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In scanning tunneling microscopy (STM), structural organizations of atomic arrangements can have a direct 

impact on their electronic properties. Put another way, the electronic density of states which is probed in 

scanning tunneling spectroscopy (STS), will be modified due to different local atomic configurations. In 

particular, when cleaving a material, depending on the crystal structure and angle of the cleave, the resulting 

surface can be populated by adatoms which lie in a variety of different structural positions. The aim of this 

paper is to demonstrate a machine learning approach that classifies atoms based on their local structural 

environment, and subsequently extracts and statistically analyzes the associated spectral characteristics. This 

method uses hyperspectral datasets in which the structural data is acquired simultaneously and therefore the 

two are aligned in real space. 

The classification problem can be tackled in many ways – all of which initially require accurate atomic 

coordinates. In the STM experimental datasets, there is a considerable variability in the intensity as well as the 

size of the adatoms within even a single image. This is a direct result of measuring the electronic density of 

states, therefore atoms with different nearest neighbor configurations will naturally have variability in their 

size and intensity. For this reason, we train and then use a convolutional neural network to retrieve the 

coordinates of both the adatoms and the underlying surface atoms. Here, we are interested only in the different 

adatom configurations and not the underlying surface, therefore, we use only the adatom coordinates to 

generate a new object consisting of 2D Gaussian blobs located at each found adatom coordinate. This 

essentially acts as a background filter which allows the subsequent structural classification to have better 

performance. 

We seek to realize what spectral effect () the local atomic environment around each adatom causes. Many 

statistics are required to have a good representation of the spectral characteristics observed in a certain 

configuration. There exist several methods to perform a structural classification in an unsupervised manner, 

for example, a Gaussian Mixture Model (GMM). These GMMs exist in the form where the number of classes 

is either known or unknown1. The problem with this and other similar unsupervised methods is that even if the 

number of classes is known, structural classes are likely prioritized differently than what is desired. For 

example, consider a hexagonal lattice, where an atom has two nearest neighboring adatoms separated by 180 

degrees, there are three different rotations that a human will understand to be the same configuration, but the 

unsupervised method may separate these based on their different rotations. We therefore turn to a supervised 

method, in which the classes are predefined. A simple method of analyzing the nearest neighbor of each 2D 

Gaussian is used in which if the intensity in specifically chosen regions of interest exceeds a threshold, a 

neighbor is said to be present in that location. After sorting atoms by their structure, we analyze the spectral 

characteristics within each class. The average spectra within a class serves to represent the entire class, while 

the standard deviation can provide a level of uncertainty. 

Interestingly, this is taken a step further and additional, unexpected information likely relating to the structure 

beyond the first nearest neighbors is extracted. This is accomplished by a subsequent unsupervised learning 

step performed on the spectra of a single class. In an exploratory manner, Principal Component Analysis2,3 

(PCA) is applied to each structural class’s spectral content, statistically significant components are separated, 

and a refined classification is made that is based on both first nearest neighbor structure and adatom spectra. 

Unexpectedly, the spectral behavior of adatoms in the same structural configuration, relative to their first 

nearest neighbor, wildly varies. It appears that non-local effects beyond the first nearest neighbors modify the 
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adatom spectral behavior and consequently their electronic density of states, and this discovery is made clear 

by the application of machine learning methods to further classify the structural classes. To this end, we begin 

to understand the reasons for spectral variation that are not attributed to the first nearest neighbors. 

Ultimately, we find that a combination of informed supervised and unsupervised learning can reveal properties 

and statistical quantities that were initially a pursuit, as well as additional characteristics that were not 

predicted. 

 
Figure 1. Diagram representing the process of extracting statistical information of the spectra of different 

structurally organized adatoms. First, atom coordinates are found by applying a trained convolutional 

neural network, then generating an image of strictly the features of interest (e.g., adatoms only). At each 

feature, a smaller “sub-image” is made showing the local structural environment up to first nearest 

neighbors of the feature, and this local environment is analyzed in specific regions of interest to classify 

into predetermined structural configurations. Finally, the spectra within each class are statistically 

analyzed. 
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