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Second Order Dehn Functions of
Asynchronously Automatic Groups

Xiaofeng Wang

Abstract. Upper bounds of second order Dehn functions of asynchronously automatic groups are ob-

tained.

In [1], [2], [6], [7], and [9], the author and others have studied the theory of

second order Dehn functions of groups. We also have carried out calculations of

second order Dehn functions for some classes of groups and some group extensions

in [1], [10], [11], and [12]. The main purpose of this article is to obtain the upper

bounds of second order Dehn functions of asynchronously automatic groups.

For the first order Dehn functions of asynchronously combable groups we have

the following: if a group G admits an asynchronously bounded combing σ, and if the

length of σ is bounded by a function f for all positive integer n, then the first order

Dehn function δ(1)
G (n) of G is bounded above by n f (n) [5, Lemma 4.1]. Thus, if

G is an asynchronously automatic group then G admits an asynchronously bounded

combing σ with a simple exponential length [6, Theorem 7.3.4], and so the first order

Dehn function of G is bounded above by an simple exponential function. We show

(Corollary 2.4) that this is also true for the second order Dehn function of G.

1 Definitions and Notations

Throughout this paper, we denote by G a group finitely presented by P = 〈x ; r〉 and

identify G with the group defined by P. Alternatively, we regard P as a two-complex

where the underlying graph P
(1) consists of a single vertex o, the set x ∪ x

−1 of edges

and the set r of defining paths.

We refer the reader to [3] (also see [8]) for the concept of pictures over P. Applying

certain operations (bridge moves, insertions or deletions of folding pairs, insertions

or deletions of floating circles) on (spherical) pictures (see [3]) we then define an

equivalence relation among spherical pictures over P. Let P be a spherical picture

over P. We denote by A(P) the number of discs in P, and write 〈P〉P (or simply 〈P〉)
for the equivalence class represented by the spherical picture P. All these equivalence

classes then form a left ZG-module (the second homotopy module of P) denoted by

π2(P) (see [3] for details).
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Let X be a set of generators of the module π2(P). Then if P is a spherical picture

we define the volume VX(〈P〉) of 〈P〉 with respect to X to be the least value of m over

all expressions
m

∑

i=1

εigiζi

(εi = ±1, gi ∈ G, ζi ∈ X, i = 1, 2, . . . ,m) equal to 〈P〉. We then define the second

order Dehn function δ(2)
P,X of P with respect to X by

δ
(2)
P,X(n) = max{VX(〈P〉) : A(P) ≤ n} (n = 1, 2, . . . ).

For a group G of type F3 (that is, a group given by a finite presentation for which

π2 is finitely generated) this is a group invariant up to ∼-equivalence [2] (see also

[9], [13]), which we write as δ(2)
G , the second order Dehn function of G, where the

∼-equivalence is defined as follows. For two increasing functions f , g : N −→ R
+

write f � g if there is a constant a > 0 such that f (n) ≤ ag(an) + an (n ∈ N). Then

f ∼ g if f � g and g � f .

Recall that the Cayley graph Γx(G) of group G with respect to x is a graph with a

vertex for each element of G (the vertex is also denoted by this element), and with a

directed edge e = (g, x) from g to gx for each x ∈ x ∪ x
−1 (where for each word W

on x ∪ x
−1, W is the element of G represented by W ) and each g ∈ G.

Let g, g ′ ∈ G and let γ be a path in Γx(G) from g to g ′, say

γ = (g, xε1

1 )(gx̄ε1

1 , x
ε2

2 ) · · · (gxε1

1 · · · x
εn−1

n−1 , x
εn
n )

εi = ±1 (1 ≤ i ≤ n). We denote ι(γ) = g the initial of γ, τ (γ) = g ′ the terminal of

γ, and L(γ) = n the length of γ. Reading off the second coordinates of the edges of

γ gives a unique word wγ = xε1

1 · · · xεn
n on x. We then can define the projection map

po : Γx(G) −→ P
(1) given by

po(γ) = wγ , po(g) = o, for any path γ and any g ∈ G.

Thus, for any word w = xε1

1 · · · xεn
n on x and for any g ∈ G we have a unique lift of w

in P
(1) at g

tg(w) = (g, xε1

1 )(gx̄ε1

1 , x
ε2

2 ) · · · (gxε1

1 · · · x
εn−1

n−1 , x
εn
n ).

We then call tg the lift map from the set of all words on x to the set of all paths at g of

Γx(G).

Let r̃ = {tg(R) : R ∈ r, g ∈ G}. We then obtain a two-complex, the universal

covering P̃ = 〈Γx(G) ; r̃〉 of P, with vertex set G, edge set

{(g, xε) : g ∈ G, x ∈ x, ε = ±1},

and defining path set r̃.

