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Abstract

It is shown that if intraspecific self-regulating negative feedback effects are strong enough
such that a nontrivial steady state of a two species system is locally asymptotically stable,
then time delays in the positive feedback as well as in other interspecific interactions
cannot destabilise the system and hence delay induced instability leading to persistent
oscillations is impossible whatever the magnitude of the time delays. A method is also
proposed for an estimate of decay rate of perturbations.

1. Preliminary remarks

Almost all the equations of population ecology have been derived starting from
the following simple format

dN{t) _ f an individual's contribution
\dt ~ \ to population growth j ^vU. V

where N(t) denotes the size of a population of a single species (or biomass) with
overlapping generations at time t, and dN(t)/dt is the rate of change of the
population size at time /. Subsequently one makes an assumption regarding the
factor in the brackets in (1.1); in particular if one assumes that an individual's
contribution to the population growth is denoted by a function say, f(t, N),
defined suitably for all / > 0, N s* 0 then one obtains from (1.1) the so called
Kolmogorov formulation in the form

(1.2)
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474 K. Gopalsamy [2]

Various choices of/together with some ecologically plausible assumptions such as
the temporal constancy of the environment and density dependent effects in /
lead to various equations. For instance if f(t, TV) = r (a positive constant) one
obtains the Malthusian formulation in the form

dN(t) %Tt ,
dT = rN{t)

and if oric assumes/v<>jly) = f — K.f/K'jN *or sonic positive constants v anu K
one gets the familiar logistic equation of population biology

In order to derive models with time delayed effects, such effects are introduced
in the average growth rate f(t, N) of (1.2); for instance if f{t, N) = r —
(r/K)N(t — T) for some constant T > 0 we obtain Hutchinson's [19] delay
logistic equation

« ( * ^ } (..3)
If for instance

f(t, N) = r- (r/K)N(t) - [' k(t - s)F(N(s)) ds

where k is a piecewise continuous nonnegative valued function such that
/0°° k(s) ds — 1 with some appropriate function F, we will get Volterra's model of
a population which pollutes its environment and pollution has an accumulative
and toxic effect; such an equation is of the form

p- = N(t){r-(r/K)N(t)-f'j(t-s)F(N(S))ds} (1.4)

which has been studied in different formats by several authors (Cushing [12],
Cohen et al. [10], Gopalsamy [16]).

One of the significant advantages of deriving various models from the proto-
type (1.2) is that if the intitial conditions (initial population sizes) are nonnegative
then the nonnegativity of the population size N(t) for / > 0 follows from the fact
that all the solutions of (1.2) satisfy

N{t) = AT(0)expf ff{s, N(s)) ds

which implies that N(t)^0 if iV(O) > 0.
While the time delayed logistic equation (1.3) explains some of the observed

oscillations of certain populations, its derivation has not been entirely satisfac-
tory. For instance it has been pointed out by Ricklefs ([27], page 488) that " time
lags might be expected to occur primarily in stabilising processes involving
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[3] Stability in two-species systems 475

reproduction rather than death because death is an immediate response to
environmental change". Recently Cushing [13] has examined the effects of
response and maturation delays in a number of single and multispecies popula-
tion models; as it has been noted by Cushing [13], the models involving delayed
reproduction are not necessarily derivable from the Kolmogorov type systems of
the form (1.2) by suitably defining the average growth rate {\/N){dN/dt) =
f(t, N(t)). While Cushing [13] has been mostly concerned with the possibility of
delay induced oscillations we will consider a class of delays in reproduction and
interspecific interaction which maintain the stability of the systems.

Our starting point to derive models with delayed reproduction is the following
balance equation which assumes that there is no immigration or emigration.

j = birth rate - death rate. (1.5)

Now for instance if we consider a population of adult flies then the birth rate at
time / depends on the adult population at time t — T where T is the time required
for the larvae to become adult flies. If the birth and death rates are governed by
density dependent factors then we have from (1.5) the following time delayed
model

^p-= b{N{t - r)) - m(N(t)) (1.6)

where the functions b and m denote the density dependent birth and death rates
respectively. If the time delay is continuously distributed then one can consider in
the place of (1.6) an equation of the form

p- = b(fj(t - s)N(s)ds) - m(N(t))

or equivalently

^p -s)ds)~ m(N(t)) (1.7)

where the delay kernel k denotes the weight of the delayed effects.
It is not always obvious that suitable nonnegative initial conditions for (1.6)

and (1.7) will imply the nonnegativity of the solutions of (1.6) and (1.7). The
purpose of this article is to show that in two species systems of competitive and
prey-predator communities, delayed reproduction and delayed interactions do not
destabilise the systems if the self-regulating negative feedback effects are suffi-
ciently strong compared to interspecific interactive effects and if the self regulat-
ing effects are realised with no time delays. When we say that time delays do not
destabilise, we will mean that delays do not render an asymptotically (locally)
stable steady state unstable in such a manner that the loss of stability either leads
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to a delay-induced bifurcation to persistent and undamped oscillations (as in the
case of Hopf-bifurcation) or the relevant linear variational system has unbounded
solutions; that is a mathematical instability is not induced by delays in the sense,
that the roots of the characteristic equation are pushed to the imaginary axis or to
the right of it on the complex plane. However delays can make an otherwise
stable system less stable which means that the rate of convergence to zero of
solutions of the variational system can decrease with an increase of delay and the
variational system can even oscillate (perhaps violently) before converging to the
trivial state. Such a reduction in stability can happen even when all the roots of
the characteristic equation have negative real parts. For our purposes such a
reduced stability is still stability. In order to see the effects of delays on such less
stable systems we will propose below a method of estimating the rate of decay of
local perturbations based on the variational system and indirectly relying on the
characteristic equation. For a special class of two species models with a single
delay we have obtained (Gopalsamy [16]) estimates of decay rates (or return
times) using the characteristic equation; such a procedure is almost impossible in
the case of many species systems with several delays. The method we propose in
Section 6 below for the estimate of decay rates can be adapted to n-species
systems with n2 discrete delays.

