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Geography of Irregular Gorenstein 3-folds
Dedicated to thememory of Professor Gang Xiao

Tong Zhang

Abstract. In this paper, we study the explicit geography problem of irregular Gorenstein minimal
3-folds of general type. We generalize the classical Noether–Castelnuovo type inequalities for irreg-
ular surfaces to irregular 3-folds according to the Albanese dimension.

1 Introduction

_e geography of 3-folds of general type is a vast and important subject in the study
of algebraic varieties. Much work has been done by Hunt, Chen, Catanese, Chen,
Hacon, and others in the general case (see [6, 10–13,22]), and byOhno [31] and Barja
[1] in the ûbered case.

_e purpose of this paper is to study the geography problem of irregular 3-folds of
general type.

We work over an algebraically closed ûeld of characteristic 0. A projective variety
X is called irregular if h1(OX) > 0, i.e., X has a nontrivial Albanese map. Denote
by a(X) ⊆ Alb(X) the image of X under its Albanese map. _e Albanese dimen-
sion dim a(X) can vary from one to dimX. We say that X is of Albanese dimension
m if dim a(X) = m. In particular, we say X is of maximal Albanese dimension if
dim a(X) = dimX.

Let C be a projective curve of genus g > 0. One has

deg(ωC) = 2χ(ωC) ≥ 0.

_e above result has several 2-dimensional generalizations. For an irregular min-
imal surface S of general type (with ADE singularities), χ(ωS) > 0. One has the
Noether type, Castelnuovo type, and Severi inequalities for irregular surfaces proved
respectively by Bombieri [5],Horikawa [20], and Pardini [32].
(a) Noether type inequality: K2

S ≥ 2χ(ωS) if S is irregular (see [5]);
(b) Castelnuovo type inequality: K2

S ≥ 3χ(ωS) if the Albanese ûber is not hyperellip-
tic of genus 2 or 3 (see [20]); 1
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1Here we call it Castelnuovo type inequality because it is closely related to the classical Castelnuovo

inequality K2
S ≥ 3pg + q − 7 when S has birational canonical map. Hence the line of slope 3 in the

geography of surfaces of general type has this name.
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(c) Severi inequality: K2
S ≥ 4χ(ωS) if S is of maximal Albanese dimension (see [15,

32]).
_e above results concern the geography of irregular surfaces, and they have played
a very important role in surface theory. Also, in the recent work of Lu [27, 28] and
Lopes–Pardini [29], results of such type have been applied to study hyperbolicity of
irregular surfaces.

Having seen the importance of such results one can ask the following natural ques-
tion.

Question 1.1 What are the Noether type, Castelnuovo type and Severi inequalities
for irregular minimal Gorenstein 3-folds of general type?

Here we assume that the minimal 3-folds are Gorenstein so that χ(ωX) > 0 (see
[9, §2.1]), and we can have nontrivial inequalities K3

X ≥ aχ(ωX) with a > 0 similar to
the surface case.

In fact, several questions of the similar type have been raised before. In the early
1980’s, Miles Reid asked the following question: what is the Noether inequality for
3-folds? Also, as an open problem in [12, §3.9], Chen conjectured as follows.

Conjecture 1.2 For Gorenstein minimal 3-fold X of general type, there should be a
Noether inequality in the form

K3
X ≥ aχ(ωX) − b,

where a(> 1), b are both positive rational numbers.

As is mentioned in [12], any bound a > 1 is nontrivial and interesting. However,
it might be more diõcult than the inequality between K3

X and pg(X). One possible
problem comes from the diõculty to understand h1(OX) and h2(OX). Another prob-
lem may be due to the non-smoothness of X. For example, when X is smooth and
minimal, it is proved in [6] that K3

X ≥ 2
3 (2pg(X) − 5). From this, Chen and Hacon

[13] have proved that a = 8
9 . But if X isGorenstein, it is still an open questionwhether

K3
X ≥ 2

3 (2pg(X) − 5) holds. See [6, Conjecture 4.4].
Recently, the Severi inequality was proved by Barja [2] and by the author [36] in-

dependently: Let X be an irregular minimal Gorenstein 3-fold of general type. If X is
ofmaximal Albanese dimension, then

K3
X ≥ 12χ(ωX).

Our ûrst purpose of this paper is to give a complete answer to Question 1.1 by
proving the following Noether-Castelnuovo type inequalities.

_eorem 1.3 Let X be an irregular minimal Gorenstein 3-fold of general type. If X
has Albanese ûber dimension one, then

K3
X ≥ 4χ(ωX).

Moreover, if the Albanese ûber is not hyperelliptic of genus ≤ 5, then
K3

X ≥ 6χ(ωX).
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_is theorem, combined with the Miyaoka–Yau inequality K3
X ≤ 72χ(ωX), will

give the explicit geography of Gorenstein irregular 3-folds of Albanese dimension 2
or more.

Let us now denote by d the Albanese dimension of X. _en _eorem 1.3 just says
that when d = 2, the coeõcients before χ(ωX) are 2d! = 4 and 3d! = 6. Along
this line, one can naturally consider the following conjecture ofNoether–Castelnuovo
type when X has Albanese dimension one (i.e., d = 1).

Conjecture 1.4 Let X be an irregular minimal Gorenstein 3-fold of general type with
Albanese dimension one. _en K3

X ≥ 2χ(ωX). If the Albanese ûber has large volume,
then K3

X ≥ 3χ(ωX).

Note that the similar inequalities appear in the surface case. Here we consider
the volume of the ûber instead of its geometric genus, simply because in this case
the Albanese ûber has dimension 2 and the volume is always positive for a surface of
general type, but the geometric genus is not.
By the sharp inequality K3

X ≥ 2
3 (2pg(X)−5) [6] in the smooth case, Conjecture 1.4

seems to be too optimistic. But surprisingly, the following theorem shows that the
above conjecture is not too far from being true.

_eorem 1.5 Let X be an irregular minimal Gorenstein 3-fold of general type with
Albanese dimension one. Let f ∶X → Y be the induced Albanese ûbrationwith a smooth
general ûber F. _en K3

X ≥ 2χ(ωX), unless one of the following holds:
(i) pg(F) = 2 and K2

F = 1. In this case, K3
X ≥ 4

3 χ(ωX).
(ii) pg(F) = 3 and K2

F = 2. In this case, K3
X ≥ 12

7 χ(ωX).
Moreover, we have K3

X ≥ 3χ(ωX) provided that one of the following holds:
(iii) K2

F ≥ 12;
(iv) F has no hyperelliptic pencil and K2

F ≥ 9.

Remark 1.6 _e geography of non-Gorenstein 3-folds of general type is a very sub-
tle topic. In particular, χ(ωX) can be zero or evennegative. For example, there do exist
examples of non-Gorenstein 3-folds ofmaximalAlbanese dimensionwith χ(ωX) = 0
(see [16]). In [10], Chen and Hacon have constructed a family of non-Gorenstein 3-
folds of general typewith χ(ωX) negative. In their paper, they obtained a similar type
of inequality

K3
X ≥ cχ(ωX),

but with c < 0. One can also construct families of non-Gorenstein 3-folds of general
type with Albanese dimension two and χ(ωX) < 0 (see Example 6.2). In these cases,
_eorem 1.3 holds trivially. We would like to point out that in [8], Chen and Chen
proved that there exists an explicit eòective lower bound for Vol(X).

