\
& r_{2}^{\prime}=q+1 \\
& \gamma_{3}^{\prime}=q^{2}+q+2 \\
& \gamma_{4}^{\prime}=q^{3}+q^{2}+3 q+2 \\
& \gamma_{5}^{\prime}=q^{4}+q^{3}+3 q^{2}+4 q+3 \\
& \gamma_{6}^{\prime}=q^{5}+q^{4}+3 q^{3}+5 q^{2}+6 q+4 \\
& \gamma_{7}^{\prime}=q^{6}+q^{5}+3 q^{4}+5 q^{3}+8 q^{2}+9 q+5 \\
& Y_{8}^{\prime}=q^{7}+q^{6}+3 q^{5}+5 q^{4}+9 q^{3}+12 q^{2}+13 q+6 \\
& \gamma_{9}^{\prime}=q^{8}+q^{7}+3 q^{6}+5 q^{5}+9 q^{4}+14 q^{3}+19 q^{2}+17 q+8 \\
& \gamma_{10}^{\prime}=q^{9}+q^{8}+3 q^{7}+5 q^{6}+9 q^{5}+15 q^{4}+22 q^{3}+27 q^{2}+23 q+10 \\
& (i i) \text { sU }\left(k_{2}\right) \cdot \text { In place of }(3.5) \text { and (3.6) we obtain }
\end{aligned}
$$

$$
\begin{equation*}
\tilde{\gamma}_{n}=c\left(\operatorname{SU}_{n}\left(k_{2}\right)\right)=\sum_{d, d^{\prime}} n_{d^{\prime}}^{2} \mu\left(d^{\prime}\right) \gamma_{n / d d^{\prime}}^{\prime} \tag{6.9}
\end{equation*}
$$

so that $\tilde{\gamma}_{n}$ is obtained from $\bar{\gamma}_{n}$ by replacing each η_{d} by η_{d}^{2}, and equivalently

$$
\begin{equation*}
\tilde{\gamma}_{n}=\sum_{d} \phi_{2}(d) \gamma_{n / d}^{\prime} \tag{6.10}
\end{equation*}
$$

summed over the divisors d of η_{n}. Consequently the generating function for the $\tilde{\mathrm{r}}_{n}$ is (with $\tilde{\gamma}_{0}=1$)

$$
\begin{equation*}
\tilde{\Gamma}(t)=\sum_{n=0}^{\infty} \tilde{\gamma}_{n} t^{n}=\frac{1}{q+1} \sum_{d \mid q+1} \phi_{2}(d) \Gamma\left(t^{d}\right)-q . \tag{6.11}
\end{equation*}
$$

(iii) Groups isogenous to SU_{n}. If Γ_{e} is the quotient of SU_{n} by its central subgroup isomorphic to μ_{f} (where $e f=n$ as in $\$ 4$) then in place of (4.4) we find

$$
\begin{equation*}
d\left(\Gamma_{e}\left(k_{2}\right)\right)=\sum_{d_{1}, d_{2}} \phi\left(d_{1}\right) \phi_{2}\left(d_{2}\right) \gamma_{n / d_{1} d_{2}}^{\prime} \tag{6.12}
\end{equation*}
$$

summed over pairs of positive integers d_{1}, d_{2} such that d_{1} divides η_{f} and d_{2} divides η_{e}.
(iv) $\operatorname{PSU}_{n}\left(k_{2}\right)$. This is the quotient of $\mathrm{SU}_{n}\left(k_{2}\right)$ by its centre, and in place of (5.1) the number of its conjugacy classes is

$$
\begin{equation*}
\tilde{\gamma}_{n}=c\left(\operatorname{PSU}_{n}\left(k_{2}\right)\right)=\frac{1}{\eta_{n}} \sum_{d_{1}, d_{2}} \phi\left(d_{1}\right) \phi_{2}\left(d_{2}\right) \gamma_{n / d_{1} d_{2}} \tag{6.13}
\end{equation*}
$$

summed over all pairs of divisors d_{1}, d_{2} of $q+1$ such that $d_{1} d_{2}$ divides n.

References

[1] Walter Feit and N.J. Fine, "Pairs of commuting matrices over a finite field", Duke Math. J. 27 (1960), 91-94.
[2] G.I. Lehrer, "Characters, classes, and duality in isogenous groups", J. Algebra 36 (1975), 278-286.
[3] I.G. Macdonald, "Zeta functions attached to finite general linear groups", Math. Ann. 249 (1980), 1-15.
[4] T.A. Springer and R. Steinberg, "Conjugacy classes", Seminar on algebraic groups and related finite groups, Princeton, 1968/69, 167-226 (Lecture Notes in Mathematics, 131. Springer-Verlag, Berlin, Heidelberg, New York, 1970).
[5] Robert Steinberg, Endomorphisms of linear algebraic groups (Memoirs of the American Mathematical Society, 80. American Mathematical Society, Providence, Rhode Island, 1968).
[6] G.E. Wall, "On the conjugacy classes in the unitary, symplectic and orthogonal groups", J. Austral. Math. Soc. 3 (1963), 1-62.
[7] G.E. Wall, "Conjugacy classes in projective and special linear groups", Bull. Austral. Math. Soc. 22 (1980), 339-364.

Department of Pure Mathematics,
Queen Mary College,
University of London,
Mile End Road,
London El4NS,
England.