2. Two species competition

Let x,(0 and x2(t) denote the population sizes (or biomasses) of two species
competing for a common pool of resources in a constant environment. Let bt and
m, (i = 1,2) denote the respective density dependent birth (potential) and death
rates so that in the absence of any time delays the population sizes are governed
by

In order to make the system (2.1) represent a competition system we will make
the following assumptions on the birth and death rates;

(i) b,, ml (j: = 1,2) are continuous with continuous partial derivatives for all
x, > 0 (/ = 1,2); also we assume (see for instance Rescigno and Richardson [26])

| | > 0 , ^ > 0 f o r * ; > 0 (i,j= 1,2), (2.2)
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(ii)
6,(0)-0, W,(0,x2)=0,l
b2(0) = 0, m2(xl,0)=0,\ { ' >

^ • >

(iii) for some x* > 0, x* > 0 we have

/>,(**)-m,(xf,0) = 0,1
*i(*J)-m,(0,*J) = 0,J

(iv) there exist positive constants 5,, 82 such that

bAS,) - m,(Su x-,) <0,l , ,
fc2(52) -m2(x,,82)<0,J

(v) there exists a point (a, /}), a > 0, /? > 0 such that

&,(«) - m,(o, 0) = 0 = 2>2(j8) - m2(a, 0). (2.6)

The conditions on fe, in (2.2) mean that the potential (not average) birth rates
are density dependent and any negative density dependent feedbacks to the birth
rates are included in the death rates; the conditions on w, indicate intraspecific
and interspecific competition. (2.3) implies that (0,0) is a (trivial) steady state of
the system (2.1) as it is in the case of all ecological models; (2.4) means that in the
absence of either of the two species the other one has a nontrivial steady state;
(2.5) implies that each of the two populations cannot grow unboundedly since
when x,(0 > 8,, dxjdt < 0. (2.6) means that there exists a nontrivial steady state
(a, /?) in the interior of the positive quadrant of the (JC,, x2)-plane. These
assumptions are standard and are minimal in the opinion of the author.

An immediate example of (2.1)—(2.6) is the familiar Volterra-Lotka competition
system described by

(2.7)

= r2x2(t) - a2i*i(0*2(0 ~ "22*1(0.

where rt, aip (/, j — 1,2) are positive constants satisfying the condition

o2i r2 a22"

One of the first questions to be resolved for (2.1) is the following: if x,(0) > 0,
*2(0) > 0 does it follow that the corresponding solutions of (2.1) satisfy the
condition xx(t) > 0, x2(t) > 0 for those t for which a solution of (2.1) exists? In
the (xux2) phase plane of (2.1) we have (0,0), (xf,0), (0, x\), (a, /8) as the
steady states of (2.1) and also it will follow from (2.3) that the coordinate axes
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x, = 0 and x2 = 0 are invariant sets of (2.1); such invariance of the coordinate
axes will imply that if x,(0) >0, x2(0) > 0 then the corresponding population
trajectory (xx(t), x2(t)) of (2.1) cannot reach the outside of the nonnegative
quadrant x, > 0, x2 > 0.

Our plan is to derive first a set of sufficient conditions for the coexistence of
the two competing species and then in the next section show that under the same
conditions the two species can coexist if there are time delays in the reproduction
and interspecific interactions. We recall that the two competing species described
by (2.1) are said.to coexist if and only if the nontrivial steady state (a, /8) is (at
least locally) asymptotically stable. To examine such a stability of (a, /?) we
derive the corresponding linear variational system for the perturbations Xx, X2

where

xx(t)=a + Xx(t), x2(t) = p + X2(t);

such a variational system is found to be

dXx{t) _ X ( ) + B x ( r

dt Pu ^ ' 12 2^ ;

where

/ a/> ?m \
evaluated at

The steady state (a, /?) of (2.1) is locally asymptotically stable if and only if the
trivial solution (0,0) of (2.8) is asymptotically stable. We can derive the following
result from elementary considerations.

In the system (2.1)-(2.6) assume the following:

dmx dbx dm2

3x, 3x, 3x,

> +
dx2 dx2 dx

Then the steady state (a, ft) is (locally) asymptotically stable for (2.1)-(2.6).
The proof follows easily if we note that the characteristic equation associated

with the linear system (2.8) is given by

J A - >8n - J B 1 2 1
Det , „ = 0

[ P A ^

or equivalently,

A2 - X(/8U + p22) + pup22 - pnp2l = 0. (2.11)
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It follows from (2.2) and (2.10) that,

0 n < 0, 022 < 0, 0,,022 - 0,2ft, > 0 (2.12)

and hence the roots of (2.11) have negative real parts implying the asymptotic
stability of the trivial solution of (2.8).

If we apply the condition (2.10) to the Volterra-Lotka model (2.7) we note that
when a nontrivial steady state say (a, 0) exists for (2.7), (2.10) leads to

a n a > a 2 1 0 and a22fi > al2a,

which together imply aua22 > a\2a2\- If («, 0) exists it is known that aua22 —
ana2] > 0 is a sufficient condition for the (local) asymptotic stability of (a, 0).

The condition (2.10) which guarantees the coexistence of competing popula-
tions in (2.1)—(2.6) simply means that the intraspecific self-regulating feedback
effects 3m,/3x, ( / = 1,2) are higher than its own positive feedback db^dx,
(/ =1,2) together with its negative (competitive) effects on its competitor dm,/dXj

3. Coexistence under delayed reproduction and interactions

We will now establish that two competing species with a sufficiently strong
intraspecific regulation can coexist in the presence of delayed reproductions and
delayed interspecific interactions. It is well known that if there are delays in the
self-regulating intraspecific effects, stationary coexistence may not always be
possible (Gopalsamy [16], Gopalsamy and Aggarwala [15], Shibata and Saito
[28]). Delayed reproduction is more general and widespread in most biological
populations. To build a competition model with such delays we proceed as
follows.