Let us sketch the proofs of the above theorems. If X has Albanese dimension two,
Pardini’smethod [32] on étale covering and limiting can be applied here, provided one
has a good slope inequality for ûbered 3-folds over surfaces, which is not known yet.
In this paper, to overcome this diõculty, we prove the relative Noether inequalities
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in _eorem 5.2 for ûbered 3-folds over surfaces. _ese inequalities are about K3
X and

h0(KX) up to some explicit error terms. _en by the generic vanishing theorem due
to Green and Lazarsfeld [18],we know that χ(ωX) is bounded from above by h0(KX)
up to étale covering. Finally, by Pardini’s limiting trick, we can prove_eorem 1.3.

If the Albanese dimension of X is one, we still have the étale covering method by
Bombieri and Horikawa [5, 20]. But the generic vanishing does not help in this case.
Alternatively, we will prove the relative Noether inequalities in _eorems 7.1 and 8.1,
for ûbered 3-folds over curves. _is will imply _eorem 1.5 via the above covering
method if the volume of the Albanese ûber is at least 4. Note that the slope inequality
for ûbered 3-folds over curves has been studied by Ohno [31] and Barja [1]. Finally,
we will prove case by case when the volume of the Albanese ûber is at most 3.

_is paper is organized as follows. In Section 3, we prove several basic results for
ûbered 3-folds. In Section 4, we list several results about linear systems on algebraic
surfaces. In Section 5, we prove the relative Noether inequalities for ûbered 3-folds
over surfaces. In Section 6, we prove _eorem 1.3. In Sections 7 and 8, we consider
the case of Albanese dimension one and prove_eorem 1.5.
A�er ûnishing the paper, J. Chen informed the author of a very recent paper [7] in

which he andM.Chen proved that K3
X ≥ 2

3 (2h
0(KX)−5) still holds in theGorenstein

case. In another very recent paper, Hu [21] showed that K3
X ≥ 4

3 χ(ωX) − 2 in this
case. Also, the author has been informed byM. Barja that in [2, Remark 4.6], the ûrst
inequality of_eorem 1.3 is independently proved using a diòerent method.

2 Notation

_e following notation will be frequently used in this paper.
Let X be a projective variety and let L be a line bundle on X such that h0(L) ≥ 2.

We denote by ϕL ∶X ⇢ Ph0
(L)−1 the rational map induced by the complete linear series

∣L∣. We say that ϕL is generically ûnite if dim ϕL(X) = dimX. Otherwise, we say ϕL
factors through a ûbration. In particular, we say ∣L∣ is composed with a pencil if the
image of ϕL has dimension 1.
A Q-Weil divisor D on a variety X of dimension n is called pseudo-eòective if for

any nef line bundles A1 , . . . ,An−1 on X, we have

A1⋯An−1D ≥ 0.

Such divisors can be characterized as the limit of eòectiveQ-divisors.
Let α∶X → A be amorphism from X to an abelian variety A. Denote by µd ∶A→ A

themultiplicativemap of A by d. We have the diagram

Xd
ϕd //

αd
��

X

α
��

A
µd // A.

Here Xd = X ×µd A is the ûber product. We call Xd the d-th li�ing of X by α. In
particular, if α is the Albanese map of X, then we call Xd the d-th Albanese li�ing
of X. _is construction was used by Pardini in [32]. We would like to remark here
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that Xd could be non-connected in general, but in this paper, since α is always the
Albanese map of X, the induced map from Pic0(A) to Pic0(Xd) is always injective,
which implies that Xd is connected.

In this paper, a ûbration f ∶X → Y always means a surjectivemorphism with con-
nected ûbers.

3 Preliminaries

Let X be a projective n-fold. Herewe assume that n = 2, 3. Let f ∶X → Y be a ûbration
from X to a smooth projective curve Y with a smooth general ûber F. _en for any
nef line bundle L on X, we can ûnd a unique integer eL such that
● L − eLF is not nef;
● L − eF is nef for any integer e < eL .
We call this number theminimumof Lwith respect to F. In particular, eL > 0. Another
important fact is that if h0(L − eLF) > 0, then ∣L − eLF∣ has horizontal base locus (cf.
[36, §2]). We have the following theorem.

_eorem 3.1 Using the above notation, let L be a nef and eòective line bundle on X.
_en we have the quadruples

{(X i , L i , Z i , a i), i = 0, 1, . . . ,N}
with the following properties:
(i) (X0 , L0 , Z0 , a0) = (X , L, 0, eL).
(ii) For any i = 0, . . . ,N − 1, π i ∶X i+1 → X i is a composition of blow-ups of X i such

that the proper transform of the movable part of ∣L i − a iFi ∣ is base point free.
Here F0 = F, Fi+1 = π∗i Fi , and a i = eL i is the minimum of L i with respect to Fi .
Moreover, we have the decomposition

∣π∗i (L i − a iFi)∣ = ∣L i+1∣ + Z i+1

such that ∣L i+1∣ is base point free and Z i+1∣Fi+1 > 0.
(iii) We have h0(L0) ≥ h0(L1) > ⋯ > h0(LN) > h0(LN −aNFN) = 0. Here aN = eLN .

Proof See [36, §2].

Remark 3.2 From the above construction, we have

h0(L0∣F0) ≥ h0(L1∣F1) > h0(L2∣F2) > ⋯ > h0(LN ∣FN ).
In general, we do not know if h0(L0∣F0) > h0(L1∣F1). But if ∣L0∣F ∣ is base point free,
then

h0(L0∣F0) > h0(L1∣F1).
_is fact will be used in the proofs of_eorem 7.1 and 8.1.

Write ρ i = π0 ○⋯ ○ π i−1∶X i → X0 for i = 1, . . . ,N . Fix a nef line bundle P = P0 on
X and denote

L′i = L i − a iFi , r i = h0(L i ∣Fi ), d i = (Pi ∣Fi )(L i ∣Fi )n−2 ,
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where Pi = ρ∗i P. It is easy to see that we have

d0 ≥ d1 ≥ ⋯ ≥ dN ≥ 0.

Proposition 3.3 Let H0(L) → H0(L∣F) be the restriction map. Denote by r the
dimension of its image. _en for any j = 0, . . . ,N , we have the following numerical
inequalities:

h0(L0) ≤ h0(L′j) + a0r +
j
∑
i=1
a ir i ≤ h0(L′j) +

j
∑
i=0
a ir i ;(3.1)

P0L2
0 ≥ 2a0d0 +

j
∑
i=1
a i(d i−1 + d i) − 2d0 (n = 3).(3.2)

Proof _e proof is almost identical to [36, §2]. We sketch it here and point out the
diòerence. When i > 0, by the following exact sequence

0Ð→ H0(L i − Fi)Ð→ H0(L i)Ð→ H0(L i ∣Fi ),
we get

h0(L i − Fi) ≥ h0(L i) − h0(L i ∣Fi ) = h0(L i) − r i .
_e only diòerence here from [36, §2] is when i = 0. In order to prove the inequality
here, we only need to show that

h0(L − iF) − h0(L − (i + 1)F) ≤ h0(L) − h0(L − F)
for any 0 ≤ i ≤ a0 − 1.

In fact, the result holds if a0 = 1. If a0 > 1, by the exact sequence

0Ð→ H0(L − 2F)Ð→ H0(L − F)⊕H0(L − F)Ð→ H0(L),
we know that

h0(L − F) − h0(L − 2F) ≤ h0(L) − h0(L − F) = r.

_erefore, we can ûnish the proof by induction. Finally, summing over i = 0, . . . , j,
we can get (3.1).
For (3.2), since π∗i L

′
i = a i+1Fi+1 + L′i+1 + Z i+1, we have the following computation

of 1-cycles:

(π∗i L′i)2 − L′2i+1 = (π∗i L′i − L′i+1)(π∗i L′i + L′i+1)
= a i+1(π∗i L′i + L′i+1)Fi+1 + (π∗i L′i + L′i+1)Z i+1

= a i+1(π∗i L′i + L′i+1)Fi+1 + (π∗i L′i + Fi+1)Z i+1

+ (L′i+1 + Fi+1)Z i+1 − 2(π∗i L′i − L′i+1)Fi+1 .

