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Abstract

Miconia (Miconia calvescens DC) was introduced to the East Maui Watershed (EMW) a half-
century ago with more than 25 yr of management recorded. Using a historical spatiotemporal
data set, we constructed a leptokurtic dispersal kernel with 99% of progeny confined to within
549m of the nearest maternal source and the remaining 1% dispersed out to 1,636m.
Seedbank persistence, based on postdated recruitment, displayed an exponential decay
projecting extinction beyond 20 yr. These parameters are highly congruent to independent
interpretations ofM. calvescens in Australia and Tahiti. In a simulated stage matrix model, we
projected management efforts to locally eradicate a small incipient propagule bank wherein
optimal management was achieved with an annual harvest rate that eliminated all juvenile
recruits before reaching maturity, until extinction. Based on current pricing for helicopter
herbicide ballistic technology (HBT) operations, the optimal, variable cost to locally eradicate
this incipient propagule bank was estimated to be less than US$42,000, with ~90% of the
effort searching for the most distant 1% of the progeny expended within the first 9 yr after the
mature discovery. This variable cost was sensitive to seedbank size, recruitment rate, and
dispersal range, but was most sensitive to harvest rates between suboptimal and excess. In a
scenario prioritizing the upper region of EMW, we retroactively analyzed past HBT efforts
eliminating satellite M. calvescens and determined that 27% of the total effort resulted in 87%
of the total protection to this priority asset, with every US$1 invested potentially avoiding US
$184 in future costs. Management outside the priority area was less economical, with returns
in protection diminishing with distance from the priority upper region. Miconia calvescens is
currently not eradicable in the EMW, and full containment of the invasion would require a
substantial increase in stable, long-term funding. With limited resources, local eradication of
satellite M. calvescens could be the most cost-effective alternative to protecting uninvaded
areas prioritized for critical ecosystem functions.

Introduction

Effective management of invasive plant species requires an understanding of ecological and
biological potential and how these change under varying levels of mitigation and management
efforts (Carlton 2003; Finnoff et al. 2005; Keller et al. 2009). With the objective of population
reduction and/or eradication, the problem becomes one of minimizing management costs
given current and potential spread of the species. Despite the increased practice of invasive
plant management across landscapes around the world, little is known regarding the expected
costs, returns, and outcomes of control operations (Kerr et al. 2016; van Wilgen et al. 2016;
Wagner et al. 2017).

Advances in theoretical invasive species management include conditions for eradication
(Olson and Roy 2002); policy options under uncertainty (Horan et al. 2002); and integrated
detection, prevention, and control (Burnett et al. 2008, 2012; Leung et al. 2002; Mehta et al.
2007). There are a limited number of case studies from around the world estimating total
economic implications, including management costs and damages (Pimentel 2011; Pimentel
et al. 2005), and bioeconomic analyses have been developed to predict economic implications
with more limited data (Cook et al. 2007; Eiswerth and Van Kooten 2002; Frid et al. 2013),
including a stage matrix simulation model applied to the eradication of a miconia (Miconia
calvescens DC) infestation in Queensland, Australia (Hester et al. 2010). In similar fashion, we
will explore some of the critical life-history traits of M. calvescens by using management data
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in the East Maui Watershed (EMW) from 1991 to 2016 and
develop bioeconomic comparisons of management options.

Miconia calvescens is a midstory canopy species native to
South and Central America, classified among the “100 of the
world’s worst invasive alien species” by the IUCN (Lowe et al.
2000). It is a forest ecosystem modifier in many tropical regions of
the Pacific Rim (Medeiros et al. 1997; Meyer and Florence 1996;
Nanko et al. 2015). Miconia calvescens is shade tolerant and able
to displace native plant communities, transforming diverse forests
into dense monospecific canopies, which can impoverish
understory vegetation and expose the soil surface below the
canopy (Meyer and Florence 1996). Miconia calvescens has large,
elliptical leaves (i.e., up to 2,400 cm2; Meyer 1998) that create
coalesced water drops with high-impact throughfall, accelerating
localized soil erosion (Giambelluca et al. 2009; Nanko et al. 2013,
2015). This species has been observed with a disproportionately
large canopy supported by a shallow root system, which, along
with its propensity to colonize steep slopes, may increase land-
slides, as observed in Tahiti (Gagné et al. 1992).