We also have the definition of pictures over two-complex P̃ (see [9]). Moreover,

given a picture P over P, then for any g ∈ G we have a unique picture, the lift of P at

g, tg(P) = P̃g over P̃ of P at g, satisfying po(P̃g) = P (also see [9]).
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Let µ : F̂(x,x−1) −→ G be the monoid homomorphism given by xε 7−→ x̄ε

(x ∈ x, ε = ±1), where F̂(x,x−1) is the free monoid generated by x ∪ x
−1.

By assigning unit length to each edge of Γx(G), Γx(G) is a geodesic metric space.

The distance dx(1, g) from the identity to any element g in Γx(G) is the word length

of a shortest word w with µ(w) = g denoted by |g|x, or simply |g|. The distance

dx(g1, g2), or simply d(g1, g2) of any two elements g1, g2 of G in Γx(G) is then

|g−1
1 g2|x.

A combing σ : G −→ F̂(x,x−1) is a section of µ, or equivalently, σ is a set of

chosen paths in Γx(G) such that for any g ∈ G, σ(g) is a choice of a path from the

identity to g. We write σg for this chosen path and call this path a combing line. If

σg = e1e2 · · · en, then for any non-negative integer time t , if t ≤ n we write σg(t) =

τ (et ) and if t > n we write σg(t) = τ (en) = g.

A combing σ of Γx(G) is said to have the (synchronous) K-fellow traveller property

if there exists a non-negative constant K such that the combing paths to any vertices

g1, g2 with d(g1, g2) ≤ 1 in Γx(G) are within a distance K of each other at any integer

time t ≥ 0, i.e.,

d
(

σg1
(t), σg2

(t)
)

≤ K

and we will say that σg1
and σg2

are (synchronous) K-fellow travellers in Γx(G).

We say that G is (synchronously) combable if it admits a combing having the K-

fellow traveller property. Any synchronously automatic group (for definition see [6,

Section 2.3]) is a synchronously combable group [6].

Let

Ω = {ψ : N −→ N ; ψ(0) = 0, ψ(n + 1) = ψ(n) or ψ(n) + 1, n ∈ N}

where all ψ are unbounded. Given a combing σ of G and for any g, h ∈ G, we set

Eσ(g, h) = min
ψ,ψ ′∈Ω

{

max
t∈N

{

d
(

σg

(

ψ(t)
)

, σh

(

ψ ′(t)
)

)}

}

.

Then the asynchronous width of σ is defined to be

Φ(n) = max{Eσ(g, h) : d(1, g), d(1, h) ≤ n, d(g, h) = 1, g, h ∈ G}

for all n ∈ N. If Φ is bounded by a constant K then we say that σ has the asynchronous

K-fellow traveller property.

We say that G is asynchronously combable if it admits a combing having the asyn-

chronous K-fellow traveller property. Any asynchronously automatic group (for defi-

nition see [6, Section 7.2]) is asynchronously combable [6, Theorem 7.3.6].

The length Lσ(n) of a given combing σ is defined by:

Lσ(n) = max
g∈G

{L(σg) : d(1, g) ≤ n}.

If there is a increasing function f : N −→ N so that Lσ(n) ≤ f (n) for all n, then

we say that the length of σ is bounded by f .
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Let σ be a combing of G. Let D : N −→ N be a function. If for any integer r > 0,

g ∈ G and for all integers s, t with 0 ≤ s, t ≤ L(σg) one has that |s−t| > D(r) implies

d
(

σg(s), σg(t)
)

> r, we then say that D is a departure function for the combing σ. It is

well known that all asynchronously automatic groups are asynchronously combable

with departure function [6, Theorems 7.2.4, 7.2.8].

2 Main Results

Lemma 2.1 [5, Lemma 4.1] Suppose that G admits a combing σ having the asyn-

chronous K-fellow traveller property. Let P1 = 〈x ; r1〉 where r1 is the set of all words

w = x1 · · · xn on x such that n ≤ 2(K + 1) and x1 · · · xn = 1 in G. Then P1 is a (finite)

presentation for G.

Proof Consider an edge e = (g, xε) of Γx(G) (x ∈ x, g ∈ G, ε = ±1). We have a

pair of monotone unbounded functions ψg and ψgx̄ε such that

d
(

σg

(

ψg(t)
)

, σgx̄ε
(

ψgx̄ε(t)
)

)

≤ K

for all t ∈ N. Thus, if we choose a geodesic (called space-like segments) in Γx(G)

from σg

(

ψg(t)
)

to σgxε
(

ψgx̄ε(t)
)

then we have a subgraph of Γx(G) of the form as

depicted in Figure 1 which consists of some triangles and/or trapezoids. We will

fix such a subgraph for e denoted Ω̃e. Let ρ be the boundary path of a triangle or

trapezoid in Ω̃e. Then ρ has a length at most 2K + 2. Thus, if the projection of this

path to P1 is U , i.e., po(ρ) = U then L(U ) ≤ 2(K + 1).

q q

q

q
r

-

���:
-

XXXz
-

-
���:-

-PPq-
-

1

g gxε
e

σgxε
(

ψgxε(t + 1)
)

= σgxε
(

ψgxε(t)
)

Ω̃e :
σg

(

ψg(t)
)

...