Let Tjj (/, 7 = 1,2) be a set of nonnegative constants with T = max T,y, /, j —
1,2, and suppose that the two competing species display delayed reproduction
and delayed interspecific interactions with no delays in the self-regulating nega-
tive feedback effects. Such a competition system in a constant environment can
be modelled by the autonomous delay differential system

p - = *.(*.(' - T,,)) - m,(x,(0, x2(t - T,2)),

- ^ " ^ = l>2(x2(t - T22)) - «(* , ( / ~ T21), X2{t)),

where both the birth rates and the mortality rates b, and w, (i = 1,2) satisfy the
same conditions (2.2)-(2.6) as in the previous section. Along with (3.1) we will
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suppose that the initial population sizes are provided in the form

X , ( J ) = •,.(*)><>, J 6 [ - T , 0 ] , I = 1 , 2 . (3.2)

(Note that the specification of </>, need not be on the entire interval [-T, 0]; but
such a hypothesis is convenient.) Since (3.1) is not of the standard Kolmogorov-
type, we have to establish that the solutions of (3.1) will remain nonnegative for
nonnegative initial conditions.

To prove the nonnegativity of solutions of (3.1)-(3.2), let {^"\s)}, s E [-T,0],

i — 1,2; (n — 1,2,...) be a sequence of strictly positive continuous functions
such that

l i m r W = ^ ) , s e h O ] , i = l , 2 . (3.3)

n-»oo

Let {x["\t), x^"\t)} be the solution of (3.1) corresponding to the initial condition

{x\»Ks),xP(s)} = {W(s),WKs)}, *e[-r,0]. (3.4)
Consider the solution {x\"\t), x["\t)} for t E [0, T] (assuming it exists on the
whole of [0, T]). Suppose x\n)(t) does not remain nonnegative for all [0, T*]; then
there exists a t* = [0, T*] (T* = the positive minimum of tti (/, j = 1,2)) for
which

x\n\t*) = 0 and x\n)(t)(t* - T,,) > 0.

It will follow from (3.1) and the positivity of the initial condition that

*ff i )= 6 2 ( x | - ) ( / . - T l l ) )> 0 (3.5)

where we have used the properties of bt and m, from (2.2)-(2.6); it is found that
(3.5) contradicts the definition of t*. Thus x\n\t) > 0 on [0, T*]; similarly
x(

2"\t) > 0 on [0, T*]. We can repeat this procedure for intervals of the form
[T*, 2T*], [2T*, 3T*] etc. Thus it will follow that so long as (x\"\t), x^n\t)) exists,
we have

If we now consider the limits as n -» oo, we get

lim {x\«>(t),xP(t)) = {xl(t),x2(t)} (3.2)
n->oo

with x,(0 ̂  0, x2(O ^ 0 where (*,(*), ^2(0) is the solution of (3.1)-(3.2) and
this is a consequence of the continuous dependence of solutions of (3.1) on initial
conditions (Hale [17], page 41).

A second question for (3.1) with (2.2)-(2.6) is whether solutions of (3.1) exist
for all t > 0? Suppose now that solutions of (3.1) do not exist for all t > 0; then
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there exists a tx > 0 such that at least for one of either of x, or x2 we have

lim *,(*) = oo. (3.7)

To be specific let us suppose that lim,_r|_ xx(t) = oo; let t2 be the first instant of
time for which xx(t2) = Sx, t2 < tx. It will follow from (3.1) that

=j t = bx(xx(t2 - T,,)) - mx(xx(t2), x2{t2 - TI 2))

< M * i ( ' 2 ) ) - mx(xx(t2), x2(t2 - T 1 2 ) )

< 6 , ( « , ) - m , ( « I , * ( / 2 - T I 2 ) ) < 0 (3.8)

which contradicts the definition of t2. Thus solutions of (3.1), (2.2)-(2.6) exist for
all / > 0.

We are now ready to consider the effects of time delays in reproduction and
interspecific interactions on the coexistence of the two competing species. The
steady state (a, /?) of (2.1) is again a steady state of (3.1). To examine the (local)
asymptotic stability of (a, /?) in (3.1) we let

xl(t) = a+Yl(t), x2(t) = p + Y2(t)

in (3.1) and derive that the linear variational system governing the perturbations
Yu Y2 is given by

(3.9)
^ -muYx{t) + buYx{t - r n ) - mI2y2(* - T1 2),

^jp- = -m22Y2(t) - m2xYx{t - T21) + b22Y2(t - T 2 2 ) ,

where

1 * ^ ( ^ )

It is well known (Bellman and Cooke [3], page 336) that the steady state (a, (1) is
(locally) asymptotically stable for (3.1) if the trivial solution of the variational
system (3.9) is asymptotically stable. We formulate our first result in the following
form whose proof is given in the appendix.

THEOREM 3.1. Assume that in the two species competition model system (3.1) with
delayed density dependent birth and death rates b, and m, (/ = 1,2) satisfy the
conditions (2.2)-(2.6). Suppose that the conditions (2.10) hold. Then the nontrivial
steady state (a, /?) is (locally) asymptotically stable for (3.1) whatever be the delays
T,;> 0 ( 1 = 1 , 2 ) .
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4. A prey-predator system

[10]

Let 7,(0 and y2(t) respectively denote the population sizes (or biomasses) of a
prey species and a predator species which feeds exclusively on the single prey
species in a temporally constant environment. In the format of (1.5) the following
system will describe the rates of change of the two population sizes:

(4.1)

dt

where/, and g,(i — 1,2) respectively denote the birth and death rates of the two
species; in order to make (4.1) denote the dynamics of a prey-predator species we
will assume that / and g, satisfy the following conditions (see for instance
Rescigno and Richardson [26]);

(i) / and g, are continuous with continuous partial derivatives for all yt > 0
(/ = 1,2); also we require

94>0. 9gj.

3 *

(ii)

9>-2

9g2

3^2

= 0,

where j , > 0 , ^ 2 > 0 , (4.2)

g2(0) = 0,

(iii) for some constant y* > 0 we have

(iv) there exists a point (a*, /?*), a* > 0, /?* > 0 such that

(4-3)

(4-4)

(4-5)

(4.6)

The conditions (4.2) mean that the system (4.1) is of the prey-predator type; (4.3)
will imply that (0,0) is a trivial steady state of (4.1); (4.4) means that in the
absence of the predator, the prey species has a nontrivial (positive) steady state;

/2(a*,/?*)-g2(/J*) = 0,

(v) there exist positive constants ij,, TJ2 such that
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(4.5) implies that (4.1) has a nontrivial steady state in the interior of the positive
quadrant of the state species of (4.1); (4.6) can be shown (see below) to imply that
no species can grow unboundedly.