Miconia calvescens is a major threat to the EMW, an ~50,000-ha
forested landscape on the windward slope of Haleakala Volcano
extending from coastline to crater, with an elevation gradient from
sea level to 3,055m above sea level (m a.s.l.). The EMW provides
critical habitat to more than 100 threatened and endangered
species and annually recharges more than 1.135 trillion liters of
fresh groundwater (Shade 1999) that represent vital ecosystem
services for life and agriculture on Maui. This area is climatically
diverse, with wide mean annual temperature gradients (midday
9 to 26C) and precipitation (652 to 10,271mm). Much of
the landscape is inaccessible to ground operations, with 72 separate
drainage basins, all having slopes> 30°, relegating much of the

current M. calvescens management strategy to aerial operations,
the focus of this paper.

Miconia calvescens was introduced to Hana, Maui, as an
ornamental specimen (i.e., founder population) in the early 1970s
and not identified as a major invader of the EMW until two
decades later, when active management commenced (see
Medeiros et al. 1997). The first volunteer effort, in 1991, removed
9,320M. calvescens plants around the original point of intro-
duction (Gagné et al. 1992). With plant maturity achieved in as
little as 4 yr (Meyer and Malet 1997), we assume that several
generations were reproduced within that 20-yr period leading up
to the first harvest. In 2001, the National Park Service mobilized
their Pacific Islands Exotic Plant Management Team in colla-
boration with the Maui Invasive Species Committee to accelerate
a more comprehensive eradication strategy to reduce the core
infestation and intercept satellite plants (Figure 1). Both ground
and aerial operations ensued. The program was able to maintain
strong efforts until 2012, resulting in more than 1 million plants
eliminated (Figure 1B). In 2012, herbicide ballistic technology
(HBT) was introduced to eliminate satellite M. calvescens more
efficiently, with long-range precision and accuracy (Leary et al.
2014). Adoption of HBT coincided with strategic support falling
below thresholds to achieve comprehensive eradication, effec-
tively transitioning to containment with HBT helicopter opera-
tions targeting the most remote populations. From 2012 to 2016,
more than 116 missions (with 377 h of operational flight time)
have resulted in the elimination of more than 21,000M. calvescens
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Figure 1. (A) Comprehensive eradication (1991–2016; n= 1,516,727; gray) and
containment via herbicide ballistic technology (2012–2016; n= 21,072; red). (B) The
number of eliminated Miconia calvescens recorded each year. (C) The frequency
distribution of range distances from the founder population. Note the location of the
founder population and first volunteer removal effort (yellow diamond in A). Note
contour line intervals at ~ 150 m a.s.l. (i.e., 500 feet a.s.l.).

Management Implications

Historical management data, containing spatial and temporal
attributes of where and when target invaders were eliminated, can
be used to profile life-history traits of an invasive plant species.
Here, we describe the dispersal range and persistence (i.e., kernels)
of propagules derived from a 25-yr record of management in a
strategy that is ongoing and transitioning. The basic feature
critical to deciphering these patterns is the distinction of targets as
mature or juvenile, which establishes distance and time
associations of juvenile recruitment from the maternal source.
Here, optimal efforts to eliminate all juvenile recruits before
reaching maturity presents the best outcome to protect local area
assets. Moreover, excess effort to prevent maturity is likely to be
more practical and economical than suboptimal efforts allowing a
mature Miconia calvescens to expand the range and extend
persistence of the invasion. In spite of the unique qualities of this
management scenario, the approach to consistently record data
for every target plant treated (e.g., GPS) is universally translatable
to most field-level operations. Beyond historical perspective, new
intelligence can be effective in projecting future tactical decisions.
Administrative interpretation of future cost avoidance (i.e.,
resulting from juveniles reaching maturity) could further
facilitate a prioritization process for assigning limited resources
that offer the best returns in asset protection or informing new
strategy to establish resource thresholds in order to succeed in
more comprehensive containment and eradication.
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occupying more than 30% of the EMW. As a result of this shift to
containment, fruiting trees in the core infestation area (~2,000 ha)
surrounding the point of introduction are coalescing into
monotypic stands “saturating” the landscape. Strategic support
continues to decline, pushing the notion that effective contain-
ment of such a large area cannot be sustained either.

