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Abstract

We introduce a class of stochastic processes in discrete time with finite state space by
means of a simple matrix product. We show that this class coincides with that of the
hidden Markov chains and provides a compact framework for it. We study a measure
obtained by a projection on the real line of the uniform measure on the Sierpinski gasket,
finding that the dimension of this measure fits with the Shannon entropy of an associated
hidden Markov chain.
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1. Introduction

We introduce a simple and versatile way to express the distribution of hidden Markov
chains that might be useful to address a longstanding open problem in fractal geometry: the
determination of the Hausdorff dimension of self-similar measures with a significant overlap
among its constituent cylinders. To make the ideas clearer, we choose the simplest case of
the vertical projection µ on the real line of the natural or uniform probability measure on the
Sierpinski gasket, i.e. that which gives equal weight to the three parts into which the triangles
split at each step of the construction (see Section 3). We show that the measure µ can be
understood in terms of a non-Markovian stationary and ergodic stochastic process in discrete
time associated with a certain pair of matrices. This process turns out to be a hidden Markov
chain and, in addition, every hidden Markov chain can be expressed in a similar way.

We devote Section 2 to introducing this framework for hidden Markov chains, and in Section 3
we show that the fractal dimension of the measure described above coincides with the Shannon
entropy of the associated process, which provides two convergent sequences of estimates of
the dimension of µ: one nonincreasing and the other nondecreasing. This allows us to obtain,
with arbitrary accuracy, the dimension of µ. In particular, we obtain dim µ = 0.988 765 871 4
(±0.5 × 10−10). See Section 3 for some results on this issue by Ngai [12].

2. A framework for hidden Markov chains

2.1. Definition and remarks

Let Z1, Z2, . . . ,Zn be N ×N dimensional and nonnegative matrices, and let Z = Z1 +Z2 +
· · ·+Zn. According to the Perron–Frobenius theorem (see [17, p. 16]) there exist a nonnegative
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and maximal eigenvalue λ for Z with nonnegative left and right eigenvectors, which we shall
call u and w�, respectively. In order to avoid trivial cases, we shall assume that no row of Z

is null. Then λ > 0, and u and w� are not null. By multiplying the Zis by λ−1 if necessary,
we may assume that λ = 1. Let

L+
w := {q ∈ R

N : qw� = 1, qi ≥ 0, 1 ≤ i ≤ N}.
Definition 1. We define the stochastic process V (q, Z1, Z2, . . . ,Zn, w

�) associated to the
matrices Z1, . . . ,Zn as described above, the right eigenvector w�, and to the row vector q ∈ L+

w

as the sequence {Vj : j = 1, 2, . . .} of random variables on J = {1, 2, . . . , n} with finite-
dimensional distributions Qk given by

Qk(i) = qZiw
�, i ∈ J k, k ∈ N, (1)

where Zi = Zi1 · · · Zik for i = (i1, . . . , ik).

The existence of the process can be easily checked, taking into account the fact that
(
∑n

j=1 Zj )w
� = Zw� = w� and qw� = 1. Nevertheless, we show in Subsection 2.2 that (1)

gives the finite-dimensional distributions of a hidden Markov chain.

Remark 1. Note that if q ∈ L+
w and α > 0 then α−1q ∈ L+

αw and V (α−1q, Z1, . . . ,Zn, αw�)

= V (q, Z1, . . . ,Zn, w
�).

If Z is irreducible then, according to the Perron–Frobenius theorem, λ = 1 is a simple
eigenvalue and u and w� are strictly positive. Thus, in this irreducible case, u and w� are
uniquely determined by the Zi matrices up to a constant, and we define

V (Z1, . . . ,Zn) := V (u, Z1, . . . , Zn, w
�),

taking u and w� with uw� = 1.

Remark 2. It is easy to see that we can assume, without loss of generality, that Z is also a
stochastic matrix.

Remark 3. Let (. . . , V−1, V0, V1, . . .) be the stationary extension of V (Z1, . . . , Zn) with
indices in Z. It is easy to check that the backward process (. . . , Y−1, Y0, Y1, . . .), given by
Yk = V−k for k ∈ Z, is the stationary extension to Z of V (Z�

1 , . . . ,Z�
n ).