An example of (4.1)-(4.6) is the familiar Volterra-Lotka prey-predator system

^ ) + auyx{t)y2{t)},

where r(, atj (/', j = 1,2) are positive constants such that

«2i*"i ~ r2au > 0 .

As in the previous case of competition we have to verify that when yt(0) > 0,
j2(0) > 0 the corresponding solutions of (4.1) will be nonnegative for t > 0 for
which the solutions exist. Since the co-ordinate axes yt = 0, y2 = 0 are invariant
sets for (4.1) by virtue of (4.3), it will follow that the solutions of (4.1) starting
from the interior of the positive quadrant cannot reach the outside of that
quadrant. This is a consequence of the invariance of the co-ordinate axes for (4.1).

To prove that solutions of (4.1)-(4.6) exist for all t > 0 let us suppose that >»,(())
and y2(0) satisfy 0 < j>,(0) < ij,, 0 < y2(0) < TJ2 (on the other hand if either one of
_y,(0) > 17, and y2(0) > r\2 or both hold, it will follow that the corresponding yt(t)
will decrease by virtue of (4.6) at least for small t > 0). Suppose yt(t) does not
exist for all t > 0; then for some f, < oo, lim,^,,- y^t) — oo and let t2 > 0 be the
first instant for which j , ( ; 2 ) = ij,; then we have from (4.1) and (4.6) that

^jj^ ~ Si(i. . Vi) < 0 (assumingj,(0) < i,,)

which contradicts the definition of t2 showing that y}(t) exists for all t > 0; if
y2(t) is not defined for all t > 0, then for some (3 < oo we will have lim,_,5_ y2(t)
= oo; now let t4 be the first instant for which y2(t4) = TJ2; then from the
properties of/2 we have

^T , ,2) - g2(r,2)

< 0 (by (4.6) assuming0 <7,(0) < ij,, 0 <y2(0) < TJ2)

which again contradicts the definition of t4. Thus_y2(O is defined for all t s* 0.
We will now derive a set of sufficient conditions for the (local) asymptotic

stability of the steady state (a*, /?*) of (4.1). In the next section we will show that
under the same conditions and in the presence of various delays, the steady state
(a*, /?*) remains (locally) asymptotically stable.
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To examine the asymptotic stability of the nontrivial steady state (a*, /?*) in
(4.1) we let

yi(t) = a* + £/,(/), y2(t) = j8* + U2(t)

in (4.1) and derive the linear variational system in the perturbations UX,U2 as
follows:

dlMt) df, ..
dt 9j>,

8*. „ , , 9*. . . . x

(4.7)

where all the partial derivatives in (4.7) are evaluated at (a*, /?*). The steady state
(a*, /?*) of (4.1) is (locally) asymptotically stable if and only if the trivial solution
of (4.7) is asymptotically stable which will be the case if and only if the roots of
the characteristic equation

Det
-fix

$12

X - (/22-$22)

where
8'J = ~'J

,(i,j= 1,2),,

have negative real parts. If X,, X2 are the roots of (4.8) then

J 9 j > 7 '

_ 8 & at(a*,/8*) (4.8)

(4-9)

The proof of the following result is an immediate consequence of (4.7)-(4.9).

THEOREM 4.1. In the prey-predator system (4.1)—(4.6) assume that the partial
derivatives satisfy the following additional conditions:

9.V,

,dy2 dy2 dy2'

evaluated at (a*, /}*), (4.10)

then the steady state (a*, /?*) is (locally) asymptotically stable for the prey-predator
system.
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5. Delays in reproduction, predation and gestation

485

A number of authors have proposed and analysed several models of prey-pre-
dator systems with time delays. Most of the models have been derived from the so
called models of the Kolmogorov-type of (1.2) with time delays incorporated in
the average growth rates of the prey and predator species. Volterra [32] proposed
the following model for a prey-predator system

- s)N2(s)

dN2
(5.1)

where rl,r2,Sl,dz are positive constants and F}, F2 are nonnegative continuous
delay kernels defined and integrable on [0, oo). (5.1) has no predator self-regulat-
ing negative feedback. Brelot [6] considered a modified format of (5.1) in the form

dN2

« ( ' ) - / ' Fl(t-s)N2(s)ds\,

)ds\,
(5.2)

which has terms representing intraspecific competition among both predator and
prey species. Under suitable conditions on the various parameters in (5.2) one can
show that (5.2) has a (locally) asymptotically stable steady state. A number of
integrodifferential equation models of the type (5.1) and (5.2) have been investi-
gated by Cushing [12].

Starting from Hutchinson's (1948) [19] delay logistic equation, May [23] has
proposed the following system

(5.3)

where r, T, K, a, ft, b are positive constants; (5.3) contains a single discrete delay;
one can modify (5.3) and incorporate a continuously distributed delay in it so
that (5.3) can be written as (May [23])

-(' F(t-s)Nl(s)ds]-aNi(t)N2(t),
• ' - 00 J (5.4)
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The first model of a prey-predator type which departs from the Kolmogorov-
type formulation is due to Wangersky and Cunningham [33] who considered the
model system

r)N2(t - T) ,

(5.5)

where a,, a2, bx, c,, c2, T are positive constants; (5.5) means that a duration of r
time units elapses when an individual prey is killed and the moment when the
corresponding addition is made to the predator population. Recently Cushing [ 13]
has considered a model of the form

= -d*2{t) - a)e-"'«da,
(5.6)

where r, k, a, d*, b are positive constants and 8 is related to the age dependent
fecundity of the predator species.

