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1. Introduction. The results of the present paper can be interpreted (a) 
in terms of the theory of the representations of the symmetric group, or (b) in 
terms of the corresponding theory of the full linear group. In the latter con
nection they give a solution to the problem of the expression of an invariant 
matrix of an invariant matrix as a sum of invariant matrices, in the sense of 
Schur's Dissertation. D. E. Littlewood1 has pointed out the significance of 
this problem for invariant theory and has attacked it via Schur functions, 
i.e. characters of the irreducible representations of the full linear group. We 
shall confine our attention here to the interpretation (a). Our results are 
explicit and yield the interpretation (b) merely by changing2 brackets [ ] 
and multiplication (•) into brackets { } and multiplication (X) ; moreover, 
they are self-contained from a group-theoretic point of view. 

Consider the symmetric group Smn on mn symbols and the subgroup 

1.1 H = Sm X Sm X . . . X Sm, n factors, 

which is the direct product of n factors Sm on n different sets of the mn symbols. 
An irreducible representation of H is necessarily the Kronecker product of 
irreducible representations of the n factors; such an irreducible representation 
of H induces a representation of Smn which is reducible and of degree3 

{mn) ! 
i.z -—— xaxQ. . . xy , 

(m\)n 

where the degrees of the n irreducible representations [a], 
\0\t - - - » M of the Sm in 1.1. We shall assume in the sequel that such irreducible 
representations are always written in Young's orthogonal form. 

Murnaghan4 studied these representations of Smn and gave a method for 
finding their irreducible components. He called such an induced representa
tion the direct product of the n irreducible representations [a], \0\, . . . , [7]. In 
a previous, paper the author has shown3 that this induced representation is 
associated with a skew Young diagram which has the n right diagrams [a], 
[@]j • • • 1 [7] as its disjoint constituents; the skew diagram may be denoted 

1.3 [a] . \0\ [7], n factors, 

Received May 22, 1948. 
![2] and [3]. Cf. also [13] p. 110. 
2[8] section 3. 
3[7] and [8]. 
4[5]. 
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where the order of writing the factors is immaterial. This suggests the term 
disjoint product, which designation will be used throughout this paper. 

Having associated the induced representation under consideration with a 
skew Young diagram we have available a second method for finding the irre
ducible components, namely that based on the Littlewood-Richardson rule.5 

We may assume, then, that these irreducible components are known in any 
given case. 

The problem to be considered here is a certain reduction of the disjoint 
product in the case where all the disjoint constituents are the same; 1.3 becomes 

1.4 n n
[ a ] = [a] . [a] [a] , n factors, 

and the reduction in question arises from the interchangeability of the n factors. 
As one might expect, there is a very close analogy here with Schur's celebrated 
derivation of the irreducible representations of order n of the full linear group.6 

The notation {a}®{/3} was introduced by Littlewood to designate his "new 
multiplication" of Schur functions.7 Restricting our attention to the symmetric 
group, we obtain the desired reduction of IIn

[ a ] in the following form: 

1.5 I U a l = £**[a]0[|8], 

where p runs over all partitions of n, and the reducible component [a]0[/3], 
which corresponds to Littlewood's {a}®{/3}, appears with a frequency Xp. 
The degree of [a]©[/3] is 

1.6 — — (xa)
nxp. 

(ml)nn\ 
The frequency f with which a given irreducible representation [X] of Smn ap
pears as a component of [a] O [0\ is obtained in 5 below and this leads to an 
immediate proof of Littlewood's Theorem of Conjugates.8 Littlewood has 
given a number of methods for obtaining the reduction of {a}®{/3} or analo
gously of [a]©[/3], but none lead to explicit results in the general case. The 
application of the method developed here is illustrated in 7 below. 

Two additional remarks should be made: (i) The reason for not applying 
Schur's original procedure to the Kronecker product {a}n is that the inter
pretation of the results must ultimately be based, as in Schur's case, upon the 
theory of the symmetric group. Basing the whole argument on this theory 
is of some intrinsic interest, (ii) While the results of this paper do lead to a 
systematic study of the structure of the representation [a]0[/3], they do not 
provide a means of identifying the particular [a]0[/3] to which a given irre
ducible component [X] of Una] belongs. This identification is important in 

5Applied to skew diagrams in [7]. 

•[111. 
7In particular [3] Part I I . Note that we use the symbol {a} to designate an irreducible 

representation of the full linear group and not merely its character or corresponding Schur 
function. 

