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Abstract
Gamma-ray bursts (GRBs) and double neutron star merger gravitational-wave events are followed by afterglows that shine from X-rays to
radio, and these broadband transients are generally interpreted using analytical models. Such models are relatively fast to execute, and thus
easily allow estimates of the energy and geometry parameters of the blast wave, through many trial-and-error model calculations. One prob-
lem, however, is that such analytical models do not capture the underlying physical processes as well as more realistic relativistic numerical
hydrodynamic (RHD) simulations do. Ideally, those simulations are used for parameter estimation instead, but their computational cost
makes this intractable. To this end, we present DeepGlow, a highly efficient neural network architecture trained to emulate a computation-
ally costly RHD-based model of GRB afterglows, to within a few percent accuracy. As a first scientific application, we compare both the
emulator and a different analytical model calibrated to RHD simulations, to estimate the parameters of a broadband GRB afterglow. We
find consistent results between these two models, and also give further evidence for a stellar wind progenitor environment around this GRB
source. DeepGlow fuses simulations that are otherwise too complex to execute over all parameters, to real broadband data of current and
future GRB afterglows.

Keywords: ts – Neural networks – Deep learning

(Received 21 December 2022; revised 23 May 2023; accepted 30 May 2023)

1. Introduction

Bright, distant sources such as Active Galactic Nuclei andGamma-
ray bursts (GRBs) that are variable or transient, are powered by
relativistic blast waves (Blandford & McKee 1976). Following the
detection of the first GRB afterglow (GRB970228; Costa et al.
1997), modelling of these expanding explosions has been given
great attention in the literature. The recent detection of the short
gamma-ray burst GRB170817A (e.g., Abbott et al. 2017) coin-
cident with the gravitational-wave detection of binary neutron
star merger GW170817 (LIGO Scientific Collaboration and Virgo
Collaboration et al. 2017), and the subsequent detection of amulti-
frequency afterglow (e.g., Chornock et al. 2017; Coulter et al. 2017;
Alexander et al. 2017; Haggard et al. 2017; Hallinan et al. 2017)
have further heightened this interest in detecting afterglows (e.g.,
Boersma et al. 2021).

As the afterglows are now known to produce radio, optical and
X-ray emission, various (semi-)analytical models have been devel-
oped to analyse this broadband data (Wijers, Rees, & Meszaros
1997; Sari, Piran, & Narayan 1998; Granot & Sari 2002; Leventis
et al. 2012; Ryan et al. 2020). Such analytical models are rela-
tively fast to execute and are thus easily applicable in parameter
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estimation studies where the model needs to be calculated many
times over (e.g., Panaitescu & Kumar 2002). These models do
not fully capture the physical processes, however, encompassed
in more realistic relativistic hydrodynamical (RHD) simulation
approaches like BOXFIT (van Eerten, van der Horst, &MacFadyen
2012). BOXFIT is built on top of a series of 2D RHD jet simula-
tions which describe the dynamics of the afterglow. BOXFIT then
interpolates between the output of these simulations, saved in a
large number of compressed snapshots at fixed times, and applies
a linear radiative transfer approach to calculate spectra and light
curves. This method works partly because of the scale invariance
of jets with different energies or densities, as demonstrated in van
Eerten et al. (2012) Thismakes it possible to compute the afterglow
for arbitrary energy and densities from the saved simulation snap-
shots with specific energy and density. To calculate the afterglow
flux, it is assumed that the dominant radiation is synchrotron radi-
ation. The jet fluid, computed in the RHD simulations, is divided
into small cells for which the broadband synchrotron emission is
calculated. A large number of rays are passed through these fluid
cells and the observed flux is obtained by integrating the emis-
sion over these rays using the linear radiative transfer equation
(van Eerten et al. 2010) for each ray. While BOXFIT has been used
to characterise GRB afterglow data (e.g., Higgins et al. 2019), its
computational costmakes it an unattractive, resource- and energy-
heavy approach for studies that, for example, fit a large population
of GRB afterglow data using sophisticated methods (Aksulu et al.
2022), or simulate large numbers of afterglows to forecast how
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to infer binary and fireball parameters from future gravitational-
wave and electromagnetic detections (Boersma & van Leeuwen
2022).

In recent years, the use of machine learning techniques has
exploded across the (astronomical) sciences to speed up vari-
ous processes with high computational complexity (e.g., Schmit
& Pritchard 2018; Kasim et al. 2021; Kerzendorf et al. 2021).
Specifically, deep learning and neural network (NN) methods
have been used extensively owing to their ability to accurately
replicate highly non-linear relations between input and output
data (e.g., Hornik, Stinchcombe, & White 1989; Cybenko 1989).
Furthermore, after training the NNs, they are usually quick to exe-
cute because only a relative small number of computational steps
need to be performed, if they are not too large. This is further
aided by the existence of optimised deep learning libraries like
TensorFlow.a

In this work, we use NNs to emulate the output of BOXFIT
with small evaluation cost compared to running BOXFIT itself.
We emulate both interstellar medium (ISM) and stellar wind like
progenitor environments. We verify the accuracy of our NNs by
comparing the output to real BOXFIT data and then test their
validity by inferring the properties of the afterglow of GRB970508
(e.g., Panaitescu & Kumar 2002; Yost et al. 2003) which has a large
broadband dataset. We compare the results to a recent analytical
model calibrated to BOXFIT simulation data (Ryan et al. 2015, in
preparation). The trainedNNs are freely available in the DeepGlow
Python packageb and all code associated with the methodology in
this work is present as well.