With the models (5.1)—(5.6) in the background let us now consider a time
delayed model similar to (4.1) in the following form:

(5.7)
- r2I), N2(t - r22)) - g2(N2(t)),

where T,} (/, j = 1,2) are nonnegative constants with T = max T, ., /, j = 1,2; the
birth and death rate functions / , , f2, g,, g2 satisfy the same conditions as in
(4.1)-(4.6). Along with (5.7) we specify the initial conditions as follows:

7V,(5) =<*>,(*) > 0 , l , e r Ql

We will assume that in addition to (4.2) we have for (5.7) that
9 / 2 . „ a '

(5-8)

97V, dN,
> 0, /2( TV,, N2 ) > 0 whenever TV, > 0, 7V2 > 0. (5.9)

It is not difficult to show by the methods previously used for the competition
system that whenever /V,(s) > 0 and N2(s) > 0 for s G [-r ,0] , solutions of (5.7)
exist for all / s» 0 and remain nonnegative for all t > 0. Also (a*, /?*) of (4.5) is a
steady state of (5.7).
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We will discuss the form and meaning of the delays in (5.7) in the next section.
The effects of the various delays in (5.7) on the (local) asymptotic stability of
(a*, (3*) can be derived from the following theorem whose proof is quite similar
to that of Theorem 3.1 and hence the details of the proof are omitted.

THEOREM 5.1. In the time delayed prey-predator system (5.7) let the conditions
(4.2)-(4.6), (5.8) and (5.9) hold for the birth and death rates; furthermore suppose
the conditions (4.10) hold. Then for all nonnegative delays in (5.7), its nontrivial
steady state (a*, /?*) is (locally) asymptotically stable.

6. Estimation of decay rates

We will first derive a convenient sufficient condition for the asymptotic
stability of the trivial solution of a linear system of the form

= -mMt) + bMt - TM) - mnY2{t - T I 2 ) ,

= -m22Y2(t) - m2lY,(t - T21) + b22Y2(t - r22),
/ > 0 , (6.1)

where mip bh (i, j = 1,2) are positive constants while T(J (/, j = 1,2) are non-
negative with T = max(T,7) (/, j = \, 2). As is shown in the appendix, the follow-
ing system dominates (6.1);

= -fflMZ,(r)

= -m22Z2{t)

- T,,) + m]2Z2(t - T1 2),

t - T21) + b22Z2(t - T22),

> 0, (6.2)

zi(s) = I *;(*)|> ' = 1 , 2 for s < 0 for which Yt(s) is defined.

Thus the asymptotic stability of the trivial solution of (6.2) implies that of (6.1). It
is also shown in the appendix that the solutions of (6.2) are nonnegative for all
t > 0. We will use the following vector-matrix notation:

z = (z], z2f, ||z|| = |z,(/)| + |z = z,(0
B =

A =

m

m21

-m,

12

-m 22

(6-3)
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The logarithmic norm or the measure of any square matrix B, denoted by fi(5) is
defined as follows:

(6.4)

( / being an identity matrix of the same size as B). The matrix measure compatible
wiih the norms in (6.3) is given by

n(B) = max
j

h + 2 K\ (6.5)

We refer to Coppel [11] or Vidyasager [31] for a number of properties of matrix
measure. We have shown in the appendix that the derivative of H{ZX, Z2)(t) (see
A. 10) satisfies the relation

jtH(Zx, Z2)(t) < [-mu + bu + m21]Z,(0 + [-m22 + b22 + m,2]Z2(/),

and hence we have

j-(H(Zu Z2)(t) (6.6)+\\B\\) {Z,(0 + Z2(t)}.

If we assume for the matrix norm \\B\\ as in (6.3) that

p(A)+\\B\\<0 or - , iU)>l |B | | (6.7)

then from the results of the appendix (Lemmas 5 and 6) it will follow that
Z,(f) + Z2(f) -? 0 as t -> oo and thus we have the following:

LEMMA 6.1. Assume that the coefficients of the linear system (6.1) satisfy the
condition (6.7). Then the trivial solution of (6.1) is asymptotically stable.

When (6.7) holds, an estimate for the decay rate of solutions of (6.1) can be
obtained as follows. A necessary and sufficient condition for the asymptotic
stability of the trivial solution is that all the roots of the characteristic equation

DetG(X,T,.,) = 0 (6.8)

have negative real parts where

X + m 22 -m2)e

= \I-A-B{\,rIJ) (say),

(6.9)

(6.10)
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A positive number a (if it exists) is said to be a decay rate of solutions of (6.1) if
and only if every root of (6.8) satisfies the condition

Re(A) + a < 0 . (6.11)

When (6.11) holds the solution of (6.1) will be of the order of e'"' and hence the
supremum of all such a > 0 satisfying (6.11) will be a desirable parameter to
estimate. However such a supremum of a in (6.11) may not be possible to
determine since it has to be done directly from (6.8)—(6.10) (see also Section 3).
We will obtain an estimate of a (not necessarily the supremum) in (6.11) by the
following procedure.

Replace A by z — a in (6.8) and define

G(z - a, T|y) = M(z) = (z - a)l - A - B(z - a, T,,). (6.12)

By Lemma 6.1 a sufficient condition for all roots of M(z) = 0 to have negative
real parts or equivalently to satisfy

Re (A) < -a .

is the following;

- / t (a/ + A) > | |5 | (a , T;y)|, (6-13)

where

Since ju(a/ + A) — a + n(A) we have from (6.13) that

a + VL(A)+\\Bl(a,rIJ)\\<0 (6.15)

is a sufficient condition for Re(A) < -a. If we denote the left side of (6.15) by
/(a, TtJ) we note that

/ (0 , rl7) = ||£|| + p(A)<0 if (6.7) holds;

also df/da > 0,/is continuous and monotonic in a;f(a) -* oo as a -» oo; thus by
the continuity of/on a > 0, there exists an interval of the form [0, a*) such that

f(a, TU) < 0 fora e [ 0 , a*) (6.16)

and hence

f(&*,rIJ)=0. (6.17)

thus an upper bound a* of a for which we have/(a, T,7) < 0, a G [0, a*) can be
obtained as the unique (by the monotonicity of/on a) positive root of

bue"» + m2le"

b22e
aT22 + wI2ea1
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where the maximum in (6.18) is taken over bu, b22, M\2, mlx and rl} (/', j = 1,2).
A numerical procedure can be devised to solve equations of the form (6.18) in
concrete cases. If one is interested in a smaller bound on the decay rate it can be
obtained as the unique root of

\\B\\eaT + a + n(A) = 0, T = maxr . (6.19)
i'J

It will follow from (6.19) than an increase in T will reduce the value of the root of
(6.19). We remark that since our estimate a* of decay rate is based on a sufficient
condition of the form (6.7), we can conclude that the solutions of (6.1) will
converge at least as fast as e'a'' where a* is the unique root of either (6.18) or
(6.19).