Cacho et al. (2008) presented a decision model determining
when it is optimal to switch from eradication to containment and,
further, when it is optimal to terminate management. As stated
earlier, eradication and comprehensive containment of M. cal-
vescens in the EMW may no longer be viable strategies. However,
conservation of this small, but highly productive ecosystem is a
high priority for local stakeholders, particularly the mitigation of
invasive plant species (Loope and Mederios 1994; Mederios et al.
1995). Thus, we seek to examine a management alternative to full
program termination with a focus on protecting priority ecosys-
tem assets via local eradication of M. calvescens satellites and
incipient populations. Beyond evaluating the services provided,
we must understand the cost to locally manage these remote,
satellite invaders and further determine what level of protection is
secured by excluding M. calvescens from a priority asset area. It is
important to measure this spatially and temporally. To answer
these questions, we deploy methods to estimate critical life-
history traits for propagule dispersal and persistence exhibited in
the EMW, using a 25-yr management data set identifying the
location and time of each M. calvescens individual eliminated.
From there we simulate the development of an incipient popu-
lation started by a single new, mature M. calvescens and estimate
the sustained level of management needed to locally eradicate this
incipient population. Finally, we evaluate cost-effectiveness of
eliminating juvenile M. calvescens before they reach maturity with
a return equivalent to avoid the future management costs
incurred eliminating their progeny. (Box 1)

Materials and Methods

Estimating Miconia calvescens Life-History Traits

Miconia calvescens is a highly fecund, autogamous (self-fertile)
species. Trees reach maturity in 4 yr (or longer; see Murphy et al.
2008) and usually only produce two panicles in the first year of
reproduction (Meyer 1998; Murphy et al. 2008). In Tahiti, Meyer
(1998) reports an average of 210 fruits infructescence− 1 and 195
seeds fruit− 1. Thus, a single M. calvescens has the potential to
produce more than 80,000 seed propagules when it first reaches
maturity and further produces millions of seed in more advanced
stages of maturity. Meyer (1998) determined three flowering
periods per year, but a single plant is typically observed to flower
once annually (Hardesty et al. 2011; Hester et al. 2010). Ellison
et al. (1993) measured up to 0.4% progeny survivorship for other
species of Melastomataceae, possibly due to cohort competition,
pathogenesis, or herbivory. In this study, we assume this
“penalty” on a first mature M. calvescens, such that it only pro-
duces 320 surviving progeny capable of succeeding to maturity.
Given that adult M. calvescens become sympodial (Meyer and
Malet 1997), we assume for this study a successive doubling in
fecundity every year after maturity.

We have an almost complete 26-yr history of M. calvescens
management in the EMW with time-stamped, georeferenced
locations of targets eliminated by ground and aerial operations
from 1991 to 2016 (n= 114,953 representing 1,516,727 M. cal-
vescens individuals), including mature targets (n= 9,153), and

aerial operations deploying HBT from 2012 to 2016 (n= 21,072).
A dispersal kernel is a two-dimensional probability density
function (PDF) describing the distribution of progeny relative to
the maternal source (Klein et al. 2013). Here, we use these spa-
tiotemporal data to develop PDFs (i.e., kernels) for both range
distances and time intervals based on the nearest maternal source.
The Near Analysis tool (ArcGIS v. 10.2.2, Esri, Redlands, CA) was
used to create a table matching all M. calvescens target points to
the nearest 50 mature target points with corresponding distance
and time attributes (i.e., with ~6 million matches). This over-
abundant, point-match database was then queried with Access
(Microsoft, Redmond, WA) to select the match with the closest
mature point that was at least 1 yr older. This minimum 1-yr time
separation was assumed to be when juvenile recruits may reach
detectable size. Here, we interpret the distance as dispersal range
and the time interval as recruitment. The PDFs were displayed
from 10m and yearly bins for distances and time intervals,
respectively, creating dispersal and persistence kernels.