In Section 2, we describe the methods used to generate the
BOXFIT output training data and how we trained the NNs. We
demonstrate the accuracy of DeepGlow in Section 3 and fit the
broadband dataset of GRB970508 as a test case in Section 4. We
conclude and look towards the future in Sections 5 and 6.

2. Methods

2.1. Training data

Several sets of simulation data are available to be used with
BOXFIT.c These differ in the progenitor environment and the
Lorentz frame used to do the simulations. We used two sets of
simulation data in this work, the ‘lab frame ISM environment’
set and the ‘medium boost wind environment’ set, and generated
two corresponding sets of training data consisting of 200000 light
curves each. We employed the computing cluster of the Apertif
Radio Transient System (van Leeuwen et al. 2022) using 40 nodes
each having 40 CPU cores. Generating the datasets took around a
hundred thousand combined core hours.

To generate light curves with BOXFIT, ten GRB afterglow
parameters must be specified: (i) the jet half opening angle θ0
in radians; (ii) the isotropic-equivalent explosion energy EK,iso in
ergs; (iii) the circumburst number density nref in cm−3; (iv) the
observer angle θobs in radians; (v) the index of the synchrotron
power-law slope of the accelerated electrons p; (vi) the fraction
of thermal energy in the magnetic fields εB; (vii) the fraction of
thermal energy in the accelerated electrons εe; (viii) the fraction
of accelerated electrons ξN ; (ix) the observer luminosity distance

ahttps://www.tensorflow.org/.
bhttps://github.com/OMBoersma/DeepGlow.
chttps://cosmo.nyu.edu/afterglowlibrary/boxfit2011.html.

Table 1. GRB afterglow parameter distributions used to generate the training
data.

Parameter Distribution Range

θ0 (jet half angle) Log-Uniform (0.01, 0.5π ) rad

EK,iso (explosion energy) Log-Uniform (1050, 1056) ergs

nref (density) Log-Uniform (10−5, 103) cm−3

θobs (observer angle) Uniform (0.01, 2× θ0) rad

p (power-law index) Uniform (2, 3)

εB (magnetic energy fraction) Log-Uniform (10−10, 1)

εe (electron energy fraction) Log-Uniform (10−10, 1)

νobs (observer frequency) Log-Uniform (108, 1019) Hz

tobs (observer time) Fixed 0.1 d - 1000 d

ξN (acc. electrons fraction) Fixed 1

dL (luminosity distance) Fixed 50 Mpc

z (redshift) Fixed 0

dL in cm; and (x) the cosmic redshift z. As the GRB after-
glow flux scales straightforwardly with ξN , dL, and z, we fixed
those parameters to, in principle arbitrary, values of 1, 50Mpc,
and 0, respectively, when generating the training data. We chose
the remaining parameters from broad log-uniform distributions
except for p which was uniformly distributed and θobs which was
distributed uniformly as well with a maximum θobs < 2× θ0. The
parameter distributions are summarised in Table 1.

We generated the light curves on a fixed observer time grid
between tobs,0 = 0.1 d and tobs,1 = 1000 d with 117 observer data
points.d The amount of observer data points chosen is a trade-
off between the time it takes to generate the training data and the
resolution of the resulting light curves.

For 32% (ISM environment) to 44% (wind environment) of the
generated light curves, the BOXFIT calculations did not cover the
entire observer time range which resulted in zero flux values at
observer times with no coverage. In Fig. 1, we show the fraction of
zero flux values as a function of observer time. The flux at a cer-
tain observer time corresponds to the combined emission from a
range of emission times (van Eerten et al. 2012). If these times are
not captured in the RHD simulations incorporated into BOXFIT,
BOXFIT uses the Blandford-McKee (BM) solution (Blandford &
McKee 1976) at early times as a starting point, beginning with a
fluid Lorentz factor of 300. Still, very early observer epochs are
sometimes not covered by this BM solution either, because the
thin shell of the shock at that time is not numerically resolved,
or because the emission times occur before our asymptotic BM
limit of Lorentz factor 300. For such observer times either the flux
computed by BOXFIT is zero, or it rapidly drops off as only some
of the emission times which are summed up can be calculated.
For afterglow measurements of GRBs at such early times, BOXFIT,
and by extension DeepGlow, is not a suitable model and should
not be used. Furthermore, in the first few hours of GRB afterglow
Swift (Gehrels et al. 2004) data often a plateau phase is observed
(e.g., Nousek et al. 2006), possibly due to a coasting or extended
energy injection phase. These are not modelled in BOXFIT. Still,
these afterglows will eventually evolve to a regime where BOXFIT
is valid. It is also possible that very late observer times cannot

dThe odd number is a consequence of the 39 threads (one thread is used as a controller
thread) on each computing node available for parallelisation.
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Figure 1. The fraction of light curves where the flux at a certain observer time is set
to zero by BOXFIT when generating the training data. The dots correspond to the 117
datapoints generated for each light curve.