2.2. Equivalence with hidden Markov chains

Let P be the transition matrix of a Markov chain X = {Xj : j = 1, 2, . . .} with state space
{1, . . . , N}. Let φ : {1, . . . , N} → {1, . . . , n}, n ≤ N , and let Y = {Yj : j = 1, 2, . . .} be the
hidden Markov chain given by Yj = φ(Xj ). We can write P = M1 + · · · + Mn, where each
Mi , 1 ≤ i ≤ n, is the N × N matrix with zero entries except for the rows corresponding to
indices in the subset of states φ−1(i), which coincide with those of P . It is easy to check that,
if q is the probability vector with the distribution of X1, we have

qMiw
� = P{(Y1, . . . , Yk) = i} (2)

for i ∈ {1, . . . , n}k, k ∈ N, where w� = (1, . . . , 1)�. Hence, V (q, M1, . . . ,Mn, w
�) is

distributed as Y .
Thus, the class of hidden Markov chains is included in the class of processes V (q, Z1, . . . ,

Zn, w
�). Next we show that both classes coincide.

https://doi.org/10.1239/jap/1222441819 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1222441819


632 V. RUIZ

Let V = V (q, Z1, . . . ,Zn, w
�). We assume that Z is stochastic and that w�=(1, . . . , 1)�,

which can be done by Remark 2. For i = 1, . . . , n, consider the following nN -dimensional
matrices Mi defined by n rows of blocks, each one composed of n, N -dimensional blocks with
zero entries, except for the ith row of blocks which is given by Z1, Z2, . . . ,Zn (the same for
all i):

Mi =
⎡
⎣0N(i−1)×N 0N(i−1)×N(n−2) 0N(i−1)×N

Z1 · · · Zn

0N(n−i)×N 0N(n−i)×N(n−2) 0N(n−i)×N

⎤
⎦ , i = 1, . . . , n. (3)

Let qM = (qZ1, . . . , qZn), and let w�
M be an nN -dimensional column vector of 1s. It is easily

seen that

qMMiw
�
M = qZiw

�, (4)

and, therefore, V (qM, M1, . . . ,Mn, w
�
M) = V . The Mi matrices have the same row structure

as those in (2), M = ∑n
i=1 Mi = P is stochastic, and w�

M = (1, . . . , 1)�; hence, it follows,
as in (2), that V is the hidden Markov chain function of the Markov chain with state space
{1, . . . , nN} and transition matrix P = M where φ(j) is the integer part of (j − 1)/N plus 1.

2.3. Stationarity and ergodicity

Let V = V (q, Z1, . . . ,Zn, w
�) = V (qM, M1, . . . , Mn, w

�
M). Assume that Z is stochastic,

w� = (1, . . . , 1)�, and that (3) and (4) hold. It is known that the Markov chain with transition
matrix M and initial distribution qM is stationary if and only if qMM = M . It is easy to check
that qMM = M if and only if qZ = Z. Therefore, this is a sufficient condition for V to be
stationary.

In particular, if Z is irreducible and stochastic then V (Z1, . . . , Zn) is stationary. Next we
show that it is also ergodic.

If some columns of the Zis are null then so are the corresponding columns of M (see (3)).
It is easy to check that the process remains unchanged if we remove those null columns and
the corresponding rows in the Mi matrices and those entries in w�

M and qM . Let M ′
i be the

modified matrices. The sum matrix M ′ is stochastic, as M , and the M ′
is have the same row

structure as the Mis in (2). We show that if Z is irreducible then so is M ′, though M cannot
be, which allows us to obtain the result about ergodicity.

Assume that Z is irreducible and stochastic and that V = V (Z1, . . . , Zn) = V (M1, . . . ,

Mn). The matrix Mk is formed by n identical rows of blocks, each one with the blocks
Zk−1Z1, . . . ,Z

k−1Zn. It can be easily checked, for i = 1, . . . , nN and j out of the null
columns of M , that there exists a k such that the (i, j)th entry of Mk is positive, and from
this, it follows that M ′ is irreducible. By the theory of Markov chains we know that the
stationary Markov chain with irreducible transition matrix M ′ is ergodic, and, hence, so is
V (M ′

1, . . . ,M
′
n) = V , since it is a function of it.