A Simple Stage Matrix Model for Miconia calvescens

A stage matrix model projects populations over time. A simplified
three-stage matrix model was developed based on methods used
by Buhle et al. (2005), Hester et al. (2010), and Cacho et al.
(2007), citing Caswell (2001). Here, we describe an incipient
invasion starting with an initial cohort of propagules (xi= 320)
succeeding to juveniles, then matures, managed annually as a
harvest rate proportional to the number of recruits:

L=
0 0 f
ppr ppr;jv 0
0 pjv;mt pmt

2
4

3
5 ; xi =

320
0
0

2
4

3
5 [1]

The propagule bank (pr) at time (t) is determined by a first-order
exponential decay (i.e., recruitment) of the preexisting bank at
t− 1 and augmented by the fecundity (f) of future mature cohorts
(mt) at t; arbitrarily limiting fecundity to a census≥ 0.5:

prt = pr t�1ð Þe�r + lim
mt!0:5

mttft [2]

where juveniles (jvt) are a composite of new juvenile recruits of
pr(t − 1) and the surviving (i.e., undetected) residents (jv(t− 1))
remaining after harvest (h):

jvt = ðpr t�1ð Þ 1�e�rð Þ + jv t�1ð ÞÞð1�hÞ [3]

Here, we assume maturity is achieved on the fourth year for
juveniles remaining after three successive harvests; arbitrarily
limiting the transition of fourth-year juveniles to maturity at a
census≥ 0.5:

mtt = lim
jv!0:5

Xn
i= 3

jv t�ið Þð1�hÞi [4]

Fecundity doubles each year after first maturity (xi= 320):

ft =
Xn
i= 1

mtt ´ 320e0:6931ðt + iÞ [5]

The asymptotic growth rate (λ), also referred to as the
dominant eigenvalue of the matrix model, is the ratio of total
populations between successive annual time steps:

λt =
xt

xðt�1Þ
[6]

This metric is a simple determination of population growth
(λ> 1), containment (λ= 1), or suppression (λ< 1).
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Individual-based Models Developed to Inform Miconia
calvescens Management

While the stage matrix model measured population dynamics
over time, an individual-based model was developed to track the
management efforts over space required to eliminate all colo-
nizing progeny of a single satellite M. calvescens reaching
maturity. Spatially, point density raster annuli were created from
M. calvescens point locations by decimally binned radial (i.e.,
near) distances calculated from the dispersal PDF described
earlier (Figure 2A). Hence, each annular ring contained 32
progeny (e.g., 1% of the total). The probability of detection (pd) of
a M. calvescens target was based on a random search effort
described previously by Cacho et al. (2007) and later adopted by
Leary et al. (2014) and the probability of no detection (pnd) of
M. calvescens as the inverse of pd (see Supplementary Figure S1):

pd = 1�e�c ; pnd = e�c [7]

where pd is an imperfect process asymptotically approaching
unity with increasing coverage (c), and pnd approaches zero with
increasing c (see Supplementary Figure S1). The resulting prob-
abilities of presence/absence qualify our confidence in search
effort. Coverage was based on surveillance operations from a
helicopter with a three-person crew at speeds< 8m s− 1 with
flight lines parallel to contour and normal to terrain aspect with a
mean sight range of 16m (Rodriguez et al. 2016) creating an
oblique view for the observers with a central macular field of view
of ~100m2, which is approximate to the pixel dimensions of most
GIS rasters (i.e., 10m pixel). In this model, we estimate coverage
to equal a search encounter of 1 s pixel− 1. Thus, spatially com-
plete search coverage is the combination of encounters finding all
of the targets, complemented by added search to confirm no
targets in the previously occupied and unoccupied areas.

cpixel =�ððlnð1�pdÞ ´ ρtargetÞ + ln pndÞ [8]

where coverage of a pixel area (cpixel) is dependent on target
density (ρtarget), and spatially all pixel areas are obligated to some
level of coverage. Optimal coverage is proportional to known
recruitment rates over time. Methods to treat M. calvescens
are highly reliable and effective (e.g., >98%), thus, making
M. calvescens elimination practically dependent on detection
achieved by search effort (Leary et al. 2014).

Variable Costs of HBT Operations for Miconia calvescens
Management

As described earlier, the basic tactics are to search, detect, and
eliminate M. calvescens from a helicopter platform. Previous
studies have determined that operations are target-density
dependent with strong linear fits for search effort (i.e., flight
time) and herbicide use rate (Leary et al. 2014). Utility helicopter
services on Maui have been contracted at US$1,200 h− 1, which
translates to US$0.33 s− 1 pixel− 1. The mean dose per target is
23.3 projectiles, with a projectile price point of US$0.31 for an
individual treatment cost of US$7.22. We have estimated flight
time to engage target at 39.6 s for an added cost of US$13.07,
bringing the total cost of eliminating one M. calvescens plant to
US$20.29 (unpublished data).