8[3] p. 359. 
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the application to invariant theory.1 However, the definition of [a]0|j8] as an 
induced representation in 6 points the way in which this refinement of the 
theory may be sought. 

In concluding this introduction I should like to express my thanks to 
R. Steinberg and W. T. Sharp for reading the manuscript and suggesting, in 
particular, the insertion of section 6. 

2. The normalizer of H. The subgroup H, as defined in 1.1, has a normal -
izer in Smn which can be written 

2.1 SR(H) = H + Hs*2 + . . . + Hs*n. 

If each of the n sets of m symbols be considered as an ordered set, then the 
element s*i of Smn permutes the sets amongst themselves, preserving this order. 
The factor group yt(H)/H satisfies the following relation 

2.2 W(H)/H ~ 5*n ~ Sn, 

and the s*i generate the subgroup S*n of yi(H). The normalizer yt(H) is not 
a direct product but its structure is sufficiently simple for us to obtain the 
necessary information concerning it. 

With regard to the isomorphism between Sn and 5*n, let us assume that an 
element Si of Sn has cox cycles of length X so that 

2.3 n = coi+ 2a>2+ 3co3+. . . + won; 

then the corresponding element s*i of S*n has mœx cycles of length X. 
Given an irreducible representation 

2.4 [a]n= [a] X [a] X . . . X [a], n factors, 

of H one naturally asks whether it can be extended to yield a representation 
of 5ft(iï), of the same degree. Taking the xa standard diagrams as variables 
of [a] and forming all combinations of n of these diagrams, one diagram being 
associated with each of the n sets of m symbols, we obtain the variables of the 
Kronecker product [a]n. The matrices Si which must be adjoined to those of [a]n 

to yield a representation of yi(H) are just those permutation matrices which arise 
through transformation by s*i of the (xa)

n variables of [a]n. We shall say that 
this representation of ^ ( i l ) , which is necessarily irreducible, is generated9 by 
the representation [a]n of H. 

It will be important in the sequel to have specific information concerning 
these permutation matrices. To this end let us consider those elements of H 
which commute with a given s*;; clearly they will form a subgroup of H which 
we call the centralizer of s*i in II, denoting it fë(s*;). In particular, if s*i= I 
then 6(7) = H. On the other hand, if s*i contains m cycles of length n then 
6(s*») ~ Sm; each element of &(s*i) contains n cycles of equal length, in which 
case we shall say that the n sets of symbols are linked. In general, to each of 
the cox cycles of length X of si there corresponds a factor of &(s*i) which is 

9For a further discussion of the irreducible representations of 5ft (if) see 6 below. 
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isomorphic to Sm and in which X sets of symbols are linked. Thus 

2.5 <&(si) - 5 m X 5 m X . . . X 5 m , co factors, 

where 0 < co = cox+ w2+. . . + con ^ n. 
We can now prove the following theorem: 

2.6 The characteristic of the permutation matrix Si representing s*i in the repre
sentation of 31(H) generated by the representation [a]n of H is (xa)

w where co 
is the number of cycles in S{. 

To see this it is only necessary to look for the number of variables of [a]n which 
remain unaltered after transformation by s*i. But this is precisely xa for each 
factor Sm in 2.5. Since we are dealing with a Kronecker product the total 
number of such variables is (xjw . 

Of course if [a] = [m] this whole analysis falls to the ground for then xa = 1 
and the representation of 31(H) under consideration is merely the identity 
representation. 

To illustrate these ideas consider the case m = 3, n = 2 with [a] = [2, 1], 
We take the two sets of symbols to be 1, 2, 3; 4, 5, 6, so that 

2.7 H = { 1 + (12) + (13) + (23) + (123) + (132)} 

X { 1 + (45) + (46) + (56) + (456) + (465)} , 

2.8 31(H) = H + #(14) (25) (36) , 

2.9 5*2 = 1 + (14) (25) (36) — 52. 

If 5*= (14) (25) (36), then clearly 

2.10 <£(**) = 1 + (12) (45) + (13) (46) + (23) (56) 

+ (123) (456) + (132) (465). 