Note that π∗i L′i + Fi+1 and L′i+1 + Fi+1 are both nef. Taking intersections with Pi+1 for
both sides, we can get

PiL′2i − Pi+1L′2i+1 = Pi+1(π∗i L′i)2 − Pi+1L′2i+1 ≥ a i+1(d i + d i+1) − 2(d i − d i+1).
Summing over i = 0, . . . , j − 1, we have

P0L′20 − PjL′2j ≥
j
∑
i=1
a i(d i−1 + d i) − 2(d0 − d j).
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Note that we also have

P0L2
0 − P0L′20 = 2a0d0 , PjL′2j + 2d j ≥ 0.

Hence (3.2) follows.

We also have the following lemma.

Lemma 3.4 Under the above setting, for n = 2, 3, we have

P0Ln−1
0 ≥ (n − 1)d0(a0 − 1) + d0

N
∑
i=1
a i .

Proof For i = 0, . . . ,N − 1, denote by τ i = π i ○⋯ ○ πN−1∶XN → X i the composition
of blow-ups.

Write b = a1 +⋯+ aN and Z = τ∗1 Z1 +⋯+ τ∗N−1ZN−1 + ZN . We have the following
numerical equivalence on XN :

τ∗0L
′
0 ∼num L′N + bFN + Z .

Since L′0 + F0 and L′N + FN are both nef, it follows that

P0(L′0 + F0)n−1 = PN(τ∗0L′0 + FN)n−2(L′N + FN + bFN + Z)
≥ bPN(τ∗0L′0 + FN)n−2FN ≥ bd0 .

Combining with

P0Ln−1
0 − P0(L′0 + F0)n−1 = (n − 1)(a0 − 1)d0 ,

the proof is ûnished.

4 Linear Series on Algebraic Surfaces

In this section, we recall some basic results about linear series on algebraic surfaces.
_ese results will be used to compare the numbers r i and d i . _ey will also serve as
the ûrst step of the induction process.

In this section, we always use the following assumptions:
(a) S is a smooth algebraic surface of general type with the smooth minimal model

σ ∶ S → S′;
(b) L ≥ M are two nef line bundles on S such that L ≤ KS .

We list the following results that will be frequently used in the sequel.

Proposition 4.1 Suppose that ϕL is generically ûnite. _en
● LM ≥ 2h0(M) − 4;
● (σ∗KS′)L ≥ 2h0(L) − 2 if h0(L) < pg(S).
If we further assume that S has no hyperelliptic pencil, then
● LM ≥ 3h0(M) − 7,
● (σ∗KS′)L ≥ 3h0(L) − 5 if h0(L) < pg(S).
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Proof To prove this result, we can assume that h0(M) ≥ 2. If ∣M∣ is not composed
with a pencil, from a result in [33,_eorem 2], we know that

LM ≥ M2 ≥ 2h0(M) − 4.

In particular, if S has no hyperelliptic pencil, then by the Castelnuovo type inequality
(cf. [3,_éorème 5.5]),

LM ≥ M2 ≥ 3h0(M) − 7.
If ∣M∣ is composed with a pencil, we can writeM ∼num rC +Z . Here C is a general

member of the pencil, r ≥ h0(M) − 1, and Z is the ûxed part of ∣M∣. Because ϕL is
generically ûnite, h0(L∣C) ≥ 2. _is implies that LC ≥ 2, since S is of general type. We
get

LM ≥ rLC ≥ 2h0(M) − 2.
Note that if S has no hyperelliptic pencil, C will not be hyperelliptic and LC ≥ 3.
Hence, LM ≥ 3h0(M) − 3.

_e second inequality is from [31, Lemma 2.3]. We only need to prove the last one.
Since h0(L) < pg(S), by the Hodge index theorem and the Castelnuovo inequality
[3,_éorème 5.5], we have

((σ∗KS′)L)2 ≥ L2K2
S′ ≥ (3h0(L) − 7)(3pg(S) − 7)

≥ 9(h0(L))2 − 33h0(L) + 28

> 9(h0(L))2 − 36h0(L) + 36 = (3h0(L) − 6)2 .

It implies that (σ∗KS′)L ≥ 3h0(L) − 5, which completes the proof.

Proposition 4.2 Assume that ∣L∣ is composed with a pencil. _en

(σ∗KS′)L ≥ 2h0(L) − 2,

except for the case when K2
S′ = 1, pg(S) = 2, and q(S) = 0. If we further assume that S

has no hyperelliptic pencil, then

(σ∗KS′)L ≥ 3h0(L) − 3,

except for the case when K2
S′ = 2, pg(S) = 2, and q(S) = 0.

Proof _e ûrst inequality is just [31, Lemma 2.2]. For the second one, since ∣L∣ is
composed with a pencil, we can write L ∼num rC + Z , where Z ≥ 0 is the ûxed part, C
is a general member of the pencil, and r ≥ h0(L)− 1. Let C′ = σ(C). _en pa(C′) ≥ 3
by our assumption.

If KS′C′ ≥ 3, then

(σ∗KS′)L ≥ rKS′C′ ≥ 3h0(L) − 3.

Now assume that KS′C′ ≤ 2. By our assumption on L, we know that C ≤ L ≤ KS ,
which implies thatC′ ≤ KS′ . In particular,C′2 ≤ K2

S′ . By theHodge index theorem,we
get C′2 ≤ 2. Note that pa(C′) ≥ 3. _e genus formula forces KS′C′ = C′2 = 2, which
also implies that K2

S′ = 2. By the Hodge index theorem again, we have KS′ ∼lin C′.
Hence pg(S) = h0(C′) = 2, as ∣C′∣ is a rational pencil. Moreover, we get q(S) = 0.
Otherwise, S′ is irregular and K2

S′ ≥ 2pg(S′) by [14].
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We refer to [1] for more results of the above type. We also give the following nu-
merical result when S has a free pencil.

_eorem 4.3 Suppose that S has a free hyperelliptic pencil of genus g ≥ 6. _en

(σ∗KS′)L ≥ 3h0(L) − (4g − 4).

Proof Denote byC a generalmemberof thispencil. Up tobirational transformation,
we can assume that ∣L∣ is base point free. In particular, LC ≤ 2g − 2 should be an even
number.

If LC = 0, then L ∼num aC, where a ≥ h0(L) − 1. _en
(σ∗KS′)L = a(2g − 2) > 3h0(L) − 3.

If LC ≥ 6, by [35,_eorem 1.1], one has

L2 ≥ 4LC
LC + 2

h0(L) − 2LC ≥ 3h0(L) − (4g − 4).

If 2 ≤ LC ≤ 4, resume the notation from _eorem 3.1, Proposition 3.3, and Lemma
3.4. Denote L0 = L and P = σ∗KS′ . We have

h0(L0) ≤
N
∑
i=0
a ir i , PL0 ≥ (a0 − 1)d0 +

N
∑
i=1
a id i .

Here, d i = 2g − 2 ≥ 10 for all i and r i ≤ h0(L∣C) ≤ 3 by the Cliòord’s inequality. It
follows that d i > 3r i . Hence,

PL0 ≥
N
∑
i=0
a id i − d0 > 3

N
∑
i=0
a ir i − d0 ≥ 3h0(L0) − (2g − 2),

which completes the proof.