If Z is also aperiodic, it is easy to see that M ′ is too, and so V is strong mixing.
From this and Remark 2, we obtain the following result.

Proposition 1. Let Z1, . . . ,Zn be N ×N -dimensional, nonnegative matrices, and assume that
Z = Z1 +· · ·+Zn is irreducible, with its greatest eigenvalue being unity. Then V (Z1, . . . ,Zn)

is a hidden Markov chain, stationary and ergodic. If Z is also aperiodic then V (Z1, . . . ,Zn)

is strong mixing.
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2.4. Suitability of this formulation

The matrix expression for the distribution of hidden Markov chains studied here provides
an improvement in compactness in two ways.

1. The expression above for the process V = V (q, Z1, . . . ,Zn, w
�) as V (qM, M1, . . . ,

Mn, w
�
M) was useful to show that V is a hidden Markov chain, but the original expression

uses smaller matrices.

2. The finite-dimensional distributions have the following simple expression, which is easy
to obtain:

P{Vi1 = j1, . . . , Vik = jk} = qZ(1Z(2 · · · Z(kw�,

where Z(l = Zil−il−1−1Zjl
and i0 = 0. As an example of its advantages, this expression

provides a simple alternative proof for Proposition 1, taking into account the fact that

lim
p→∞

1

p

p∑
k=1

Zk = w�u

if Z is stochastic and irreducible, where uZ = u, Zw� = w�, and uw� = 1, and the
fact that limk→∞ Zk = w�u if Z is also aperiodic.

Proposition 1 in turn provides an alternative proof for the known result that an irreducible
and stationary Markov chain with finite state space is ergodic, and strong mixing if it is also
aperiodic. To show this, we take Z = P , the transition matrix, and Zi with zero entries except
for the ith row which coincides with that of P .

We now comment on how this expression for the distribution of hidden Markov chains offers
hidden Markov chains as a natural generalization for sequences of independent, identically
distributed, discrete random variables. Commutative products of real numbers (p1, . . . , pn)

are substituted by noncommutative products of matrices (Z1, . . . ,Zn). The numbers and the
matrices are nonnegative; the sum of the pis is unity and the sum of the Zis has its dominant
eigenvalue equal to unity. The latter case also involves the elements q, u, and w�, which are
equal to unity in the former case. In this framework, Markov chains lie in an intermediate place.

The contents of this section can be easily generalized to the case of N × N-dimensional,
countable many matrices Zi , thus, characterizing the hidden Markov chains with countable
state space.

3. An application: computation of the Hausdorff dimension of a self-similar measure
with overlaps

The characterization of the hidden Markov chains presented in Section 2 originated in the
study of a fractal geometry problem, namely, the dimension of self-similar measures with
overlaps. In this section we will consider a simple case (the self-similar measure µ to be
defined below) that has been analyzed in [12].

An important question in the multifractal analysis of a measure is the dimension of the
measure. Ngai [12] obtained a function τ , given as a lower limit, whose Legendre transform,
which was not calculated, determines the multifractal spectrum of µ and particularly its
dimension. Ngai [11] demonstrated that the dimension coincides with τ ′(1), and with Lau
in [7] he obtained formulae (as limits) for the dimension of some related cases. In [12] it was
shown that τ(2) < 1, and from [8, Proposition 4.1] it follows that µ is a singular measure.
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Figure 1.

Here we introduce some improvements in the analysis of µ and a procedure, new as far as
the author is aware, that permits more complete results in the study of the dimension. We obtain
a means of calculating the dimension by proving that it coincides with the Shannon entropy of
a hidden Markov chain.

This method is likely to be successful with other measures under study.
We analyze the problem of determining the Hausdorff dimension of the vertical projection

on the horizontal axis of the natural measure on the Sierpinski gasket. Recall that the Sierpinski
gasket E is the limit set of the following iterative process (see Figure 1(a)).