be calculated by the BOXFIT simulations or the BM solution. In
general, the broadband GRB afterglow datasets we are interested
in modelling have measurements in the BOXFIT validity regime
and the incomplete coverage is thus not an issue. Still, this does
have an effect on the performance of DeepGlow as we will show
in Section 3. Overall, care must be taken when training the NNs
on light curves with zero flux values and we return to this point in
Section 2.2.

We did not use a fixed grid of observer frequencies but chose a
random νobs for each light curve from a log-uniform distribution
similar to the GRB afterglow parameters mentioned above. We
picked a broad range in observer frequencies from ν0 = 108 Hz
to ν1 = 1019 Hz such that the trained NNs can be used to fit most
broadband GRB afterglow datasets.

Various resolution and radiation related parameters must be
specified in BOXFIT which we left mostly to their default set-
tings. We did adjust three parameters pertaining to the numerical
resolution of the radiative transfer calculations in BOXFIT. More
specifically, these three parameters correspond to (i,ii) the num-
ber of rays used in the radiative transfer steps in the radial and
tangential direction; and (iii) the total number of simulation snap-
shots used. The first two parameters determine the number of rays
for which the flux is calculated, while the third parameter sets
the resolution along the rays.e We set these to 500, 30, and 500,
respectively, which are lower values than the default settings, and
this is again a trade-off between computing time and the quality of
the light curve. From our testing, the numerical noise of the light
curves with the mentioned values is similar to that of the default
settings while saving about half of the computation time.

2.2 Neural network setup and training

Each sample in our training data consists of eight input values (θ0,
E, n, p, εB, εe, θobs and νobs) and 117 output values corresponding to
the observer data points. As a preprocessing step, we took the log10
of the input and output values (except for p which has a limited
range) and removed the mean and variance. GRB afterglow light
curves generally follow a power-law decay (e.g., Sari et al. 1998),
thus the flux values at early observer times can be orders of mag-
nitude larger than at late observer times. Taking the log10 of the
flux values is a necessary step for the early time bins not to domi-
nate the objective (loss) function for NN training. In log-space we
used the StandardScaler in the scikit-learn Python package

eSee the BOXFIT manual for more details.

(Pedregosa et al. 2011) to standardise the individual time bins by
subtracting the mean of the flux values and scaling to unit vari-
ance. The same steps were done for the input parameters. We also
experimented with the MinMaxScaler but found this to produce
slightly worse results.

We modelled the relation between the resulting input and out-
put values using a feed-forward NN (see e.g., Schmidhuber 2015,
for an overview) in Keras/Tensorflow 2.9.1. One NN was trained
for each of the two progenitor environments. The best architec-
ture and hyperparameters of the NNs were obtained through a
trial-and-error approach, that is, manually searching the hyper-
parameter space. While, in the limit of finite training data, the
reproduction will not be perfect, we aimed for DeepGlow to repro-
duce BOXFIT with an error which is generally well below the typi-
cal fractional GRB afterglow flux measurement error (≈10− 30%
in the GRB970508 dataset). We experimented with the number
of layers, the size of the layers, learning rate, activation function
and batch size. Three large hidden layers consisting of 1000 neu-
rons with a softplus activation function produced the best results.
The output layer, consisting of 117 neurons, uses a linear activa-
tion function. We used Nesterov-adam (Sutskever et al. 2013) as
the optimiser with a cyclic learning rate (triangular2 policy, Smith
2015) between 10−4 and 10−2. We employed 90% of the training
data to actually train the network, the remaining 10% was used
to the test the accuracy of the NNs afterwards. The data was fed
through the network with a batch size of 128 for 2000 epochs and
we selected the realisation with the highest accuracy, that is, lowest
median fractional error compared to BOXFIT over the test dataset,
from all epochs. In general, three to five equally sized hidden lay-
ers with at least 200 neurons brought the reproduction error into
our goal range. A cyclic learning rate schedule was also crucial in
bringing the error down. Changing the activation function or the
batch size had limited influence, however. We did not experiment
with different optimisers.

NNs run the risk of overfitting on the training data and not
generalising well to unseen test data (e.g., Caruana, Lawrence, &
Giles 2000; Ying 2019). Because of the uniform way in which the
light curve data was generated through ourMonte Carlo approach
and the relatively large size of the training and test data, the risk of
overfitting is low in our case. For reference, we compare the per-
formance of the trained NNs on both the test dataset and training
dataset in Appendix 1, where we show these are almost the same.