7. Ecological and biological implications

We have formulated a class of two species population model systems starting
from the elementary principle that the rate of change of a population equals the
birth rate minus the death rate. This is a departure from the conventional model
building in population ecology where one usually starts from the Malthusian
formulation, now known as the Kolmogorov formulation in the nonlinear con-
text. In our analysis of the models proposed we have obtained sufficient condi-
tions for the global existence of nonnegative solutions of the model systems (this
is trivial in the Kolmogorov formulation) and the other desirable properties such
as the existence of suitable steady states. The two classes of models proposed for
competition and predation contain intraspecific self-regulating negative feedback
terms. While there is general consensus among population biologists that each
species is under the action of a self-regulating negative feedback force, opinions
and arguments differ regarding the mechanism by which such an effect is
realised; we refer for more details on this aspect to a collection of articles
compiled by Tamarin [30].

Our main result is the following: if a self-regulating negative feedback mecha-
nism (intraspecific competition) can act without time delay and if such an effect
can keep an ecosystem (a community of one or more species of populations)
asymptotically stable (at least locally) about a nontrivial steady state, then time
delays of any magnitude in any other interaction involving positive or negative
feedbacks cannot destabilise such a stable ecosystem (in a mathematical sense);
that is such delays cannot cause a Hopf-type bifurcation leading to persistent and
undamped fluctuations. The delay-induced bifurcations to oscillations in popula-
tion models have been investigated by many authors.
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Qualitatively our result is not new to the literature; the effects of delays on
otherwise stable and unstable systems have been considered by Cushing [12]
where (pages 35-39) he has shown that an otherwise unstable system can be made
less unstable by delays. Such an effect of delays on unstable systems appear to
have been first proposed by Beddinton and May [2] who have also shown that
delays can make stable systems less stable leading to a conclusion " time delays
are not necessarily destabilising". It is also shown by Cushing ([12], pages
75-103) that while time delays cannot stabilise (in the mathematical sense) an
otherwise unstable two species system in competition or mutualism, time delays in
three species systems can stabilise otherwise unstable systems (even in a mathe-
matical sense). Cushing and Saleem [14] have formulated a model where delays in
the positive feedback can have a stabilising effect; Hale [18] discusses briefly the
stabilising nature of delays and gives an example to show that an increase in
delays can make an unstable system stable. Thus for a better understanding of the
effects of delays on otherwise stable systems one has to estimate the rate of decay
of perturbations (or the characteristic return time) in terms of the parameters of
the system especially when the delays do not cause a mathematical instability.
This aspect has been investigated by Brauer [4,5] for models with a single delay
using mainly the characteristic equation. By a procedure slightly different from
that of the characteristic equation we have proposed (Section 6) a method for the
estimation of decay rate of perturbations when there are multiple delays. Since
many species systems with multiple delays cannot be analysed (due to complex-
ity) by the characteristic equation, our methods using comparison lead to easily
verifiable sufficient conditions. The sufficient conditions obtained are in the form
of a diagonal dominance type; these conditions can be weakened to quasi-diago-
nal dominance type as in Ladde [20], Siljak [29], Anderson [1], Lewis and
Anderson [21,22] (Ladde's result [20] is delay dependent due to the fact that
delay appears in self-regulation also). Verification of quasi-diagonal dominance
conditions in arbitrary matrices (except for Metzler matrices) is an impossible
task and ecologically quasi-diagonal dominance is hard to interpret.

It follows from our discussion that those population systems which display
delay induced instability leading to permanent and undamped oscillations should
have one or more of the following aspects:

(1) time delays are in intraspecific interaction terms (and possibly in other
terms also);

(2) intraspecific self-regulation terms are absent in density dependent form in
one or more populations of the system;

(3) intraspecific negative feedback effects are not strong enough to maintain the
stability of the relevant steady state of the nondelayed system.

We can now infer how the delay induced stability leads to fluctuations; a
primary mechanism of such fluctuations can be described at least theoretically as
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follows: in its attraction of a system to a steady state, intraspecific self-regulation
fails to be effective and the system overshoots the steady state and at such higher
densities intraspecific competition becomes operationally effective leading the
system to undershoot the steady state and this process is repeated again and again
resulting in undamped oscillations about the steady state. It follows from our
results that if intraspecific competition is sufficiently strong, the system cannot
become oscillatory even when there are time delays, so long as they do not
interfere with the strength of the intraspecific self-regulation.

We are thus led to the question of existence and importance of intraspecific
competition in population systems. In the introduction to an anthology of articles
by several authors, Tamarin [30] begins with the statement "all animal popula-
tions have the reproductive capacity to increase without limit, yet none do" and
in his concluding remarks writes " this leaves us with only one great concept in the
area of population regulation: that all animal populations are regulated".

In his discussion on the effect of competition on the densities of animal
populations, Nicholson ([25], page 147) has reached the conclusion "Intraspecific
competition automatically regulates the severity of its action to the requirements
of each population, provided the inherent resistance of the environment is
sufficiently low to permit the species to exist." In order to look for a mechanism
by which intraspecific competition plays its role of decreasing growth rate as
population density increases, Calhoun [7] set up an experiment with Norway rats
(Rattus norvegicus) and found that increased density leads to increased hostility
which disturbs the psychology and physiology causing decreased reproductive
output. Many other mechanisms by which intraspecific competition self-regulates
a population have been put forward by a number of authors (see Tamarin [30]).