In order to construct the matrix J which represents 5* in the representation 
of 31(H) generated by [2, l]2, let us denote the variables of [2, l]2 by the pro
ducts of the corresponding standard Young diagrams : 

2.11 (f)(f). (?)(?)• (?)(f). (?)(f). 
in this order. Transforming by s* we have 

2.12 1 : r 1 0 0 0 
0 0 1 0 
0 1 0 0 
0 0 0 1 

3. The reduction of Iln
[a]. We are interested in the representation of Smn 

induced10 by the representation [a]w of H. If 
3.1 Smn= 31(H) + 3l(H)R2+. . . + 3l(H)Rd, 

where d =^(mn)\/(m^nn\, we can set s*i= Si with no ambiguity for the time 

10Cf. [12] pp. 198-202. 
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being and write the group matrix of the induced representation in question in 
the form 

3.2 11,(77) = Un
[a](H) = [ r p - 1 5r 1 H5 i r J 

where i, j = 1, 2, . . . , n\; p, q = 1, 2, . . . , d and H is the group matrix of the 
representation [a]n of 77. The elements s, r to the right and left of H operate 
on the labels attached to the independent variables of H to yield the inde
pendent variables of the group matrix of 5 m n . 

Following Schur6 we seek matrices which will commute with 11/ (77). Now 
it is well known11 that every matrix of the left regular representation (gi~^g~lgi) 
commutes with every matrix of the right regular representation (gi-^gi g) of 
a given group G. The form 3.2 of the group matrix of Smn is derived from 
the right regular representation of Sn~ yt(H)/H. Let us construct the matrix 

3.3 11.(7) = (sjsr1) X / u ) w X Idl 

where (s3- siT1) is the matrix of the left regular representation of Sn representing 
5 = SjSjf1 and the 7's are unit matrices of indicated degrees. By definition, 

3.4 n.( io = na(i). 11,(2?) = UJ(H) . n.(i) 
where the matrix I(Xa)

n in II s(7) is placed in the position of H so that IIS(7) 
commutes with 11/(77). Multiplying the matrices in 3.4, we obtain a contribu
tion only when Sj = ssk so that 

3.5 n s(77) = [rp^s^s H skrq] = [rp^sf1 H sskrq] . 

These two apparently different designations of the independent variables of 
the group matrix are actually the same, as can be seen by setting ssk= sk so 
that s ; - 1= s^s. 

Varying 5, it is clear that the matrices IIS(7) generate a representation of Sn. 
By a suitable choice of M the matrices ikT-1ITs(7)ikf may be taken in com
pletely reduced form, and 

M~lUs(H)M = ikr- in /(77)ikr.i lf- in s(7)M 

= Âf- ins(7)il7".M- in /(77)il7. 

It follows from Schur's Lemma12 that, for any element A. of Smn, 

3.6 tr US(A) = £ tr (A) in [a]0[/3] . ^ (5) , 

where xp(s) 1S the character of 5 in the irreducible representation [13] of Sn. 
The concluding step in this part of the argument is to solve 3.6 by multiplying 
by X/sM and summing over s to yield 

3.7 X(A) in [a]OL8] = - , £ tr US(A) • » W , 

which can serve to define the reducible representation [a] O [/3] of Smn for the 

11 [1] pp. 22-24 and 231-242. 
12[10]. This paper was translated and published by Dickson as chapter XI of his Modern 

Algebraic Theories (Chicago, 1926). 
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time being. Setting A = I in 3.7 we obtain a contribution from the right-
hand side only for 5 = / s o , from 3.3, it follows that the 

3.8 degree of [«]©[/?] = - ^ ~ ( * J % , 

and the frequency of [a]©[/3] in Uj (H) is Xp. Thus 

3.9 nn
[al = £*,[a]0[fl. 

An explicit definition of [a] O \0\ will be given in 6 below. 

4. The character of [a] O\0\. It is necessary to return briefly to the abstract 
theory and consider further the relation of the subgroup H to ©(5*) for a given 
s* of 5*n. We can write 

4.1 H = e + £g 2 +. . . + <Sgr, 

where r ^ m ! ) 7 1 - " . Now the g»- can be chosen to be the elements of certain 
of the original Sm's so that 

4.2 G = {gi} = 5WX 5mX. . . X S«, » - « factors. 

In particular, any X — 1 of the X factors Sm linked in a given factor of (5 will 
appear in G ; it is immaterial which factor is omitted. Collecting together these 
omitted factors, however, we can construct 

4.3 K = SmX SmX. . . X S«, co factors, 
and H = X X G. 

We are seeking the distribution of the conjugate sets of Smn in Hs, where 
again we suppose that s* = s. If g is an element of G, 

g~xKsg = Kg~lsg. 

From the definitions of G and i£ it follows that sgs~1= gkg', where g'9^ I in G 
and & is an element of K, so that 

g-'Ksg = 2»g's = Kg's. 