(i) Divide an equilateral triangle T , whose basis is the horizontal unit interval I , into four
equilateral triangles determined by the middle points of the sides of T .

(ii) Delete the central triangle.

(iii) Repeat steps (i) and (ii) in the remaining equilateral triangles.

The natural measure ν on E is obtained as the weak limit of the sequence of probability measures
νk resulting from the uniform distribution of unit mass on the 3k equilateral triangles that made
up the prefractal at its kth stage of construction. It is well known that the measure ν is singular
with respect to the Lebesgue bidimensional measure. In fact, ν is a fractal measure, i.e. a
measure concentrated on the set E of fractional dimension dim E = ln 3/ ln 2 and such that
any subset F of dimension strictly smaller than dim E is a ν-null set. For these reasons, the
measure ν is said to have Hausdorff dimension dim ν = ln 3/ ln 2. Now consider the vertical
projection pr : R

2 → R and the induced measure µ = ν ◦ pr−1. Because dim ν > 1, the
measures obtained by the projection of ν on the real line have Hausdorff dimension equal to 1
for almost every direction of projection (considering the unidimensional Lebesgue measure on
the set of such directions; this is obtained as a consequence of [9, Corollary 9.8, p. 131] and of
the definition of dimension of a measure). In this section we show how a hidden Markov chain
can be used to determine in a simple manner dim µ, and we shall show that indeed dim µ < 1,
and, therefore, the vertical projection belongs to the set of exceptional directions. This also
provides an alternative way to show the singularity of µ.

3.1. Some notions of fractal geometry

See [5, Chapter 6] for an exposition of the following notions and results.
The Hausdorff dimension of a measure µ on R

p is defined as

dim µ = inf{dim A : µA > 0},
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where dim A is the Hausdorff dimension of the set A. The computation of dim µ can be achieved
by means of the local dimension of µ, defined as

θ(µ, x) = lim
r→0

log µB(x, r)

log r
,

where B(x, r) denotes the closed ball centered at x and with radius r . If such a limit exists
and takes, for µ-almost every (µ-a.e.) x, a constant value α, then dim µ = α (see [4,
Theorem 3.3.14(b), p. 127]).

Associated to any finite system (set) S = {f1, . . . , fq} of contracting similarities of R
p and

a positive probability vector (p1, . . . , pq) there exists a unique probability measure ν, called a
self-similar measure, that satisfies ν = ∑q

i=1 piν ◦ f −1
i .

The system S is said to satisfy the open set condition if there exists an open set O ⊂ R
p

such that
⋃q

i=1 fiO ⊂ O and the copies fiO of O are disjoint.
For the study of the dimension of a self-similar measure with the open set condition, an

associated Bernoulli process (see [4, Theorem 5.2.5, p. 212]) can be used. In the absence of
the open set condition (i.e. for systems of contracting similarities with significant overlapping)
such analysis cannot proceed and few things are known about the structure of self-similar sets
and measures, and, in particular, their Hausdorff dimension remains unknown. The research on
fractal sets and measures with overlapping is one of the most active areas in the field of fractal
geometry; see, for instance, [6], [8], [13], [14], [15], and [16].

The problem that we analyze in this section may be regarded as a problem of an overlapping
system of similarities. This is because it can be easily seen that if we take the base of the initial
equilateral triangle to be the interval [0, 1], in the construction of the Sierpinski gasket described
above, then µ is the self-similar measure associated to the overlapping system {f1, f2, f3} with

fi(x) = 1

2
x + i

4
, i = 0, 1, 2,

and probability weights ( 1
3 , 1

3 , 1
3 ). In order to make more transparent the application of the

processes described in Section 2, we do not adopt this viewpoint, instead we carry out the
analysis on the Sierpinski gasket.

3.2. Dimension of µ

The main result to be proved in this section is the following.

Theorem 1. Let H be the Shannon entropy of the process V (Z0, Z1), where

Z0 = 1

3

[
1 0
1 1

]
and Z1 = 1

3

[
1 1
0 1

]
.