5 Relative Noether Inequalities

In this section, we will prove several relative Noether inequalities. _e relative Noe-
ther inequality in [36] studies linear series on ûbered varieties over curves, while the
relative Noether inequalities in this section are devoted to studying ûbered varieties
whose ûbers are curves.

Assumption 5.1 _roughout this section, we assume the following.
● X is a Gorenstein minimal projective 3-fold of general type.
● f ∶X → Y is a ûbration of curves of genus g from X to a normal projective surface
Y .

● G is a nef and big line bundle on Y such that ∣G∣ is base point free. Write B = f ∗G.
● If pg(X) > 0, write

KX =
I0
∑
i=1

H i + V ,

where each H i is an irreducible and reduced horizontal divisor (H i and H j might
be the same) and V is the vertical part. Note that we have I0 ≤ 2g − 2. Since B∣H i is
big on H i , we can ûnd an integer k > 0 such that (kB − KX)∣H i is pseudo-eòective
for each i. We can also assume that kB − V is pseudo-eòective by increasing k.
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_eorem 5.2 Assumption 5.1 holds.
(i) We have

h0(KX) −
K3

X

4
≤ 3K2

XB + 2KXB2

4
+ 2(2k + 1).

(ii) If X has no hyperelliptic ûbration over surfaces, then

h0(KX) −
K3

X

6
≤ 3K2

XB + 2KXB2

6
+ 7

3
(2k + 1).

(iii) If f is hyperelliptic and g ≥ 6, then

h0(KX) −
K3

X

6
≤ 3K2

XB + 2KXB2

6
+ 4g − 4

3
(2k + 1).

Proof To prove these results, one can assume that h0(KX) > 0.
Choose two very general members in ∣B∣ and denote by σ ∶X0 → X the blow-up

of their intersection. Let F be its proper transform. _en we get a ûbration X0 → P1

with general ûber F. Denote L0 = σ∗KX , P0 = σ∗(KX + B) and B0 = σ∗B.
Now, apply _eorem 3.1 to X0, L0, P0 and use the notation from Proposition 3.3.

We get

h0(L0) ≤
N
∑
i=0
a ir i , P0L2

0 ≥ 2
N
∑
i=0
a id i − 2d0 .

_e proofs of the three inequalities are quite similar. We will give the detailed proof
of (i) and sketch the others.

To prove (i), note that P0∣F = KF . By the classical Noether inequality (since itmight
happen that r0 = pg(F)), Propositions 4.1 and 4.2 (when r i < pg(F)), we know that

r i ≤
1
2
d i + 2.

Here, because B is movable and KX is nef and big,
d0 = (P0∣F)(L0∣F) = (KX + B)KXB > 0.

By Lemma 3.4, we have
N
∑
i=0
a i ≤

P0L2
0

d0
− a0 + 2 ≤ P0L2

0

d0
+ 1.

Combine the above inequalities and we get

h0(L0) −
P0L2

0

4
≤ 2

N
∑
i=0
a i +

d0
2
≤ 2P0L2

0

d0
+ 2 + d0

2
.

On the other hand, note that kB − V and (kB − KX)∣H i are pseudo-eòective. We can
get

(KX + B)KXV ≤ k(KX + B)KXB,
I0
∑
i=1
(KX + B)KXH i ≤ k

I0
∑
i=1
(KX + B)BH i ≤ k(KX + B)KXB.

As a result, we have
P0L2

0

d0
= K2

X(KX + B)
(KX + B)KXB

= (KX + B)KXV
(KX + B)KXB

+
I0
∑
i=1

(KX + B)KXH i

(KX + B)KXB
≤ 2k.
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_erefore,

h0(KX) ≤
P0L2

0

4
+ 2P0L2

0

d0
+ d0

2
+ 2

= K3
X + K2

XB
4

+ 4k + K2
XB + KXB2

2
+ 2

= K3
X

4
+ 3K2

XB + 2KXB2

4
+ 2(2k + 1).

_is completes the proof of (i).
For (ii), by the assumption, F has no hyperelliptic pencil. By the classical Casteln-

uovo inequality (when r0 = pg(F)), Propositions 4.1 and 4.2 (when r i < pg(F)), we
have

r i ≤
1
3
d i +

7
3
.

Combining with Lemma 3.4 gives

h0(L0) −
P0L2

0

6
≤ 7

3
N
∑
i=0
a i +

d0
3
≤ 7P0L2

0

3d0
+ 7

3
+ d0

3
.

Hence,

h0(KX) ≤
P0L2

0

6
+ 7P0L2

0

3d0
+ 7

3
+ d0

3

≤ K3
X + K2

XB
6

+ 7
3
(2k + 1) + K2

XB + KXB2

3

= K3
X

6
+ 3K2

XB + 2KXB2

6
+ 7

3
(2k + 1).

To prove (iii), note that F has a free of genus g induced by f . By _eorem 4.3, we
have

r i ≤
1
3
d i +

4g − 4
3

.

Follow the above proof almost verbatim, and we can get

h0(KX) ≤
K3

X + K2
XB

6
+ 4g − 4

3
(2k + 1) + K2

XB + KXB2

3

= K3
X

6
+ 3K2

XB + 2KXB2

6
+ 4g − 4

3
(2k + 1).

We leave the detailed proof to the interested reader.

6 Proof of Theorem 1.3

Note that the strategy here has been used by Pardini [32] in the proof of Severi in-
equality for surfaces.

We ûrst generalize a theorem that was used in [36].
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_eorem 6.1 ([36]) Let X be a projective, minimal, normal, and irregular variety.
Denote by a(X) its Albanese image. For each d ∈ N, let Xd be the d-th Albanese li�ing
of X. _en for each i = 0, . . . , dim a(X) − 1, we have

lim
d→∞

h i(OXd )
d2m = 0.

Here, m = h1(OX).

Proof Since the Albanese li�ing is étale, Xd is also minimal. Furthermore, Xd has
only terminal singularities, which are rational. Hence it suõces to assume that X is
smooth. In this case, the result is just [36, _eorem 4.1]. Also see [19, Remark 1.4]
for the generic vanishing theorem for singular varieties with rational singularities in
characteristic 0.

Go back to the 3-fold case. Now assume that X has Albanese dimension two. Let
Xd be the d-th Albanese li�ing of X. We have the diagram

Xd
ϕd //

αd
��

X

α=AlbX
��

A
µd // A.

Let m = h1(OX). We have
h0(KXd ) ≥ χ(ωXd ) + h2(OXd ) − h1(OXd ) + 1 ≥ d2m χ(ωX) − h1(OXd ).

By _eorem 6.1, it follows that

h0(KXd ) ≥ d2m χ(ωX) + o(d2m).
Note that in order to prove _eorem 1.3, we can assume that χ(ωX) > 0. _us one
can ûnd an integer d > 0 such that h0(KXd ) > 0. Also note that _eorem 1.3 is true
up to étale covers. Without loss of generality, let us assume that h0(KX) > 0.

Let
X

g0Ð→ Y
h0Ð→ A (resp. Xd

gdÐ→ Yd
hdÐ→ A)

be the Stein factorization of α (resp. αd ). Let H be a suõciently ample line bundle on
A and Ld = h∗dH for all d. Write Bd = g∗dLd for all d. _en we have ([4, Chapter 2,
Proposition 3.5])

d2Bd ∼num ϕ∗dB0 .
Resume the notation from the previous section. We can write

KXd = ϕ∗dKX =
I0
∑
i=1

ϕ∗dH i + ϕ∗dV .