If we assume that g{~1Ksgi= g2~
1Ksg2 then 5(gig2_"1)^_1 = fei^2~1)^» f° r which 

g'= I and this is impossible unless gi= g2; this implies that all such conjugate 
cosets of K are distinct and make up K X G = H. Thus 

4.4 r&e (m!)n-co ctfsefo 0/ K in Hs are conjugate to Ks under transformation by 
elements of G. 

We are now in a position to proceed to the calculation10 of tr I I 8 (A). From 
3.5 we have 

4.5 tr Ua(H) = Yt
rP~1Si"1s'Hsirp = J^rp"1 s^Kssifp, 

and we obtain a contribution only for elements A of Smn contained in 
sH = Hs. Each of the terms in 4.5 yields the same contribution, and there 
are (mn)\/(m\)n terms. Moreover, changing the labels attached to the inde
pendent variables of the group matrix in 4.5 can be accomplished by multi
plying H by the operator 5 either on the right or on the left. Thus the con-
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tribution of each element conjugate to A in Hs is x(A), where x(A) is the char
acter of A in the representation of %l(H) generated by [a]w; there are nA

H* such 
elements. But there are nA elements conjugate to A in Smn, so to obtain 
tr I I s (-4) for a given A we must divide by nA} thus 

4-6 tr ILG4) = ^ ^ 1 . X(A). 
(m\)nnA 

In view of 4.4 we need only consider elements A = ks in calculating x(A). 
As we saw in 2.6, the structure of I depends on S(5). The subgroup K was 

chosen so that every set of symbols which are linked in (S(Y) is represented by 
just one factor Sm in 4.3. Now the matrix representing a substitution k of K 
in [a]n consists of the matrix representing k in [a]" repeated xa

n~œ times down 
the diagonal. Multiplying by "s yields a matrix whose diagonal elements are 
all zeros except for those of k in [a]40, each of which appears once corresponding 
to the l's in the diagonal of s. If x(A) 1S the character of A = ks in [a]n and 
6(k) is the character of k in [a]w, this proves that 

4.7 X(A) = e(k), 
and 4.6 becomes 

4.8 tr U.(A) - {mnVMAH° . 8(k). 
(ml)nnA 

In the particular case [a] = [rn], the identity representation of Sm, 0(k) = 1 
and 4.8 becomes 

4.9 tr US(A) = ^mn)Xn^ , 
(ml)nnA 

which should be compared with Frobenius' formula 

4.10 tr UM) = {mn)lnAH • 
(ml)nnA 

Inserting the expression 4.6 in 3.7 we have 

4.11 X(A) in [«]©&}] = {™"V; Z X,(s)nA
H'x(A); 

(m\)nn\nA s 
we shall see the significance of this formula in 6 below. Setting A = / , it 
follows that s = k = I and we verify 3.8. 

5. The irreducible components of [a]0[/5]. In order to obtain the fre
quency f with which a given irreducible representation [X] of Smn appears as 
a component of [a]0[/3] we multiply 4.11 by X\(A) and sum over A to yield 

5.1 f*([a]OM) = — \ — E Xt>(s) \x(hs) . *x(fo)l , 
(ml)nn\ s 

1 Xfi(s) . \x(hs) . *x(*s)] . 
(ml)nn\ 

Here we are denoting by ^x(fo) a vector whose (m!)n components are the 
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characteristics of the elements hs in the representation [X] of Smn; similarly, 
%(hs) denotes a vector whose components are the characteristics of the ele
ments hs in the representation of 31(H) generated by [a]n and calculated as 
described in the preceding section. The dot denotes scalar multiplication. 

In the case [0] = [n], which is important for the theory of invariants, 
Xp(s) = 1 and 5.1 simplifies somewhat to give 

5.2 fx(WOM) = — i — E x(hs) . cf>x(hs). 
(m\)nn\ s 

If we also set [a] = [nt], 5.2 reduces to the familiar formula13 giving the fre
quency with which [X] appears as an irreducible component of the represen
tation of Smn induced by the identity representation of 31(H); this repre
sentation is in fact the permutation representation to which the subgroup 
31(H) gives rise under right multiplication by the elements of 5 m n . 