...

Figure 1

Now, for any given word w = x1 · · · xn on x with x1x2 · · · xn = 1 in G and for

any g ∈ G, we lift w to a closed path tg(w) in Γx(G). We can fill tg(w) in with some

Ω̃e for each edge e of tg(w) to obtain a planar subgraph of Γx(G) denoted Λ̃w,g as
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demonstrated in Figure 2. By projecting Λ̃w,g to P1 we obtain a van Kampen diagram

Λw (the images of space-like segments in Λ̃w,g under po will also be called the space-

like words of Λw) for po

(

tg(w)
)

= w over P1 and this completes our proof.

s q

qq

q

q q

���

-

��/

�

@@I

@@R

...

σ3
σ2

σ1

σm σi+1

σi

· · ·
Ω̃ei

Ω̃e2

Ω̃e1

Ω̃em

e2

e1

em
ei

���

-

���

@@I

Figure 2

We now further suppose that Lσ is bounded by an increasing function f and σ ad-

mits a departure function D. Our next task is to construct an explicit set of spherical

pictures that will represent the second homotopy generators for the finite presenta-

tion P1 found in Lemma 2.1.

For each R ∈ r1 and each g ∈ G, by lifting R at g in Γx(G) we obtain the universal

covering P̃1 of P1. Let R̃g = e1e2 · · · em be a defining path of P̃1, R ∈ r1, g ∈ G.

Since ι(e1) = g, m ≤ 2(K + 2), it follows that L(ei) ≤ |g| + K + 1 and so L(σι(ei )) ≤
f (|g| + K + 1), 1 ≤ i ≤ m. By padding terms which are trivial paths to the ends of

σι(ei )’s if necessary, we may extend them to paths σi = ei1ei2 · · · eih (1 ≤ i ≤ m) with

ei j ’s empty paths for j > L(σι(ei )) and where h = max{L(σι(ei )) : 1 ≤ i ≤ m} ≤
f (|g| + K + 1).

Consider Λ̃R,g (defined in the proof of Lemma 2.1). For each 1 ≤ j < h, starting

at τ (e1 j) on σ1 we travel along m space-like segments back to σ1 at some τ (e1T j
) as

shown in Figure 3. Denote this path by γ ′
j . Then the length of γ ′

j is at most mK.

Obviously we have T j−1 ≤ T j by the monotonicity of each element of Ω̃. We note

that the diagrams Λ̃R,g (R ∈ r1, g ∈ G) are spherical.

Since |σ1( j) − σ1(T j)| ≤ Km, |T j − j| ≤ D(Km), 0 ≤ j ≤ h. Let γ j be the

path obtained by adding to γ ′
j the segment denoted ζ j of σ1 from τ (e1T j

) to τ (e1 j).

Then L(γ j ) ≤ mK + D(mK). In addition, we require that γ0 is the empty path at 1

and γh is R̃g . Between γ j−1 and γ j we have a drum of Λ̃R,g (by cutting it along e1 j as

shown in Figure 4) consisting of at most 2mK · D(2mK + 1) of those basic triangles

and trapezoids. We then have a picture (the dualization of this drum) C̃
( j)
R,g over P̃

containing at most 2mK · D(2mK + 1) discs and at most 4mK(K + 1) · D(2mK + 1)

arcs.
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Since L(γ j) ≤ mK + D(mK), we can choose a picture A
( j)
R over P1 with boundary

label p0(γ j) and A(A
( j)
R ) ≤ δ

(1)

P1

(

mK + D(mK)
)

. We also can assume that the total

number of arcs in A
( j)
R is at most 2(K + 1)δ(1)

P1

(

mK + D(mK)
)

.

Let Ã
( j)
R,g be the lift of A

( j)
R at τ (e1 j). Then Ã

( j)
R,g is a picture over P̃1 with boundary

label γ j . We then obtain a spherical picture B̃
( j)
R,g over P̃ at ι(e1 j) of the form shown

in Figure 5 with

A(B̃
( j)
R,g) ≤ 2δ(1)

P1

(

mK + D(mK)
)

+ 2mK · D(2mK + 1),

#arcs of B̃
( j)
R,g ≤ 4mK(K + 1) · D(2mK + 1) + 4(K + 1)δ(1)

P1

(

mK + D(mK)
)

.