By pulling back from X to Xd , one can check that

(kg∗dB0 − KXd )∣ϕ∗d H i , and kϕ∗dB0 − ϕ∗dV

are both pseudo-eòective. Apply the above numerical equivalence and we get

(kd2Bd − KXd )∣ϕ∗d H i , kd2Bd − ϕ∗dV
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are both pseudo-eòective. Now by _eorem 5.2(i),

h0(KXd ) ≤
K3

Xd

4
+

3K2
Xd
Bd + 2KXdB

2
d

4
+ 2(2kd2 + 1)

= d
2mK2

X

4
+ 3d2m−2K2

XB0 + 2d2m−4KXB2
0

4
+ 2(2kd2 + 1).

Let d →∞. We can prove that K3
X ≥ 4χ(ωX).

When the Albanese ûber is hyperelliptic of genus g ≥ 6, using the same approach
as above and by _eorem 5.2(iii), we can prove

h0(KXd ) ≤
d2mK2

X

6
+ 3d2m−2K2

XB0 + 2d2m−4KXB2
0

6
+ 4g − 4

3
(2kd2 + 1).

Let d →∞ and we will have K3
X ≥ 6χ(ωX).

Now we consider the case when the Albanese ûber is not hyperelliptic.
We ûrst show that, up to étale covers, we have h0(KX − B0) > 0, i.e., ∣B0∣ ⊂ ∣KX ∣.

_is will imply that the Albanese ûbration factors through the canonical map of X,
because themap given by ∣B0∣ is the same as the Albanese ûbration.
Choose a very general member M ∈ ∣Bd ∣. Since h0(KXd ) > 0, by adjunction,

h0(KM) > 0. Apply the classical Noether inequality, and we get

h0(KXd ∣M) ≤ h0(KM) ≤
1
2
K2

M + 2 = 1
2
(KXd + Bd)2Bd + 2 ∼ o(d2m).

_erefore, up to étale covers, we can assume that

h0(KX) − h0(KX ∣M) > 0

for a general member M ∈ ∣B0∣, which means that h0(KX − B0) > 0.
Second,we claim that X cannot have hyperelliptic pencils. Otherwise, suppose there

is a hyperelliptic pencil on X. We would have the following two possibilities. Either
this pencil is contracted by ϕKX or it is not. If it is contracted by ϕKX , it would also
be contracted by the Albanese map, which is impossible, since the Albanese pencil
is nonhyperelliptic. _e second case is still impossible, because if this pencil is not
contracted by ϕKX , then its image under ϕKX is a P1 pencil. Since the Albanese image
of X cannot have any P1 pencil, by the factorization of the Albanesemap, this pencil
has to be contracted by the Albanesemap, which contradicts our assumption again.

Similar to the above claim, we can prove that Xd has no hyperelliptic pencil. _us
by _eorem 5.2(ii), we have

h0(KXd ) ≤
d2mK3

X

6
+ 3d2m−2K2

XB0 + 2d2m−4KXB2
0

6
+ 7

3
(2kd2 + 1).

As before, we can get K3
X ≥ 6χ(ωX) by letting d →∞.

We remark here that if X is Q-Gorenstein but not Gorenstein, χ(ωX) might be
negative by looking at the following example. Note that the construction has appeared
in many places in the literature (e.g., [30, Remark 8.7], [16, Example 1.13], etc.).

Example 6.2 Fix an elliptic curve E. Take two curves C i (i = 1, 2)with genus g i ≥ 2
and involutions τ i such that C1/⟨τ1⟩ = E and C2/⟨τ2⟩ = P1. Let the 3-fold X be the
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quotient of C1 × C1 × C2 by the diagonal involution. Hence, X is Q-Gorenstein but
not Gorenstein. Let α∶X → E × E × P1 be the induced cover. _en

α∗OX = OE ⊠OE ⊠OP1 ⊕ L1 ⊠ L1 ⊠OP1 ⊕OE ⊠ L1 ⊠ L2 ⊕ L1 ⊠OE ⊠ L2 ,

where L1 and L2 are determined by the branch locus of C1 → E and C2 → P1. It is easy
to see that χ(OX) > 0. Hence χ(ωX) < 0. It is also easy to see that X has Albanese
dimension two.

7 Proof of Theorem 1.5: Part 1

In this section, we will prove_eorem 1.5(i)–(iii).
We have the following relative Noether inequality for ûbered 3-folds.

_eorem 7.1 Let X be a Gorenstein minimal 3-fold of general type, let Y be a smooth
curve, and let f ∶X → Y be a ûbration with a smooth general ûber F. _en

h0(ωX/Y) ≤ (
1
4
+ 1

K2
F
)ω3

X/Y +
K2
F + 4
2

,

except for the case when K2
F = 1, pg(F) = 2, and q(F) = 0.

Proof We know in this case that ωX/Y is nef. Resume the notations in _eorem 3.1
and Proposition 3.3. Denote L0 = P = ωX/Y . It follows that

h0(L0) ≤
N
∑
i=0
a ir i ,

L3
0 ≥ 2a0d0 +

N
∑
i=1
a i(d i−1 + d i) − 2d0 .

Hence

h0(L0) −
L3
0

4
≤ d0

2
+ ( r0 −

1
2
d0) a0 +

N
∑
i=1
( r i −

1
2
d i −

d i−1 − d i

4
) a i .

By the classical Noether inequality, Propositions 4.1, 4.2, and Remark 3.2, we can
always get

r0 ≤
1
2
d0 + 2, r i ≤

1
2
d i +

d i−1 − d i

4
+ 1 (i > 0)

except when r0 = r1 and d1 ≤ 2r1 − 3.
If we are not in the exceptional case, then

h0(L0) −
L3
0

4
≤ d0

2
+ 2a0 +

N
∑
i=1
a i .

By Lemma 3.4,

2a0 +
N
∑
i=1
a i ≤

L3
0

d0
+ 2 ≤ L3

0

d0
+ 2.

Hence,

h0(L0) ≤ (
1
4
+ 1
d0
)L3

0 +
d0 + 4

2
.
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Finally, let us consider the exceptional case. Recall that we have r0 = r1 and d1 ≤
2r1 − 3. By Proposition 4.2, ∣L1∣F1 ∣ deûnes a generically ûnite morphism. _us from
Proposition 4.1,we know that (L1∣F1)2 ≥ 2r1−4. Note that π∗0KF > L1∣F1 . By theHodge
index theorem,

(2r1 − 3)2 ≥ d2
1 = ((π∗0KF)(L1∣F1))2 > (L1∣F1)2K2

F ,
which implies that K2

F ≤ 2r0 − 2. On the other hand, ∣KF ∣ is not base point free, thus
K2
F ≥ 2r0 − 3. It also implies that d1 = 2r1 − 3 and (L1∣F1)2 = 2r1 − 4. _erefore, we

have two possibilities:
(a) d1 = 2r1 − 3 and K2

F = d1;
(b) d1 = 2r1 − 3 and K2

F = d1 + 1.
InCase (a), choose a blow up π∶X′ → X such that themovable part ∣M∣ of ∣π∗ωX/Y ∣

is base point free. Write F′ = π∗F. Abusing the notation, we denote the new L0 = M
and P = π∗ωX/Y . _en we will have a new sequence of r i ’s and d i ’s. Under this new
setting, r i−1 > r i for each i > 0. Running the same process as before, we can get

h0(ωX/Y) = h0(M) ≤ ( 1
4
+ 1
dM
)ω3

X/Y +
dM + 4

2
,

where dM = (π∗KF)(M∣F′). We need to show that dM = K2
F . In fact, dM =

KF(π(M)∣F) ≤ K2
F . On the other hand, since L1 comes from the movable part of

∣ωX/Y − a0F∣, it implies that π0(L1) ≤ π(M). In particular, it means that

K2
F = d1 = KF(π0(L1)∣F) ≤ KF(π(M)∣F) = dM .