If we accept the view that intraspecific competition is really predominant
in population regulation, then we can understand how and why time delays
destabilise stable systems leading to oscillations; time delays render intraspecific
competitive regulation temporarily weak so that self-regulatory forces become
temporarily insufficient. If we now agree that all population models should
incorporate self-regulating intraspecific competition terms in sufficient strength
along with other trophic interactions then it is not fair to say "time delays
destabilise" and we note from our analysis that it is usually a failure in
self-regulation which can cause instability rather than delays by themselves.

We will give one example to illustrate our point. Consider a prey-predator
system in which the prey is self-regulating by a logistic load as follows:

"^ = r\x ~ Yj ~~ axy ~ b]^ ~ W ' (* ' y^

-£ = pxy - 8y = b2(x, y) - m2(y) (say),
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where K, a, /}, S are positive constants such that the steady state (x*, y*) exists
where

/r y

In this example the predator self-regulation (dm2/dy) is not sufficiently strong in
the sense

If in such a model there is a time delay in the predator birth rate, such a delay
can lead to instability of (x*, y*) setting up undamped oscillations. If however we
modify the predator growth rate by the inclusion of a density dependent self-regu-
lation so that

& = fixy-6y- vy2

for some positive constant TJ then it is possible, depending on TJ, for such a
modified system to remain stable without oscillations even if there is a time delay
in the predator birth rate. We have another completely different justification to
have tfy2 in the predator dynamics; for instance if the prey is removed from the
food chain, we expect the predator density y to drop to zero in finite time; but
without a term of the type yy2 this cannot happen. While this example serves to
illustrate an aspect of our result, our advocacy of the significance is not based on
this example.

We have derived our conclusion that "time delays need not destabilise" in
models with several discrete delays. However we have provided in the appendix
the necessary tools (Lemmas 3, 4, 5) to prove all our results when the relevant
delays are all (or some) continuously distributed. Some authors (Caswell [9], May
[23], Cushing [12]) appear to regard continuously distributed delays as ecologi-
cally more realistic although the only evidence for this is the work reported by
Caperon [8] who tried a discrete and continuous delay model to fit the data
obtained when he subjected algae to a variable nitrate environment and obtained
a better fit for his data with a continuous delay. The question of whether a
discrete or continuous delay is more realistic may well depend on what biological
process is being modelled. For instance an increased supply of some resource at
some point in time may trigger reproduction at a particular moment in time later
irrespective of the conditions of the resource during the intervening period. If the
duration of increased resource supply necessary to elicit such a response is short
compared to the intervening period before the reproduction occurs, then a
discrete time delay may be appropriate. In a large number of cases of animal
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populations, the past dietary and nutritional history of an animal over a long
period plays an influential role in determining the current behaviour of the
animal and in such cases continuous time delays will be appropriate.

In conclusion the following comments are appropriate. The time delays in the
birth rates of competition models correspond to maturation delays since the
current birth rate is usually due to a contribution of those mature animals living a
few units of time earlier depending on the type of animal or organism; the time
delays appearing in interspecific interactions can be due to the fact that in order
to successfully interact and compete interferentially a developmental maturity
may be necessary. In the case of predation, delays in the birth rate of prey can be
due to delayed maturation while that in the birth rate of a predator is due to
gestation delay with delayed fecundity; the delays in the predation rate are again
as before due to the maturity needed for a predator to successfully organise and
succeed in an attack.

In our analysis we have assumed throughout a temporally uniform environment
neglecting dispersal of populations and their age structure. We expect our results
to hold under suitable conditions both in temporally periodic environments with
the steady state of a constant environment being replaced by a periodic solution
(nonstationary steady state) and when the effects of dispersion and age structures
are considered. It is worthwhile to modify our purely ecological models so as to
provide them with a genetic foundation and examine the effects of time delays
since forces of selection act with some time delay. Such a generalisation will
definitely lead to a better understanding of "how populations regulate them-
selves".

Appendix

First we derive a comparison result.

LEMMA 1. Consider the delay differential system

- -muYi0) + buYi(t - T,,) - mnY2(t - T1 2),

= -m22Y2(0 - m2lY,(t ~ T2I) + b22Y2(t - T22),
(A.I)

where the mtj, bi} (/, j = 1,2) are positive while T,y (/, j = 1,2) are nonnegative
with T = max TIJt i, j = 1,2. Then

dt < » ! „ , / „ , / T,, ml2 2t ,^ ^

^ T ^ ^ -m22\Y2(t)\+ m21|y,(r - T 2 1 ) |+ b22\Y2(t - T2I)|
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where

d

dt

itabmty in two-species syster

f *YM I
dt lJ >\ > " •>

dYt(t)
dt X* ^ '

i=\,2.

The proof is by direct verification.

LEMMA 2. Consider now (A.2) and the following system

,Z,(/) + buZx(t - T,,) + mnZ2{t - T12),

— ~^22^2\O "̂~ "*21^1\^ T21/ "̂  ̂ 22^2(^ ^22n

together with the initial conditions

Z,(s) >\Y,(s)\, 1 6 ^ , 0 ] , 1 = 1 , 2 .

||<Z,(?) fort>0 and i = 1,2.

495

(A.3)

<g,(/) _

(A.4)

(A.5)

(A.6)

PROOF. Let f/,(0 = Z,-(0 - 11^(0 \,i=l,2,t> - T . Then we have from (A.2)
and (A.4),

d u M _ rr/^ , , ,,,
dt

dU2{t)
dt

with

-m22U2(t)

- T , , ) + mx2U2(t - T , 2 ) ,

~T2l) + *22^('~ T22).

/ > 0, (A.7)

U,{s) = Zt(s)- \Y,(s)\ > 0 , 1 = 1 , 2 , 5 6 ^ , 0 ] . (A.8)

Consider (A.7)-(A.8) first on the interval [0, T]: It will follow from (A.7) that

Ut{t) > ^(Ojexpl-w,,/]

f M s - TM) + m,2C/2(i - T12)]exp[-mn(r - *)] <& > 0, (A.9)

for all t E [0, T*] since U^s) > 0 on [ -T* ,0 ] where T* = positive minimum of
(Tn> Ti2> T2i' T22)- Similarly {/2(0 > 0 for / G [0, T*]. NOW by a similar argument it
will follow that {/,(/)> 0, U2(t) > 0 for / G [ T * , 2 T * ] . Repeating the above
procedure we obtain the result (A.6).