Then dim µ = H .

Remark 4. The value of H with ten decimal digits of approximation is 0.988 765 871 4. To
obtain this, we use two known results on entropy of hidden Markov chains. The sequence
of conditional entropies H(Vk/V1, . . . , Vk−1) is nonincreasing and converges to H (see
[1, Theorem 11.2, p. 116]). From [2] we know that if V = V (Z0, Z1) is a function of an irre-
ducible Markov chain X then the sequence H(Vk/X1, V2, . . . , Vk−1) = H(X1, V2, . . . , Vk)−
H(X1, V2, . . . , Vk−1) is nondecreasing and converges to H . To use the latter result, we take

M0 =
[

Z0 Z1
02×2 02×2

]
, M1 =

[
02×2 02×2
Z0 Z1

]
,
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and M∗
i for i = 1, 2, 3, 4 with zero entries except for the ith row, which coincides with that

of M = M0 + M1. As in Subsection 2.2, we have V (M0, M1) = V (Z0, Z1) = V . Let X

be the stationary Markov chain with transition matrix M (it is irreducible). Consider V as the
function of X given by φ(1) = φ(2) = 0 and φ(3) = φ(4) = 1. It is easy to check that

P{X1 = i1, (V2, . . . , Vk) = i} = uMM∗
i1
M iw

�
M,

with uM = (uZ0, uZ1) = 1
6 (2, 1, 1, 2) and w�

M = (1, 1, 1, 1)�, which can be used to calculate
H(X1, V2, . . . , Vk). Actually, we have uMM∗

i1
M iw

�
M = uZ∗

i1
Ziw

� with Z∗
1 = Z0A, Z∗

2 =
Z0B, Z∗

3 = Z1A, Z∗
4 = Z1B,

A =
[

1 0
0 0

]
, and B =

[
0 0
0 1

]
.

For the value of dim µ = H given above, we have calculated the term with k = 17 for each
sequence.

In order to prove Theorem 1 we need two lemmas.
Given x ∈ I := [0, 1] with binary expansion x = 0.i1i2i3 . . . , ij ∈ M := {0, 1}, let

D0(x) = I and, for k ≥ 1, let Dk(x) denote the dyadic interval [∑k
j=1 2−j ij ,

∑k
j=12−j ij +

2−k]. Note that, since pr−1(x) is a one-dimensional affine subspace and dim ν = ln 3/ ln 2 > 1,
we have µ(x) = ν(pr−1(x)) = 0, and since the points in I with double binary expansion are
a countable subset of I , Dk(x) is uniquely defined for µ-a.e. x ∈ I. We also denote by
〈i1, i2, . . . , ik〉 the dyadic interval [∑k

j=1 2−j ij ,
∑k

j=1 2−j ij + 2−k] for i1, i2, . . . , ik ∈ M .

Lemma 1. We have

µ〈i1, i2, . . . , ik〉 = ei1Zi2 · · · Zikp
� for all k and i1, i2, . . . , ik ∈ M ,

where e0 = (1, 0), e1 = (0, 1), and p� = (2−1, 2−1)�.

Proof. µ〈i1, . . . , ik〉 = ν(pr−1(〈i1, . . . , ik〉)) is given by the ν-measure of the vertical band
built upon 〈i1, . . . , ik〉. For the dyadic intervals of the first generation, we have µ〈0〉 =
µ[0, 1

2 ] = 1
2 and µ〈1〉 = 1

2 , because the parts of E placed upon these intervals, which we
respectively denote by E0 and E1, are symmetric, as shown in Figure 1(b). Each vertical band
built upon a dyadic interval J of the kth generation, k ≥ 1, intersects E on a collection Ek

i (J ) of
sets that are copies under homotheties of contraction ratio 1/2k−1 of Ei, i = 0, 1; in particular,
for k = 1, we have E1