We chose the mean absolute error as our loss function; using
the mean squared error loss resulted in reproduction errors an
order of magnitude worse. As mentioned in Section 2.1, not all
light curves have nonzero flux values at each of the 117 data points.
Naively computing the loss for these light curves gives a numerical
error as the log10 0= −∞. Removing these light curves entirely
from the training data would prohibit the NNs from learning
the parts of the light curves which do have calculated flux val-
ues, which is not ideal. Thus, we modified the loss function such
that it disregards these missing values. The expression for the loss
function for a batch becomes:

MAE(ytrue, ypred)= 1
N

B∑
i=1

T∑
j=1

wij|yij,true − yij,pred| (1)

wij =
{
0, if yij,true = 0
1, otherwise

(2)

N =
B∑
i=1

T∑
j=1

wij (3)
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Figure 2. MeanFE and MaxFE distributions scaled logarithmically on the horizontal axis of the light curves in our test dataset. The upper two panels show these distributions
assuming an ISM progenitor environment while a wind progenitor environment is used in the lower two panels. In each panel, the pruned dataset refers to the distributions
calculated over a smaller observer time range starting from t ≈ 1 d.

Here, ytrue and ypred represent the true and predicted flux val-
ues, respectively. B is the batch size (128), and T is the number of
time bins (117). The index i iterates over the light curves in the
batch, and the index j iterates over the time bins. The variable wij
is a weight that determines whether a specific element contributes
to the loss function, andN is the total number of nonzero elements
in the batch.

The NNs then only train on parts of the light curves with
nonzero flux values. Importantly, this does not mean that the NNs
learn to output zero at the zero flux values in the training data.
Instead, they will learn to extrapolate the flux to these regions
based on the light curves that do have complete coverage. This
method is perhaps less physically motivated than, for example,
using closure relations (see e.g., Gao et al. 2013) to fill in the zero
flux gaps. It does rely only on the BOXFIT calculations, however,
and is straightforward to implement in the NN training procedure.

3 DeepGlow results

During the training stage of the NNs we calculated the median
fractional error over all flux values in the test dataset at the same
time to gauge the accuracy of DeepGlow. To get a more complete
picture of how well it performs in a production setting, we fol-
lowed a similar approach to Kerzendorf et al. (2021) and defined
for each light curve in our test dataset:

MeanFE= 1
N

N∑
i=1

|dDGk,i − dBFk,i |
dBFk,i

, (4)

MaxFE=MaxNi=1
|dDGk,i − dBFk,i |

dBFk,i
, (5)

Table 2.Median values of the MeanFE andMaxFE distributions for each
progenitor environment.

Median values ISM environment Wind environment

MeanFE 0.020 0.034

MeanFE pruned dataset 0.016 0.026

MaxFE 0.104 0.228

MaxFE pruned dataset 0.062 0.099

with N (= 117) the amount of data points, and dk,i the flux value
of the i-th data point of the k-th light curve in our test dataset
generated by either DeepGlow or BOXFIT.

For each progenitor environment, we calculated the MeanFE
and MaxFE distributions over the test dataset for the full observer
time range. In addition, we also calculated these statistics assum-
ing a more limited range starting from tobs ≈ 1 d (i = 30), after
which most GRB afterglow observations usually take place. We
will refer to this second case as the pruned dataset which has the
same amount of light curves as the test dataset but takes fewer
flux values into consideration. Both distributions, theMeanFE and
MaxFE statistics calculated over the full test dataset and the pruned
dataset, are shown in Fig. 2, scaled logarithmically on the hori-
zontal axis. The median of each MeanFE and MaxFE distribution
shown is given in Table 2.

In general, the average NN reproduction error per light curve,
that is, MeanFE, is a few percent which is well below the typical
measurement error on GRB afterglow observations. For the ISM
environment, theMaxFE onmost generated light curves is smaller
than the typical measurement error as well, certainly when look-
ing at the pruned dataset. The MaxFE in the wind environment

https://doi.org/10.1017/pasa.2023.32 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2023.32


Publications of the Astronomical Society of Australia 5

Figure 3. Examples of light curves in the test data sets where the MaxFE is concentrated at the edge of the observer times which are still covered by BOXFIT calculations. The
left panel shows an example for the ISM environment whereas the right panel shows an example for the wind environment. In both panels, the top plot shows the fractional
error of the DeepGlow prediction versus the BOXFIT calculations, whereas the bottom plot shows both the BOXFIT (blue) and DeepGlow (green) light curves. The inset shows the
corresponding parameter values.