Prioritizing Protection of EMW Assets

To consider a strategic transition from containment to asset
protection in the EMW, we established the upper catchment
basins above 400 m a.s.l. as a first-priority asset, which was based
on the contour where the irrigation diversion system is installed
and also where endemic plant communities are higher density
(Gingerich 2005; Shade 1999). The upper boundary of this
20,863-ha area was delineated at 1,220 m a.s.l., which is surmised
to be the approximate threshold for M. calvescens habitat suit-
ability (Pouteau et al. 2011). The second- (3,379 ha) and third-
priority (5,554 ha) containment areas were extended below the
400 m a.s.l. contour, based on the ranges for 0.99 and 1.0 per-
centiles of the dispersal kernel, described earlier, where pro-
portionally up to 50% and< 1% of dispersed progeny could
colonize the upper catchment asset area, respectively. All HBT
operations data (i.e., operational flight time and treated
M. calvescens targets from 2012 to 2016) were retroactively
superimposed to these buffer areas and assigned a treatment
cost, described earlier. We assumed impact of a newly invaded
area to be created by a single, juvenile M. calvescens succeeding
to first maturity, with the life-history traits spatially and tem-
porally applied. The impact area was calculated as a composite of
annular density rasters radially determined by decimal propor-
tions of the dispersal PDF. For instance, a first-mature M. cal-
vescens producing 320 progeny will disperse 3.2 of those in each
of the 100 annular rings of varying areas. When a M. calvescens
plant is eliminated before maturity, it is assumed that
future costs are avoided to extinguish a newly established
propagule bank.

Software and Descriptive Statistics

GPS data were compiled and analyzed using ArcGIS (v. 10.2.2,
Esri) and Access and Excel (Microsoft). The XLSTAT add-in
(v. 19.5, Addinsoft, New York, NY) was used for nonlinear
regression analyses of the best-fit first-order negative exponential
functions for dispersal and persistence kernels.

Results and Discussion

Shigesada et al. (1995) describe three stages of an invasion:
incipient establishment, range expansion, and habitat saturation.
The hypothetical invasion curve (depicted in Figure 3; adopted
from Chippendale 1991; Hobbs and Humphries 1995) intuitively
uses the logistic growth function for determining strategic goals to
eradicate a population, contain an invasion, and protect assets,
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dependent on the level of succession. All of these strategic phases
will deploy tactical countermeasures to pace recruitment, limit
dispersal, and preempt fecundity (Cacho et al. 2007; Hauser and
McCarthy 2009; Hauser et al. 2016; Hester et al. 2010; Leung et al.
2010; Mehta et al. 2007). What is inherent to this process is the
knowledge of life-history traits of the target species (propagule
dispersal, persistence, mature fecundity, etc.).

Spatial ecology of seed dispersal is critical to understanding
community dynamics, succession, and especially nonnative
invasions (Clark et al. 1999; Murphy et al. 2008; Nathan and
Muller-Landau 2000; Shigesada et al. 1995). The M. calvescens
dispersal kernel created in the EMW (Figure 2A) was a lepto-
kurtic distribution described by a first-order negative exponential
function (R2= 0.946), characterized by a sharp central peak and
fat-tail of rare, long-distance events (Clark et al. 1999; Nathan and
Muller-Landau 2000). Ninety-nine percent of the recruitment
observed was confined to 549m, with the remaining 1% of
recruitment events measured out to 1,636m. Half of the
recruitment was confined to 37.3m of the presumed maternal
sources (i.e., sharp central peak), denoting the possibility of
unconsumed fruit drop with short-range dispersal aided by fea-
tures of the landscape (e.g. slope, gravity, and hydrology; Murphy
et al. 2008). Otherwise, we expect most dispersal to be facilitated
by endozoochory of avian generalists consuming these small,
fleshy fruits (ca. 6mm) packed with even smaller seed (ca.
0.6mm), where range distance is determined by gut retention or
home range (Dennis and Westcott 2007; Meyer 1998; Murphy
et al. 2008; Spotswood et al. 2012, 2013). There were 81 points
with range distances extending beyond 2,000m with a maximum
distance of 7,738m (unpublished data). Many of these were
validated as stochastic, human-mediated events, but it does sug-
gest that dispersal could extend beyond the maximum range
distance used here. The dispersal kernel developed by Murphy
et al. (2008) estimated a maximum dispersal range of 1,750m in
North Queensland, Australia. The EMW dispersal kernel mat-
ched with this kernel (root mean-square error [RMSE]= 0.007),
where the largest residuals were at the central peak (unpublished
data). The isotropic impact area in the EMW created by the
maximum dispersal distance (i.e., 841 ha) is a conservative esti-
mate. However, this homogenous display is independent of the
landscape, where habitat, topography, and avifaunal behaviors
may all contribute to actual distribution patterns (Murphy et al.
2008; Spotswood et al. 2013). In management decision making,
this translates into substantial unknown risk and still obligates
surveillance to the entire buffer, particularly in the fat-tail regions
where autogamous M. calvescens present the greatest risk of