0〈0〉 = {E0}, E1
1〈0〉 = ∅, E1

0〈1〉 = ∅, and E1
1〈1〉 = {E1}. Since the

µ-measure of each set in Ek
i (J ) is 2−13−(k−1), the task of computing µJ reduces to computing

the cardinality of Ek
i (J ), i = 0, 1. We shall do it recursively. For each dyadic interval J

= 〈i1, . . . , ik〉 of the kth generation, k ≥ 1, let uk(J ) = (#Ek
0(J ), #Ek

1(J )). The left half of
each set in Ek

0 is a homothetic copy of E0, whereas the right half of each set in Ek
0 consists of

one copy of E0 and one copy of E1, as happens with the set E0 (see Figure 1(b)). Similarly,
the left half of each set in Ek

1 consists of one copy of E0 plus one copy of E1, whereas the
right half of each set in Ek

1 is a single copy of E1. The interval J splits into two intervals of the
(k + 1)th generation, Ji := 〈i1, . . . , ik, i〉, i = 0, 1. Therefore, the sets in Ek+1

0 (J0) come one
from each set in Ek

0(J ) and one from each set in Ek
1(J ), whereas the sets in Ek+1

1 (J0) come
one from each set in Ek

1(J ), giving

uk+1(J0) = uk(J )

[
1 0
1 1

]
. (5)
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Similarly,

uk+1(J1) = uk(J )

[
1 1
0 1

]
. (6)

Let L0 and L1 be the matrices in expressions (5) and (6), respectively. Hence, taking into
account the fact that u1〈i1〉 = ei1 , we have

uk〈i1, i2, . . . , ik〉 = ei1Li2 · · · Lik ,

and, thus,

µ〈i1, i2, . . . , ik〉 = uk〈i1, i2, . . . , ik〉
[

2−13−(k−1)

2−13−(k−1)

]
= ei1Zi2 · · · Zikp

�.

Lemma 2. Let x ∈ I with Dk(x) uniquely defined, and let D′
k(x) be any of the two dyadic

intervals of the kth generation adjacent to Dk(x). Then, for large enough k,

1

2
≤ µ(D′

k(x))

µ(Dk(x))
≤ 2.

Proof. Assume that x has a single binary expansion and that k is large enough so that the
right endpoint of Dk(x) is neither 1

2 nor 1, that is, Dk(x) 
= 〈0, 1, 1, . . . , 1〉 and Dk(x) 
=
〈1, 1, . . . , 1〉. If Dk(x) = 〈ii , . . . , ik〉, the dyadic interval D′

k(x) of the kth generation adjacent
to the right of Dk(x) can be obtained in the following way. Let l = max{t ∈ {2, 3, . . . , k} : it =
0}. If l = k then D′

k(x) = 〈ii , . . . , ik−1, 1〉, and if l < k then D′
k(x) = 〈ii , . . . , il−1, 100,

. . . , 0〉. Hence, by the previous lemma,
µ(Dk(x)) = ei1Zi2 · · · Zil−1Z0Z

k−l
1 p�,

µ(D′
k(x)) = ei1Zi2 · · · Zil−1Z1Z

k−l
0 p�.

Forming the products of the matrices, we obtain

Z0Z
q
1 p� = 1

2(3q+1)
(q + 1, q + 2)�, Z1Z

q
0 p� = 1

2(3q+1)
(q + 2, q + 1)�,

µ(D′
k(x))

µ(Dk(x))
= (q + 2)u1 + (q + 1)u2

(q + 1)u1 + (q + 2)u2
,

where q = k − l ∈ {0, . . . , k − 2} and (u1, u2) = ei1Zi2 · · · Zil−1 ≥ 0. From this, it follows
that

1

2
≤ µ(D′

k(x))

µ(Dk(x))
≤ 2.

If D′
k(x) is adjacent to the left of Dk(x) then the above result can be applied, interchanging the

roles of D′
k(x) and Dk(x).

Now we can proceed to prove Theorem 1.