Hence dM = K2
F .

We claim that Case (b) does not occur. Write
∣KF ∣ = ∣V ∣ + Z ,

where ∣V ∣ is themovable part of ∣KF ∣ and Z ≥ 0. Since r1 = r0, we see that π0(L1)∣F =
V , and so d1 = KFV . Since K2

F > d1, it means that KFZ > 0 and Z > 0. By the
2-connectedness of the canonical divisor, we have VZ ≥ 2. Note that V 2 ≥ 2r0 − 4.
_is implies that

2r0 − 2 = K2
F = V 2 + VZ + KFZ ≥ 2r0 − 2 + KFZ ,

i.e., KFZ = 0 and KFV = K2
F . _is contradicts K2

F > d1.

Remark 7.2 Recall from [35] that if f ∶ S → C is a relative minimal ûbered surface
of genus g ≥ 2. One has

h0(ωS/C) ≤
g

4g − 4
ω2

S/C + g = ( 1
4
+ 1

2degωF
)ω2

S/C +
degωF + 2

2
.

_eorem 7.1 is a natural generalization of the above result. Moreover, based on several
results concerning linear series on surfaces in positive characteristic (cf. [25,26]), our
method can also be used to study the ûbered 3-folds in positive characteristic.

It is also interesting to compare_eorem 7.1 with the slope inequalities proved by
Ohno [31] and Barja [1] for ûbered 3-folds over curves. In their papers, Xiao’s method
on the Harder–Narasimhan ûltration [34] plays a very important role, and it works
only in characteristic zero.
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By the same technique,we can also show the following Noether type inequality for
ûbered 3-folds over curves in order for independent interests.

_eorem 7.3 Let X be aGorenstein andminimal ûbered 3-fold of general type ûbered
over a smooth curve Y with a smooth general ûber F. _en

pg(X) ≤ (
1
4
+ 1

K2
F
)K3

X +
K2
F + 4
2

except for the case when K2
F = 1, pg(F) = 2, and q(F) = 0.

Proof We only need to replace ωX/Y by KX in the proof of_eorem 7.1.

From now on, we assume that f ∶X → Y is the induced ûbration by the Albanese
map from X to a projective curve Y with a smooth general ûber F. One has g(Y) =
h1(OX).

Remark 7.4 Suppose we can prove that

K3
X ≥ aF χ(ωX) + bF ,

where aF and bF only depend on the numerical invariants of F. _en we can get

K3
X ≥ aF χ(ωX).

_is philosophy has been applied by Bombieri [5], Horikawa [20], and Yuan and
Zhang [35]. In fact, since g(Y) = h1(OX) > 0, using the degree d étale base change
π∶Y ′ → Y , we can get a new ûbration f ′∶X′ → Y ′, where X′ = X ×Y Y ′. We still have

K3
X′ ≥ aF χ(ωX′) + bF .

Note that
K3

X′ = dK3
X , χ(ωX′) = dχ(ωX).

_e conclusion will follow a�er we let d → ∞. _is remark will also be used in the
next section.

Proposition 7.5 If pg(F) = 0, then K3
X ≥ 6χ(ωX).

Proof In this situation, pg(X) = 0. Hence,

χ(ωX) = pg(X) − h2(OX) + h1(OX) − 1 ≤ g(Y) − 1.

From the nefness of ωX/Y , we get ω3
X/Y ≥ 0. Since ωX/Y = KX − (2g(Y)− 2)F, we get

K3
X ≥ 6(g(Y) − 1)K2

F ≥ 6(g(Y) − 1) ≥ 6χ(ωX).

Proposition 7.6 If pg(F) > 0 and (pg(F),K2
F) /= (2, 1), then

χ(ωX) ≤ (
1
4
+ 1

K2
F
)K3

X .
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Proof From _eorem 7.1, we get

h0(ωX/Y) ≤ (
1
4
+ 1

K2
F
)(K3

X − 6K2
F(g(Y) − 1)) + K2

F + 4
2

= ( 1
4
+ 1

K2
F
)K3

X − 6( K2
F

4
+ 1)( g(Y) − 1) + K2

F + 4
2

.

On the other hand, by [23, 24] f∗ωX/Y and R1 f∗ωX/Y are both semipositive. Fol-
lowing [31, Lemma 2.4, 2.5], we have

h0(ωX/Y) ≥ deg f∗ωX/Y − pg(F)( g(Y) − 1)
≥ deg f∗ωX/Y − degR1 f∗ωX/Y − pg(F)( g(Y) − 1)
= χ(ωX) − ( χ(OF) + pg(F))( g(Y) − 1) .

By applying Remark 7.4, to prove the conclusion, it suõces to prove that

6( K2
F

4
+ 1) ≥ χ(OF) + pg(F).

It is easy to see that this inequality follows from the classical Noether inequality, since

6( K2
F

4
+ 1) > K2

F + 6 ≥ 2pg(F) + 2 > χ(OF) + pg(F).

_is ûnishes the proof.

From the above proposition, we see that _eorem 1.5 holds if K2
F ≥ 4. In the fol-

lowing, we will consider the case when K2
F ≤ 3.

Proposition 7.7 We have K3
X ≥ 2χ(ωX) in the following two cases:

(i) pg(F) = 2, K2
F = 2, 3;

(ii) pg(F) = 3, K2
F = 3.

Proof We ûrst prove that

ω3
X/Y ≥ 2h0(ωX/Y) − 6.

Suppose we have proven the above result. As before, we still have

h0(ωX/Y) ≥ χ(ωX) − ( χ(OF) + pg(F))(g(Y) − 1),
ω3

X/Y = K3
X − 6K2

F( g(Y) − 1) .
It is easy to check that

6K2
F ≥ 2(2pg(F) + 1) ≥ 2( χ(OF) + pg(F))

in these cases. Hence it will imply that K3
X ≥ 2χ(ωX) by Remark 7.4.

To prove that ω3
X/Y ≥ 2h0(ωX/Y) − 6, we can assume that h0(ωX/Y) ≥ 4. Hence

we have the relative canonical map ϕωX/Y . Note that pg(F) ≤ 3, and we have

0Ð→ H0(ωX/Y(−F)) Ð→ H0(ωX/Y) Ð→ H0(KF).

_us h0(ωX/Y(−F)) > 0.
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Choose a blow-up π∶X′ → X such that the movable part ∣M∣ of ∣π∗ωX/Y ∣ is base
point free. Write F′ = π∗F and S as a general member of ∣M∣.

If dim ϕωX/Y (X) = 1, since h0(ωX/Y(−F)) > 0 and F is a free pencil, we know that
the pencil induced by ϕωX/Y is the same as f . Hence we can write M ∼num aF′ + Z ,
where Z ≥ 0. Also, because Y is an irrational curve that dominates the Albanese
image of X, a ≥ h0(ωX/Y). Hence

ω3
X/Y ≥ a(π∗ωX/Y)2F′ = aK2

F ≥ 2h0(ωX/Y).

If dim ϕωX/Y (X) = 2, denote by C′ a general member of the induced pencil by ϕM .
_en M∣S is a free pencil and M∣S ∼num aC′ , where a ≥ h0(ωX/Y) − 2. Hence,

ω3
X/Y ≥ ((π∗ωX/Y)C′)(h0(ωX/Y) − 2) .