Corresponding to Λ̃R,g we also have a spherical picture P̃R,g which is of the form

demonstrated in Figure 6.

The following lemma now is true.

Lemma 2.2 Let G and P1 be defined as in Lemma 2.1 where Lσ is bounded by an
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increasing function f and σ admits a departure function D. Then

P̃R,g ∼
h

∑

j=1

(B̃
( j)
R,g)e1, j+1···e1h .

Since the disc numbers of all spherical pictures B̃
( j)
R,g are bounded by 2δ(1)

P1

·
(

mK + D(mK)
)

+ 2mK · D(2mK + 1) and the arc numbers of these pictures are

bounded by 4mK(K + 1) · D(2mK + 1) + 4(K + 1)δ(1)

P1

(

mK + D(mK)
)

, if we let X be

the set of all images of these pictures under the projection po then X is finite.

Theorem 2.3 Let G and P1 be defined as in Lemma 2.1 where Lσ is bounded by an

increasing function f and σ admits a departure function D, and let X be defined as

above. Then

(i) X generates π2(P1);

(ii) δ
(2)
G � n f (n).

Proof Let n be any positive integer, and let P be a minimal connected spherical pic-

ture over P1 with n discs ∆1,∆2, . . . ,∆n, labeled Rε1

1 ,R
ε2

2 , . . . ,R
εn
n . Let the word

xi1 · · · xi, ji
(1 ≤ i ≤ n) on x be the label of a minimal transverse path in P from the

basepoint of P to the basepoint of ∆i . Then ji ≤ 2(K + 1)n by elementary graph

theory. Let P̃1 be the lift of P at 1 in P̃. Then the discs ∆̃1, . . . , ∆̃n of P̃1 are labeled

by R̃ε1

1,g1
, . . . , R̃εn

n,gn
where gi = xi1 · · · xi, ji

, 1 ≤ i ≤ n. We convert P̃1 to a picture P̃
′
1

by replacing each ∆̃i by the complement of the disc labeled R̃−εi

i,gi
in εi P̃Ri ,gi

. Suppose

that there is an arc labeled e j connecting ∆̃i and ∆̃i+1. Then in P̃
′
1 we see that all

subpictures C̃
(q)
j (1 ≤ q ≤ h) as shown in Figure 6 will be canceled as in P̃

εi+1

Ri+1,gi+1

we have the same subpictures with opposite symbols since Ω̃e j
is fixed. Thus, P̃

′ can
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be transformed to the empty picture by bridge moves and eliminations of canceling

pairs. Thus, by Lemma 1.5 of [3], for certain paths λi (i = 1, . . . , n),

〈P̃1〉 =

n
∑

i=1

εi〈P̃
λi

Ri ,gi
〉.

By Lemma 2.2, applying the projection po then gives an expression for 〈P〉 involving

at most n f
(

2(K + 1)n + K + 1
)

terms of X.

Now let P be an arbitrary spherical picture P over P with n discs having nontrivial

components P1,P2, . . . ,Pq with n1, n2, . . . , nq discs respectively, where n1 +n2 +· · ·+
nq = n. Then there are words U1,U2, . . . ,Uq on x such that

〈P〉 =

q
∑

i=1

U i · 〈Pi〉.

Thus, using the previous paragraph we get

VP1,X
(P) ≤

q
∑

i=1

ni f
(

2(K + 1)ni + K + 1
)

≤ n f
(

2(K + 1)n + K + 1
)

as required.

If G is asynchronously automatic, then by the proof of Theorem 7.3.4 of [6] the

function f in the above theorem then can be taken as a simple exponential one. Fur-

thermore, if G is automatic, then f can be taken as a linear one. Thus, we have:

Corollary 2.4 If G is asynchronously automatic then δ(2)
G � en; and if G is synchro-

nously automatic then δ(2)
G � n2.
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Remark Let F be a free group of rank 3 on a, b and c. Let φ be an automorphism of

F defined by

a −→ c, b −→ ac, c −→ bc.

We then form the semi-direct products K = F ×φ 〈s, s〉 with s, s all acting via φ, and

furthermore, form another semidirect product G = K ×φ̂ 〈u, t〉, where u acts via the

automorphism φ̂ of K defined by

F
φ

−→ F, s 7→ s, s 7→ s,

and t acts via the identity automorphism. Thus, G is asynchronously automatic [4],

and so by the above corollary, δ(2)
G (n) � en. In Example 2 of [12], we also have this

upper bound. In fact, in [12] we proved that e
√

n � δ
(2)
G (n) � en. We then can guess

that the upper bounds in Corollary 3.4 are optimal.
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