Proof of Theorem 1. The matrix Z0 + Z1 is irreducible with right and left eigenvectors
p� = (2−1, 2−1)� and e = (1, 1), respectively. Let Q be the distribution of the process
V (Z0, Z1), which is stationary and ergodic by Proposition 1. Consider the restrictions of µ,
µ0 = µ|〈0〉 and µ1 = µ|〈1〉, and the auxiliary probability measure supported on the interval
〈0〉 = [0, 1

2 ] given by
µ∗ := µ0 + µ1 ◦ t,
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where t is the translation t (x) = x + 1
2 . Let π : M → [0, 1

2 ], with M := {0, 1}∞, given by
π(i) = ∑∞

j=1 2−(j+1)ij . Note that π [i1, . . . , ik] = 〈0, i1, . . . , ik〉, where [i1, . . . , ik] is the
cylinder in M with base (i1, . . . , ik). From Lemma 1, it follows that

µ∗〈0, i1, . . . , ik〉 = Q[i1, . . . , ik],

and, thus, Q = µ∗ ◦π . Since π−1 is uniquely defined µ∗-a.e. x ∈ 〈0〉, we have µ∗ = Q ◦π−1.
By the Shannon–McMillan theorem (see [1, Theorem 13.1, p. 129]), there exists a set G ⊂ M

with Q(G) = 1 and

lim
k→∞ −1

k
log2 Q[i1, . . . , ik] = H for all i = (i1, i2, . . .) ∈ G.

For all x ∈ πG such that i = π−1(x) is uniquely defined, with i = (i1, i2, . . .) ∈ G, we have
Q(π−1Dk(x)) = Q[i1, . . . , ik]. Thus,

lim
k→∞ −1

k
log2 µ∗Dk(x) = lim

k→∞ −1

k
log2 Q(π−1Dk(x)) = H

for almost all x ∈ πG and so for µ∗-a.e. x ∈ 〈0〉, since µ∗(πG) = Q(G) = 1. Now let
2−(k+1) ≤ r ≤ 2−k. Then

Dk+1(x) ⊂ [x − r, x + r] ⊂ Dk(x) ∪ D′
k(x) ∪ D′′

k (x),

where D′
k(x) and D′′

k (x) are the dyadic intervals of the kth generation adjacent to Dk(x). This
and Lemma 2 gives µDk+1(x) ≤ µ[x − r, x + r] ≤ 5µDk(x) for µ-a.e. x ∈ [0, 1] and

µ∗Dk+1(x) ≤ µ∗[x − r, x + r] ≤ 5µ∗Dk(x) for µ∗-a.e. x ∈ 〈0〉.

From this, it follows that

θ(µ∗, x) = lim
r→0

log µ∗[x − r, x + r]
log r

= lim
k→∞ − log2 µ∗Dk(x)

k
= H

for a.e. x and, thus, dim µ∗ = H . Since µ0 � µ∗ and µ1 ◦ t � µ∗, it follows from Lemma 2.3
of [10] that dim µ0 = dim(µ1 ◦ t) = dim µ∗ = H . Also, since translations are bilipschitz
maps, we have dim µ1 = dim(µ1 ◦ t) = H , and it follows that dim µ = H .

We have dim µ < 1, since

dim µ = H ≤ 1

2
H(V1, V2) = −1

2

∑
i1,i2=0,1

(eZi1Zi2p
�) log2(eZi1Zi2p

�) < 0.996,

or by Remark 4. This provides an alternative way to prove the following known result (see
Section 3).

Corollary 1. The measure µ is singular.
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4. Conclusion

In this paper we have introduced a new expression for the representation of hidden Markov
chains which can significantly simplify the practical work with this relevant probabilistic tool.

As an example, we have solved an open problem in fractal geometry, that of the determination
of the dimension of the vertical projection µ of the natural measure on the Sierpinski gasket.

The consideration of the associated hidden Markov chain allows us to obtain the dimension
of the measure µ as a Shannon entropy, as in the known formula for the dimension of a self-
similar measure without overlaps (see [3] or [4, Theorem 5.2.5, p. 212]). This is interesting for
the understanding of the notion of dimension and for computational purposes.

Work in progress allows us to be optimistic in regard to the role that this expression for hidden
Markov chains can play in the research on problems of fractal constructions with overlapping.
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