case can become quite high (>30%) but this improves consider-
ably in the pruned dataset. The better performance in the pruned
dataset can be traced back to better BOXFIT calculation coverage
for later observer times, see Fig. 1. There are fewer data points
to train on at tobs < 1 d, and the flux evolution is more sporadic,
making it harder to predict. We observe that the average MaxFE
is substantially higher for light curves where the BOXFIT cover-
age is incomplete. At the limits of the observer times which still
have nonzero fluxes for these light curves, the simulated BOXFIT
flux can drop off very rapidly and/or have large simulation noise.
As mentioned in Section 2.1, this is also a sign of incomplete
simulation coverage even though the flux is still nonzero. Slight
errors in, for example, the reproduced slope by DeepGlow can
easily lead to large fractional errors compared to BOXFIT in these
instances.We show two examples of this for light curves in our test
dataset in Fig. 3. Thus, large fractional errors and data points with
zero fluxes are usually in close proximity with one another with
respect to their observer times. Consequently, maxFE errors are
often found in regions where BOXFIT calculations are intrinsically
inaccurate and NN emulation is not meaningful anyways. Because
the BOXFIT coverage is less of an issue in the pruned dataset, the
median MaxFE will also be lower.

Incomplete BOXFIT coverage is more likely in quite extreme
regions of the GRB afterglow parameter space (e.g., very high ener-
gies in combination with very low densities) which may not be
where most observed GRB afterglows reside. Still, for the wind
environment in particular, it is possible that the reproduction error
will lead to a significant systematic error contribution compared to
BOXFIT when fitting some observed data points. Moreover, while
DeepGlow is trained on light curves with a fixed observer time
grid, we use linear interpolation to allow for arbitrary observer
times within the limits t0 and t1. This could also be an extra

source of systematics not captured in the MeanFE and MaxFE
distributions.

For many GRB afterglow datasets, we are confident that
DeepGlow can be used to fit the data in place of BOXFIT with
good accuracy. We advise caution, however, when interpreting
GRB afterglow datasets with best fit parameter values which lie
in regions of the parameter space where BOXFIT has incomplete
coverage over the observation times of the measurements.

The mean and standard deviation of the DeepGlow evaluation
time are just 2.2± 0.2ms on a single thread of our computing
cluster. In contrast, the BOXFIT mean and standard deviation
evaluation time on 40 threads of a single node are 29.6± 4.6 s.
DeepGlow thus represents an approximate 104 factor speedup in
evaluation, which further increases if less threads for BOXFIT par-
allel execution are available, making parameter estimation with the
physics of BOXFIT possible.

In the next section, we will use DeepGlow to estimate the
parameters of the GRB970508 afterglow. In Appendix 1, we pro-
vide some additional figures related to the training of the NNs.

4 TEST CASE: GRB970508

4.1 Gaussian Process framework

As a first scientific application of DeepGlow, we inferred the prop-
erties of the afterglow of GRB970508 using the methods Aksulu
et al. (2022, hereafter referred to as A22).They build on the meth-
ods in Aksulu et al. (2020) and use a Gaussian Process (GP,
Rasmussen &Williams 2006) framework to estimate the param-
eters of GRB afterglow datasets while allowing for unknown sys-
tematics to be modelled simultaneously as well. Especially when
considering unmodelled systematic effects such as scintillation at

https://doi.org/10.1017/pasa.2023.32 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2023.32


6 O.M. Boersma and J. van Leeuwen

Figure 4. Posterior distribution of the GRB afterglow parameters for GRB970508 assuming an ISM progenitor environment. The likelihood was calculated using either the
ScaleFitmodel in red or our DeepGlowmodel in blue.

radio frequencies, conventional χ 2 fitting methods can lead to
underestimated uncertainties on parameters (Aksulu et al. 2020).
By modelling the systematics using GPs, we have a much more
robust method to obtain parameter estimates. In A22, the GRB
afterglowmodel of choice is ScaleFit (Ryan et al. 2015, in prepa-
ration). It is a semi-analytical model which uses pre-calculated
spectral tables from BOXFIT to model the GRB afterglow in differ-
ent spectral regimes. ScaleFit is a computationally inexpensive
alternative to BOXFIT and, also in contrast to BOXFIT, is valid in
all spectral regimes (see A22 for details). A downside to ScaleFit
is the assumptions it has to make about the sharpness of spectra

around break frequencies. This follows naturally from the radia-
tive transfer approach that BOXFIT uses and is thus incorporated
in DeepGlow too. The evaluation time for ScaleFit, after gener-
ating the necessary spectral tables, is 0.9 ± 0.1 ms on our comput-
ing cluster. Taking into account the sampling overhead, parameter
estimation runs are similar in runtime to those with DeepGlow.

A22 use the MultiNest nested sampler (Feroz, Hobson, &
Bridges 2009) through the Python implementation PyMultiNest
(Buchner et al. 2014) to sample the GP likelihood (Eq. (2) of
Aksulu et al. 2020). This nested sampling approach requires on
the order of 100000 likelihood evaluations for each fit. Because
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Figure 5. Same as Fig. 4, except now assuming a wind progenitor environment.