It follows from Lemmas 1 and 2 that in order to prove Theorem 3.1 it is
enough to prove that Z,(/) -» 0 as / -» oo for / = 1,2 which we will do as follows.
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PROOF OF THEOREM 3.1. Define a Lyapunov-like function

f_ buZl(s)ds + f mnZ2{s)ds

+ (' m2iZi(s)ds+ f b22Z22{s)ds. (A.10)
'~T2I '~T22

Since each term of H in (A. 10) is nonnegative for t > 0, if we show that H -» 0 as
f -» oo it will follow from Lemma 2 that

0 < | ^ ( / ) | < Z , ( 0 ^ 0 a s / - o o

implying that the perturbations y,, y2 governed by (A.I) approach zero as t — oo,
and this will prove our result. Calculate the rate of change of H along the
solutions of (A.4) so that

dH ^dH dH dZx dH dZ2

dt dt 9Z, dt 8Z2 dt

= - [ Z , ( 0 { « n - (*i, + m2i)} + Z2(0{«22 - (fe22 + ™.2)}] < 0
(A.H)

on using (2.10) since Z,(0, Z2O) are positive for all / > 0. Thus //(Z,, Z2)(/) — 0
as / -* 00 since H is bounded below by zero; it follows from Lemma 6 below that
Z,(z) -> 0, Z2(f) -» 0 as / -> 00. The proof is complete.

The following set of results are intended to be a guide to prove results similar
to the above in the case of continuously distributed delays! An analogue of
Lemma 1 is the following.

LEMMA 3. Let ktj{s), s £ [ 0 , 00), i, j = 1,2, denote nonnegative continuous
functions integrable on [ 0, 00) normalised such that

rsku(s)ds< 00; fC°kIJ(s)ds=l, 1 , 7 = 1 , 2 . (A.12)

Consider the integrodifferential system

)+.burku(s)Yl(t-s)ds

-s)ds

+b22rkn(s)Y2(t-s)ds,
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where m, , b{j (/, j = 1,2) are positive constants. Then

497

mn\Yx{t)\ + bnj\u(s)\Y,{t - s)\ds,

+ mX2f\n{s)\Y2{t-s)\ds,

7,(01/* «

0

(A.3).

(A.14)

Proof is again by direct verification.

The proof of the following lemma is similar to that of Lemma 2 above.

LEMMA 4. Consider (A.14) and the following integrodifferential system:

^jp- = -muZM + buf\u(s)Z,(t - s) ds

+ ml2[°°kl2(s)Z2(t-s)ds,

dZ2(t)
dt

/•°°= -m22Z2{t) + w21 / klx(s)Z{{t - s) ds
Jo

+ b22rk22(s)Z2(t-s)ds,Jo

(A.15)

together with the initial conditions

oo > Zt(s) >\Y,(s)\ forsE(-ao,0].

7%e/i|y,(OI<Z|.(0/orr>0,i = l,2.

(A.16)

The following lemma will be useful to prove a result analogous to that of
Theorem 3.1 corresponding to a class of continuously distributed time delays.

LEMMA 5. Let Zx(t), Z2(t) be the solutions of (A.15)-(A.16) where (YUY2)
corresponds to an arbitrary but fixed solution of (A. 13). Then as a consequence of
Lemma 4 // will follow that

oo ast-*<x>, i=\,2, (A.17)
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whenever

(A.18)
mn >bu + m21,
m22> b22

PROOF. Define a Lyapunov-like function H where

U i 7 7 \ ( i \ — 7 ( t \ -4- 7 ( f \ 4 - h f ^ L - f , , \ [ ff\\J

n \ kn(u)(f Z2(s)ds)du
•'o \Jt~u I

21/°°/c21(«)(/' Zl(s)ds)

Z2(s)ds)du

du

22()(f
•'O \Jt-u

where (Z,, Z2) is any solution of (A.15)-(A.16) for arbitrary (7,, Y2) defined on
(-oo,0]. Computing the rate of change of H in (A.19) along the solutions of
(A. 15) we derive that (on using (A. 12))

dH{Zx,Z2){t) = _ [ Z i ( 0 { | f | i i _ { b n + B j i ) ) + z2(t){m22 - (b22 + m12)}]

< 0 (using (A.18)) for Z, (0 > 0 and Z2(t) > 0.

By Lemma 6 below the result will follow.

LEMMA 6. Ler H(t) - H{ZX, Z2)(t) be as defined in (A.10). Suppose
m\\ > b\\ ~^~ m2\ and m22>b22 + mi2. (A.20)

Then

Zx(t) + Z2(t)-> 0 ast^oo. (A.21)

PROOF. Suppose (A.21) does not hold; then there exists at least one sequence
{/„} -» oo as n -» oo such that

[mu - (bu + /n21)]Z,(/J +[m2 2 - (fc22 + w12)]Z2(rB) > e (A.22)

for some sufficiently small positive number e and hence

-£) « = 1,2,3,.... (A.23)< £ )

By the continuity and differentiability of H with respect to t,

H(tn - e) - //(/„) = ^p-i-e), tn~e<t*<tn. (A.24)
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If e is small we will have

> « / 2

so that

H(tn)<H(tn-e)-e2/2

n_2)-2(e>/2)

^ H{tn_2) - 2(e2/2)

<H(to)-n(e
2/2); to = O.

(A. 12) and Lemma 5 will imply that H(tQ) < oo for any t0 > 0. If n is sufficiently
large, it will follow that H(tn)<0 since H(to) < oo, which contradicts the
nonnegativity of H for all t > 0. Hence Z,(Z) + Z2(t) -» 0 as / -» oo implying the
asymptotic stability of the trivial solution of (A.I) (since Z, dominates Y,).

We note the results of Lemma 5 and 6 will remain valid if (A. 18) is replaced by
the condition p(A) + \\B\\ < 0 where A and B are defined as in (6.3).
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