It is interesting to note the effect of changing the representations [a] and [fi] 
into their conjugates,14 that is, interchanging the rows and columns of the 
corresponding Young diagrams. It is clear that we must distinguish two cases 
according as m is even or odd. If m is even every element of S*n, considered 
as a permutation on mn symbols, is even. On the other hand, if m is odd 
%(nl) of the permutations of S*n are even and |(w!) are odd. Changing [a] 
into [a] will change the sign of the component of % = 0 associated with an 
odd permutation h = &, but this will be compensated for in 5.1 by changing 
[X] into [X'], provided m is even; if m is odd ks* may be odd or even depending 
on s*, and to achieve compensation it will be necessary also to change [0\ into 
[£']. This yields D. E. Littlewood's8 

5.3 Theorem of Conjugates: 

fx([a]©[/3]) = fx'([a']0[fl) , m even, 

= fx'(MO[J8']). ntodd. 

6. Explicit definition of [a]©[#|. Let us return to the representation of 
Sfl(H) generated by [a]n as defined in 2. Clearly, the representation \0\ of Sn 

is also an irreducible representation of <K(i?) in which every element of H is 
represented by the identity matrix. These are the two extreme members of 
a family of representations of 31(H) which we can easily construct. The 
remaining irreducible representations of 91(H) are similar in character, but 
we do not need to refer to them here. 

If we denote by s (ft) the matrix representing s* in the representation [ft], 
then the matrices obtained by replacing each 1 of s by s(ji) can be written 

6.1 J X s(p), 

and these also yield a representation of 5*n of degree Constructing 
the analogous representation 
^2 [a]n X IXfi 

»[13] p. 287. 
14[12] p. 202. 
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of H, and combining 6.1 and 6.2 we obtain a representation of 31(H) which 
we may denote by [a, ft] ; it follows from Schur's Lemma that [a, f3] is irre
ducible. The representation of 31(H) defined in 2, for which [13] = [n] is here 
denoted [a, w], and the representation [13] of 31(H) is denoted [m, /?]. The 
character of any substitution hs* of 31(H) in [a, /3] is clearly x(^*) • X/sC**); 
thus, substituting in Frobenius' formula10 for the character of an induced 
representation, we obtain 4.11 and conclude that 

6.3 [a]©[/3] is that representation of Smn which is induced by the irreducible 
representation [a, 13] of 31(H). 

7. Illustrative examples. Referring to the example of 1, we calculate the 
irreducible components15 of [2, 1] 0[2]. Here K and G are interchangeable; set 

7.1 K = I + (12) + (13) + (23) + (123) + (132), 

so that 

7.2 Hs = Ks + five similar cosets of K, 

and 

7.3 Ks = (14) (25) (36)+ (1425) (36) + (1436) (25) 
+ (2536) (14) + (142536) + (143625). 

With the help of a table of characters 5 6 we obtain from 5.1 : 

[2,1]©[2] = [4,2] + [3,2,1] + [3,P] + [23] , 
[2, 1]0[P] = [22, P] + [3, 2, 1] + [4, P] + [32] , 

both of degree 40, illustrating 5.3 with m odd. 
In order to illustrate the case with m even consider the reduction of the 

disjoint product [2]-[2]-[2]. The subgroups H and 5*3 are easily seen to be: 

7.5 H = {/ + (12)} X {/ + (34)} X {/ + (56)} , 

7.6 5*3 = 7 + (13) (24) + (15) (26) + (35) (46) 
+ (135) (246) + (153) (264) . 

It is only necessary to write down two cosets Hs* since 5*3 has only two con
jugate sets distinct from the identity: 

7.7 H(13)(24) = (13) (24) + (1324) + (1423) + (13) (24) (56) + (14) (23) 
+ (1324) (56) + (1423) (56) + (14) (23) (56), 

7.8 #(135) (246)= (135) (246) + (135246) + (146235) + (136245) 
+ (146) (235) + (136) (245) + (145) (236) + (145236). 

From 5.1 we have:16 

[2]©[3] = [ 6 ] + [4,2] + [23], of degree 15, 

7.9 [2]©[2, 1] = [5, 1] + [4, 2] + [3, 2, 1], of degree 30, 

[2]©[P] = [4, P] + [32], of degree 15. 

15[3] p. 336. 
16 [4] p. 289. 
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An application of 5.3 yields: 

[12]©[3] = [l6] + [22, l2] + [32], of degree 15, 
7.10 [12]0[2, 1] = [2, l4] + [22, l2] + [3, 2, 1], of degree 30, 

[12]0[13] = [3, l3] + [23], of degree 15. 

Once the necessary cosets have been written out the irreducible components 
of any [a]©[/3] can be obtained by purely arithmetic calculations, assuming 
that the necessary tables of characters are available. 
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