BOXFIT can generate a light curve for only one frequency at a time,
and the GRB970508 observations cover twelve different frequen-
cies, BOXFIT would have to be run twelve times for one likelihood
evaluation. This becomes intractable to calculate, certainly on a
repeated basis when, for example, fitting an afterglow dataset mul-
tiple times with different MultiNest settings. We thus compared
the results using DeepGlow to the results of A22 using ScaleFit.
While this is not a direct comparison between DeepGlow and
BOXFIT, ScaleFit is similar enough to BOXFIT to give a gen-
eral indication of how well DeepGlow works in practice. We
performed two fits per afterglow model, one for each progenitor
environment.

An important difference between DeepGlow and ScaleFit
lies in how the model parameters p and εe are handled. ScaleFit
fits the parameter ε̄e ≡ p−2

p−1εe instead of εe to allow for fits with
p < 2. For the sake of comparison, we also fitted ε̄e and calcu-
lated εe from ε̄e. A22 extended the prior range of p below two as
well. This is not possible for DeepGlow as BOXFIT, on which it is
trained, cannot calculate light curves or spectra with p < 2. Here
we are thus limited to fits with p > 2 which might hamper any
comparisons. The posteriors of GRB970508 using ScaleFit have
little support for p < 2, however, and we assume that our more
limited prior range did not influence the results much in this case
(though it might for other GRB afterglows which do have support
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for p < 2, see A22). The rest of the methodology, including the
prior ranges and MultiNest settings, was the same as those in
A22). As such, we also included AV , the rest-frame value for host
galaxy dust extinction, as a free parameter in the model.

We will limit ourselves to quantitative comparisons between
the two afterglow models in the next section. An in-depth com-
parison of the differences in estimated parameters that may arise
in relation to any physical differences between DeepGlow, that is,
BOXFIT, and ScaleFit is beyond the scope of this work.

4.2 Results

We show the posteriors in Figs. 4 (ISM environment) and 5 (wind
environment). The median values and 68% credible intervals of
each parameter, and if these values overlap for DeepGlow and
ScaleFit, are given in Table 3 (ISM environment) and Table 4
(wind environment). Note that the values presented here for
ScaleFit are somewhat different than those in A22 because we
have calculated, for simplicity, the median and not the mode of the
distributions. Furthermore, small sampling differences between
parameter estimation runs can arise as well.

For the most part, the parameter estimates of DeepGlow
and ScaleFit overlap fairly well. For both environments, the
estimates for EK,iso and θobs/θ0 in particular are in good agree-
ment between the two afterglow models. An exact match for all
parameters is not expected in any case, as ScaleFit does have
some distinct differences over BOXFIT, as mentioned. For the
marginalised distributions that do not overlap within 1σ , there is
usually only a slight discrepancy. Furthermore, strong correlations
between parameters, for example, nref and εB, are captured well by
DeepGlow in accordance with ScaleFit.

A big benefit of nested sampling is the direct computation of
the Bayesian evidence Z as part of the sampling procedure. This
allows us to give both a preference in terms of the progenitor envi-
ronment as well as the afterglow model by calculating the ratio
of evidence values, that is, the Bayes factor BF. We follow Kass &
Raftery (1995) for interpretation.

We find a decisive preference for the wind environment
over the ISM environment for both DeepGlow and ScaleFit
with BFwind/ISM ∼ 104 and BFwind/ISM ∼ 103, respectively, similar
to what was found in A22. We also find a strong preference for
DeepGlow over ScaleFit in the ISM case with BFDG/SF ∼ 20 and
a decisive preference in the wind case with BFDG/SF ∼ 103.

An important caveat to the parameter estimates of DeepGlow
for the wind environment, is that for most values of ε̄e and p in
the posterior, εe becomes greater than one which is unphysical. To
a lesser degree, this is true for the posterior of ScaleFit (wind
environment) as well. In these instances, instead of setting ξN = 1,
a lower value is perhaps better suited, for example, ξN = 0.1, to
scale down the other degenerate parameters (EK,iso, nref, ε̄e, and
εB) to more physical values (Eichler & Waxman 2005). As in most
literature, including A22 though not in Aksulu et al. (2020), ξN is
fixed canonically to 1, we did not use another value in our study
here.

In Fig. 6, we plot the broadband GRB970508 dataset we fitted
using DeepGlow. We drew 100 parameter sets randomly from the
posteriors in Figs. 4 and 5 and drew the resulting light curve for
each set using DeepGlow. This gives a visual confirmation that the
fits are of good quality for both progenitor environments.

Overall, the results for DeepGlow and ScaleFit seem con-
sistent. While additional systematics by DeepGlow compared to

Table 3.Median values of themarginal posterior distributions for the afterglow
parameters of GRB970508 assuming an ISM environment. Quoted uncertain-
ties are at the 68% level. A match indicates if the uncertainty intervals overlap
for the two afterglowmodels.