On the other hand, since h0(ωX/Y(−F)) > 0, we know that M∣F′ is also a free pencil
with the same numerical type as C′. In particular, we can ûnd a general F′ such that
C′ ⊂ F′. _en (π∗ωX/Y)C′ = KFC,whereC = π(C′). Note that g(C) ≥ 2 and K2

F ≥ 2.
By theHodge index theorem, we can get KFC ≥ 2, so

ω3
X/Y ≥ 2(h0(ωX/Y) − 2).

If dim ϕωX/Y (X) = 3, then dim ϕM(S) = 2. By Proposition 4.1,

(M∣S)2 ≥ 2h0(M∣S) − 4,

which implies
ω3

X/Y ≥ M3 ≥ 2h0(M∣S) − 4 ≥ 2h0(ωX/Y) − 6,
which completes the proof.

In fact, the abovemethod has been applied byChen [11] for the study of the canon-
ical linear system. Here we use this method for the relative canonical linear system.

Proposition 7.8 If pg(F) = 3 and K2
F = 2, then K3

X ≥ 12
7 χ(ωX).

Proof In this case, since K2
F < 2pg(F) by [14], h1(OF) = 0 and χ(OF) = 4. Apply

the samemethod as in Proposition 7.7. We can still get

ω3
X/Y ≥ 2h0(ωX/Y) − 6,

h0(ωX/Y) ≥ χ(ωX) − 7(g(Y) − 1),
ω3

X/Y = K3
X − 12(g(Y) − 1).

_en the result follows from Remark 7.4.

Remark 7.9 In fact, from the above inequalities, we can also get

K3
X ≥ 2χ(ωX) − 2h1(OX) − 4.

But here h1(OX) is still involved.

Proposition 7.10 If pg(F) = 2 and K2
F = 1, then K3

X ≥ 4
3 χ(ωX).
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Proof By a very recent result ofHu (cf. [21]), we know that in this case,

K3
X ≥ 4

3
χ(ωX) − 2.

_erefore, the result follows from Remark 7.4.

Proposition 7.11 If pg(F) = 1, then K3
X ≥ 2χ(ωX).

Proof We separate the proof into two cases, since the proofs are quite diòerent.

Case 1. K2
F > 1.

First, let us assume that pg(X) ≥ 2. _en the canonical maps of X will factor
through f . So we can write KX ∼num rF + Z , where r ≥ pg(X) and Z ≥ 0. It follows
that

K3
X = K2

X(ωX/Y + (2g(Y) − 2)F) = (2g(Y) − 2)K2
F + ωX/YK2

X

≥ (2g(Y) − 2)K2
F + rωX/YKXF = (r + 2g(Y) − 2)K2

F ≥ 2χ(ωX).

Second, if pg(X) ≤ 1 and h1(OX) > 1, then χ(ωX) ≤ h1(OX). We have

K3
X ≥ 6(g(Y) − 1)K2

F ≥ 2χ(ωX).

_e only missing case is when pg(X) ≤ 1 and h1(OX) = 1. In this case, χ(ωX) ≤ 1
and g(Y) = 1. χ(ωX) = 0 is absurd. So we can assume that χ(ωX) = 1. Now let
µ∶Y → Y be any nontrivial étale map and let X′ = X ×µ Y . We have χ(ωX′) > 1. So
either pg(X′) ≥ 2 or h1(OX′) ≥ 2. If X′ hasAlbanese dimension ≥ 2, then by_eorem
1.3, K3

X′ ≥ 4χ(ωX′). If not, we are in one of the ûrst two cases and K3
X′ ≥ 2χ(ωX′). In

either situation, this will imply that K3
X ≥ 2χ(ωX).

Case 2. K2
F = 1.

Here we prove this result by studying the linear system ∣2KX ∣.
Since pg(F) = 1 and K2

F = 1, h1(OF) = 0, h0(2KF) = 3, and ∣2KF ∣ is base point free
(see [17]). Hence ϕ2KF is a generically ûnitemorphism of degree 4.
As before, we choose a blow-up π∶X′ → X such that the movable part ∣M∣ of

∣π∗(2KX)∣ is base point free. Note that by the plurigenus formula of Reid,

h0(M) = h0(2KX) ≥
1
2
K3

X − 3χ(OX).

Denote F′ = π∗F. Consider the following restriction map:

res∶H0(X′ ,M)→ H0(F′ ,M∣F′).

Denote by r the dimension of its image. So 1 ≤ r ≤ 3.
If r = 1, then ϕM(X′) is a curve and ϕM factors through the ûbration X′ → Y . In

this case, M ∼num aF′ + Z with a ≥ h0(M). Hence we have

2K3
X ≥ M(π∗KX)2 ≥ aK2

F ≥
1
2
K3

X − 3χ(OX),

i.e., K3 ≥ 2χ(ωX).
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If r = 2, write L0 = M and P = π∗(2KX). Resume the notation from _eorem 3.1
and Proposition 3.3. Similar to _eorem 7.1, we have

h0(L0) −
PL2

0

4
≤ d0

2
+ ( r0 −

1
2
d0) a0 +

N
∑
i=1
( r i −

1
2
d i −

d i−1 − d i

4
) a i .

Here r0 = h0(M∣F′) and d0 = 2(π∗KF)(M∣F′). Also, by Proposition 3.3, the above
inequality still holds if we replace r0 by r.

We claim that d0 = 4 in this case. In fact, we know that d0 ≤ 4K2
F = 4. If r0 = 3,

then M∣F′ = π∗(2KF) and d0 = 4K2
F = 4. If not, then r0 = r = 2. By [11, Lemma 2.5],

we know that (π∗KF)(M∣F′) ≥ 2, which still gives d0 ≥ 4. Hence the claim is true,
and we have r − 1

2d0 ≤ 0.
For i > 0, we know that r i < r0 = 3 by Remark 3.2. Moreover, by [11, Lemma 2.5]

again, d i ≥ 4 if r i = 2, and r i−1 ≥ 2 if r i = 1, which implies d i−1 ≥ 4. From this, one
can check that for any i > 0,

r i −
1
2
d i −

d i−1 − d i

4
≤ 0.

_erefore, we have

h0(2KX) − 2K3
X ≤ h0(L0) −

PL2
0

4
≤ 2.

If r = 3, then ϕM ∣F = ϕ2KF . _us, ϕM is generically ûnite of degree 4. Choose a
general member S ∈ ∣M∣. We have

(M∣S)2 ≥ 4(h0(M∣S) − 2) .
Hence,

K3
X ≥ 1

8
M3 ≥ 1

2
(h0(M∣S) − 2) ≥ 1

2
(h0(2KX) − 3) .

As a result, if r ≥ 2, we always have h0(2KX) − 2K3
X ≤ 3. Applying the plurigenus

formula and Remark 7.4 to the above two cases,we can complete the entire proof.

Now the proof of_eorem 1.5 is straightforward.

Proof of_eorem 1.5 (i)–(iii) From Proposition 7.6, we know that K2
X ≥ 2χ(ωX)

holds when K2
F ≥ 4, and K2

X ≥ 3χ(ωX) holds when K2
F ≥ 12. If K2

F ≤ 4, by Noether
inequality, pg(F) ≤ 3. In this case, the result just comes from Propositions 7.5, 7.7, 7.8,
7.10, and 7.11.

8 Proof of Theorem 1.5: Part 2

In this section, we prove the rest of_eorem 1.5. We ûrst give a better version of the
relative Noether inequality for ûbered 3-folds over curves.