Parameter DeepGlow ScaleFit Match

log10 θ0 0.02+0.13
−0.08 −0.17+0.09

−0.09 ×
log10 EK,iso 52.60+0.11

−0.15 52.56+0.13
−0.12 �

log10 nref 0.66+0.33
−0.33 −0.12+0.40

−0.39 ×
θobs/θ0 0.77+0.10

−0.12 0.72+0.05
−0.05 �

p 2.51+0.04
−0.04 2.39+0.06

−0.05 ×
log10 εB −3.58+0.44

−0.39 −2.64+0.58
−0.63 �

log10 ε̄e −0.68+0.11
−0.11 −0.94+0.14

−0.14 ×
AV 0.08+0.03

−0.04 0.05+0.03
−0.03 �

Table 4. Same as Table 3, except now assuming a wind progenitor environ-
ment.

Parameter DeepGlow ScaleFit Match

log10 θ0 0.09+0.07
−0.06 0.06+0.02

−0.02 �
log10 EK,iso 53.48+0.13

−0.14 53.33+0.16
−0.20 �

log10 nref 2.72+0.18
−0.14 2.33+0.21

−0.20 ×
θobs/θ0 1.13+0.04

−0.05 1.10+0.03
−0.03 �

p 2.66+0.04
−0.04 2.58+0.05

−0.05 �
log10 εB −5.64+0.35

−0.38 −4.73+0.48
−0.51 ×

log10 ε̄e −0.21+0.12
−0.11 −0.41+0.13

−0.11 �
AV 0.04+0.02

−0.03 0.07+0.03
−0.03 �

BOXFIT could change the results slightly, see the next section,
we contend that a direct fit with BOXFIT would produce similar
results to DeepGlow. Characterising other GRB afterglow datasets
with DeepGlow could thus provide an interesting avenue for a
more thorough comparison between the physics of BOXFIT and
ScaleFit.

4.3 Systematics

To characterise the systematics of DeepGlow, we reran the fit
on GRB970508 assuming a wind environment. We used a dif-
ferent NN realisation this time from the same training run but
trained for 1940 epochs. It has a very similar median error cal-
culated over all data points in the test dataset compared to the
primary NN realisation used which was trained for 1900 epochs,
see Appendix 1. Because the MaxFE on some reproduced light
curves can become quite large, we may expect significant varia-
tion for some data points in the light curves generated between
two NN realisations with slightly different weights. Any resulting
change in the parameter estimates will give an indication on the
influence of the systematic reproduction errors in DeepGlow. We
show the results in Table 5.

The estimates are close and readily within the 1σ uncertain-
ties for all parameters. Still, even though the overall error is much
below the typical measurement error for both NN realisations,
there are some variations in the estimated parameters. These are
larger than any sampling differences we observed for DeepGlow
runs. We attribute these variations to the large MaxFE for certain
light curves. While this is not a substantial source of systematic
errors, it is something to be taken into consideration.
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Figure 6. Fit results using DeepGlow for the dataset of GRB970508. The panels on the left side of the figure show the fit assuming an ISM progenitor environment while the panels
on the right show the fit for a wind progenitor environment. The coloured points correspond to the observed flux densities from the X-ray to radio bands. The legends of each
subpanel display the observer frequency in Hz. The multiplication factor for a legend item indicates that the flux density is multiplied by this factor. The dots represent actual
measurements while triangles correspond to the 3-σ upper limits. From the posteriors of Figs. 4 and 5, respectively, 100 parameter sets are drawn randomly and the DeepGlow
light curves are computed and shown as semi-transparent solid lines. More opaque regions thus correspond to higher posterior probabilities.

5. Discussion and outlook

5.1. DeepGlow use cases

The current version of DeepGlow emulates the GRB afterglow
simulations of BOXFIT with high accuracy. The data for the emu-
lator was generated during∼105 core hours and the emulator now
produces individual light curves within a few milliseconds. This
efficiency is best put to use for enabling population studies that
require a large number of model runs (e.g., >106 for Aksulu et al.
2022; ∼107 for Boersma & van Leeuwen 2022). There, DeepGlow
speeds up iterations to run within of order an hour, offering
astronomers an interactive exploration approach.

The quick turn-around time may also be beneficial in getting a
first estimate of the underlying parameters from x-ray and opti-
cal detections of an afterglow, and inform the radio follow-up

campaign. Before day 1 there is a ∼15% chance the BOXFIT-
based training data was incomplete (Fig. 1). Our light curves with
MaxFE>10 lie mostly in this range. Only 1–4% of the pruned
total haveMaxFE>10. Over day 1−10 both the validity of BOXFIT
and the accuracy of DeepGlow improve considerably (Section 2.1).
During real-life detections, estimates should thus be updated daily
to benefit from the increased BOXFIT coverage during these first
10 d.

Application to afterglows may be especially relevant if the
BOXFIT/DeepGlow top-hat jet is preferred for producing a reli-
able light curve shape and flux. One reason for this preference
could be that the geometry of the transient indicates the jet travels
in the direction of the observer, as is generally the case in GRBs.
Even for potentially more off-axis systems such as gravitational-
wave events, DeepGlow can be applicable and even preferred. In
the intermediate phase of the afterglow, physical models (and
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Table 5. Same as Table 4, except now comparing two realisations of DeepGlow
from the same training run, see text.

Parameter DeepGlow Alt. NN Match

log10 θ0 0.09+0.07
−0.06 0.10+0.06

−0.05 �
log10 EK,iso 53.48+0.13

−0.14 53.46+0.11
−0.13 �

log10 nref 2.72+0.18
−0.14 2.66+0.18

−0.15 �
θobs/θ0 1.13+0.04

−0.05 1.11+0.04
−0.04 �

p 2.66+0.04
−0.04 2.64+0.04

−0.04 �
log10 εB −5.64+0.35

−0.38 −5.46+0.35
−0.38 �

log10 ε̄e −0.21+0.12
−0.11 −0.28+0.12

−0.11 �
AV 0.04+0.02

−0.03 0.05+0.02
−0.03 �

hence, DeepGlow) outperform semi-analytic ones in the predic-
tion of radio light-curve fluxes (Ryan et al. 2020). Furthermore,
the top-hat jet core dominates the afterglow in these geometries
too, once the light curve peaks (Gill et al. 2019; Duque, Daigne, &
Mochkovitch 2019).

In cases where a structured jet is required, the current version
of DeepGlow is not the best choice.

5.2 Future outlook

The methods presented here could be extended to emulate more
complex afterglow models. For GRBs, one example is GAMMA
(Ayache, van Eerten, & Eardley 2021). It incorporates a precise
but highly computationally expensive local cooling approach to
the evolution of micro-physical states. Current computational
resources reasonably available would not suffice to run such mod-
els the roughly 105 times required for accurate emulation using the
methods in this work. Instead, a transfer learning approach using
DeepGlow as the starting point could prove very valuable and
greatly bring down the amount of repeated evaluations required.

While GRBs are generally observed at boresight, the multi-
frequency afterglows of gravitational-wave y observed at an angle
from the centre of the jet. In these cases, emulating a structured
jet would be appropriate. These could be based on the numerical
hydrodynamical simulations of relativistic jets with Gaussian pro-
files (Kumar & Granot 2003; Urrutia, De Colle, & López-Cámara
2022).

5.3 Open source

In the current work, we have implemented an neural-net emulator
for BOXFIT in DeepGlow, and demonstrated its accuracy. To facil-
itate the inclusion of other, more precise or more applicable RHD
models, we have made DeepGlow open source,f and we encour-
age contributions. We will provide the necessary compute time to
train such new or improved emulators.

6. Conclusion

In this work we introduce DeepGlow, an open-source deep learn-
ing emulator for the GRB afterglow simulations of BOXFIT. It can
generate light curves and spectra to within a few percent accu-
racy in just a fraction of the BOXFIT evaluation time. It enables

fhttps://github.com/OMBoersma/DeepGlow.

rapid characterisation of GRB afterglow data using the com-
plex radiative transfer simulations in BOXFIT without the need
for a supercomputer. It has support for either an ISM or stel-
lar wind progenitor environment and can be extended to other
environments as well.

We estimate the parameters of the broadband GRB afterglow
dataset of GRB970508 as a first test of DeepGlow. We find consis-
tent results with an analytical model calibrated to BOXFIT and, in
accordance with recent results from the literature, find a decisive
preference for a stellar wind progenitor environment around this
GRB source.
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Appendix A. Additional Neural Network Accuracy Figures

In Fig. A.1 we show the median fractional error for the ISM envi-
ronment NN aggregated over all data points in all light curves in
our test dataset as a function of training dataset size. EachNN real-
isation is trained for 200 epochs. The error follows an approximate
log-linear slope. Thus, while the error improves quickly at first, it

becomes increasingly harder to increase the accuracy of our NNs
by adding more training data.

In Fig. A.2 we show the median fractional error over all data
points as a function of the amount of epochs trained. The error
decreases rapidly for the first 200 epochs after which it starts to
level off to an asymptotic value. The wind environment NN has
a much noisier error trajectory compared to the ISM environ-
ment NN. This is likely because of the increased amount of light
curves with incomplete coverage in the wind environment dataset.
Furthermore, the light curves in the wind dataset with incomplete
coverage usually have more zero flux values as well.

Figure A.1. The median fractional error over the test dataset as a function of the
training dataset size. The NN was trained for 200 epochs each time.

Figure A.2. Themedian fractional error over the train and test dataset as a function of
the amount of epochs trained. The ISMenvironmentNN is shown in green (test dataset)
or red (train dataset) while the wind environment NN is shown in blue (test dataset) or
orange (train dataset).
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