_eorem 8.1 Let X be a Gorenstein minimal 3-fold of general type, let Y be a smooth
curve, and let f ∶X → Y be a ûbration with a smooth general ûber F. Suppose that F
has no hyperelliptic pencil and (pg(F),K2

F) /= (2, 2). _en

h0(ωX/Y) ≤ (
1
6
+ 3

2K2
F
)ω3

X/Y +
K2
F + 7
3

.
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Proof Retain the notation from _eorem 3.1 and Proposition 3.3. Denote L0 = P =
ωX/Y . It follows that

h0(L0) ≤
N
∑
i=0
a ir i , L3

0 ≥ 2a0d0 +
N
∑
i=1
a i(d i−1 + d i) − 2d0 .

Hence,

h0(L0) −
L3
0

6
≤ d0

3
+ ( r0 −

1
3
d0) a0 +

N
∑
i=1
( r i −

1
3
d i −

d i−1 − d i

6
) a i .

By the Castelnuovo inequality, we can always get r0 ≤ 1
3d0 +

7
3 . Recall that by

Remark 3.2, r0 ≥ r1 > ⋯ > rN . We will prove in Lemma 8.2 that if r0 > r1, then

r i ≤
1
3
d i +

d i−1 − d i

6
+ 3

2
, (i > 0).

Assume the above result for now. It follows that

h0(L0) −
L3
0

6
≤ d0

3
+ 7

3
a0 +

3
2

N
∑
i=1
a i .

By Lemma 3.4,
7
3
a0 +

3
2

N
∑
i=1
a i ≤

3L3
0

2d0
+ 3 − 2

3
a0 ≤

3L3
0

2d0
+ 7

3
.

Hence
h0(L0) ≤ (

1
6
+ 3

2d0
)L3

0 +
d0 + 7

3
.

Now we assume that r0 = r1. It implies that ∣KF ∣ has base locus by Remark 3.2.
Hence by the Castelnuovo inequality,

K2
F ≥ 3pg(F) − 6.

We have three exceptional cases.
Case 1. Suppose K2

F ≥ 3pg(F) − 4. We claim we still have

r i ≤
1
3
d i +

d i−1 − d i

6
+ 3

2
, (i > 0).

_is claim is true for i ≥ 2 by Lemma 8.2. We only need prove it for i = 1.
If ∣KF ∣ is composed with a pencil, by Proposition 4.2, we have r1 ≤ 1

3d1 + 1. Hence
the claim holds.

If ϕKF is generically ûnite, then by Proposition 4.1,
(L1∣F1)2 ≥ 3r1 − 7.

_erefore, by theHodge index theorem, d1 ≥
√

K2
F(L1∣F1)2, which gives us

r1 ≤
1
3
d1 +

5
3
.

By our assumptions on K2
F ,we know that d0 ≥ 3r0 −4 ≥ d1 + 1. One can directly check

that the claim holds in this case.
Case 2. Suppose K2

F ≤ 3pg(F)− 5 and ∣KF ∣ has only isolated base points. Note that in
this case, since h0(L1∣F1) = h0(KF), ∣L1∣F1 ∣ is just the proper transformof ∣KF ∣. Hence,

(π∗0KF)(L1∣F1) = K2
F .
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Again, choose a blow-up π∶X′ → X such that the movable part ∣M∣ of ∣π∗ωX/Y ∣
is base point free. Let F′ = π∗F. Denote the new L0 = M and P = π∗ωX/Y . We will
have a new sequence of r i ’s and d i ’s. Under this new setting, for each i > 0, we have
r i−1 > r i . By Lemma 8.2,

r i ≤
1
3
d i +

d i−1 − d i

6
+ 3

2
, (i > 0),

in this new setting. Run the same process as the non-exceptional case, and we will
have

h0(ωX/Y) ≤ (
1
6
+ 3

2dM
)ω3

X/Y +
dM + 7

3
,

where dM = (π∗KF)(M∣F′). We only need to show that dM = K2
F . _is is quite similar

to _eorem 7.1. In fact,we have π0(L1) ≤ π(M) by the same reason as in _eorem 7.1.
It implies that ∣M∣F′ ∣ is the proper transform of ∣KF ∣. By our assumption, ∣KF ∣ has no
ûxed part. _us, ∣π(M)∣F ∣ = ∣KF ∣ and dM = K2

F .

Case 3. Suppose K2
F ≤ 3pg(F) − 5 and ∣KF ∣ has a ûxed part; i.e., ∣KF ∣ = ∣V ∣ + Z, where

Z > 0. In this case, ∣L1∣F1 ∣ is the proper transform of ∣V ∣.
Let π∶X′ → X and ∣M∣ be the same as in Case 2. We still have

h0(ωX/Y) ≤ (
1
6
+ 3

2dM
)ω3

X/Y +
dM + 7

3
,

where dM = (π∗KF)(M∣F′). Using a similar argument, we can prove that ∣π(M)∣F ∣ =
∣V ∣. As before, we only need to show that KFV = K2

F .
By the 2-connectedness of the canonical divisor, VZ ≥ 2. Note thatV 2 ≥ 3pg(F)−

7 by Proposition 4.1. _us

3pg(F) − 5 ≥ K2
F ≥ KFV = V 2 + VZ ≥ 3pg(F) − 5.

_is implies that KFV = 3pg(F) − 5 = K2
F and completes the proof.

As before, we need to show the following lemma.

Lemma 8.2 For any i > 0, if r i−1 > r i , we have

r i ≤
1
3
d i +

d i−1 − d i

6
+ 3

2
.

Proof _e lemma holds if r i ≤ 1
3d i + 4

3 . If not, then by Proposition 4.1 and 4.2,

r i =
1
3
d i +

5
3
.

In this case, d i−1 − d i ≥ 1. Otherwise, we would have

r i−1 ≥ r i + 1 = 1
3
d i−1 +

8
3
.

_is contradicts Propositions 4.1 and 4.2.

From now on, we assume that X is an irregular minimal Gorenstein 3-fold of gen-
eral type, f ∶X → Y is the ûbration over a smooth curve Y induced by the Albanese
map, and F is a smooth general ûber.

https://doi.org/10.4153/CJM-2014-033-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2014-033-0


718 T. Zhang

Proposition 8.3 If pg(F) > 0 and (pg(F),K2
F) /= (2, 2), then

χ(ωX) ≤ (
1
6
+ 3

2K2
F
)K3

X .

Proof _e proof is similar to Proposition 7.6. We sketch it here. From _eorem 8.1,
we get

h0(ωX/Y) ≤ (
1
6
+ 3

2K2
F
)K3

X − (K2
F + 9)(g(Y) − 1) + K2

F + 7
3

.

We still have

h0(ωX/Y) ≥ χ(ωX) − (χ(OF) + pg(F))(g(Y) − 1).
To prove the conclusion, by applying Remark 7.4, it suõces to prove that

K2
F + 9 ≥ χ(OF) + pg(F),

which follows from the Noether inequality.

Proof of_eorem 1.5(iv) If pg(F) = 0, then the theorem is true by Proposition 7.5.
If pg(F) > 0, by Proposition 8.3, the theorem holds if K2

F ≥ 9.

Remark 8.4 By the Castelnuovo inequality K2
F ≥ 3pg(F)− 7, we know that K2

F ≥ 9
provided that pg(F) ≥ 6. In particular, it means that under the same assumption as
in _eorem 1.5, we have K3

X ≥ 6χ(ωX) provided that pg(F) ≥ 6.

As_eorem1.5, onemight guess thatK2
F ≥ 3will “almost” imply thatK3

X ≥ 3χ(ωX).
But it would be probably optimistic. It is true when pg(F) = 0 by Proposition 7.5. It
is also true when pg(F) = 1.

Proposition 8.5 If pg(F) = 1 and K2
F > 2, then K3

X ≥ 3χ(ωX).

Proof _e proof is very similar to Proposition 7.11. We omit it here.
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