expansion into uninvaded areas (Hardesty et al. 2011; Murphy
et al. 2008). Autogamy is a facultative trait for satellite pioneers to
achieve reproductive success when isolated from cohorts (Baker
1965; Meyer 1998). Thus, it is justifiable to assume all propagules
may establish and succeed to maturity within the kernel, auton-
omous of cohorts.

Physiological seed dormancy has been reported in several
Miconia spp., including M. calvescens (Dalling et al. 1998; Ellison
et al. 1993; Mendes-Rodrigues et al. 2010; Meyer 1994; Pearson et al.
2003; Silveira et al. 2013; Valio and Scarpa 2001). This has been
translated to higher shade tolerance under forest canopy (i.e., lower
red:far-red ratios), offering competitive advantages over other
larger-seeded tropical species with longer seedbank persistence and
higher germination rates under lower light conditions (Martínez-
Ghersa and Ghersa 2006; Meyer 1994; Pearson et al. 2003). Seed-
bank persistence in the EMWwas described by a first-order negative
exponential function (R2= 0.997) with a 24% annual reduction,
exhausting 99% of the propagule bank in ~17 yr (Figure 2B). This
was highly congruent (RMSE= 0.0031) to the decay function of a
seedbank study by Meyer and Malet (1997) and Meyer (2010). They
showed propagules surviving after 16 yr, but decaying from> 4,300
seeds m−2 to 190 seeds m−2, in that time period. Interestingly,
Dalling et al. (1998) showed seedbank of native Miconia argentea
(Sw.) DC. in Panama to have higher annual reductions at 70%
to> 90% within 30m from the nearest tree, attributing seed mor-
tality to pathogenic fungi. The suitable habitats in Hawaii and Tahiti
may be conferring added advantages to M. calvescens with a lack of
herbivory, disease, and competition typically experienced in its
native range (i.e., enemy release hypothesis; Keane and Crawley
2002). This measure of seedbank persistence does not explicitly
account for stochastic events (e.g., microsite disturbances) that may
shorten persistence, nor is the model’s termination point irrefutable.
For instance, it is plausible that a 30-yr data set would show
recruitment beyond 20 yr. In spite of these limitations, this model
still offers sound management guidance in projecting long-term
strategy toward achieving extinction.

Life-history traits vary widely across species and also within a
species across heterogenous landscapes (Bedetti et al. 2011;
LeRoux et al. 2008; Nathan and Muller-Landau 2000). Founder
populations of M. calvescens in the Pacific and Australia are the
result of minor, deliberate introductions displaying low genetic
diversity and a lack of geographical structure, suggesting these
naturalized invasions are closely related and possibly derive from
the same maternal source (Hardesty et al. 2011; Le Roux et al.
2008). Apparently, this has not been an impediment to invasion
success of M. calvescens in these different locations. Phenotypic
plasticity is an important mechanism for apomictic populations
with low genetic variability, such as Miconia spp. (Bedetti et al.
2011). The congruence of dispersal kernels in these disparate
locations may be further supported by the small fruit phenotype
and the similar generalist frugivory networks, that is, the red-
vented bulbul (Pycnonotus cafer L.) in Tahiti and Hawaii or white
eyes (Zosterops spp.) common in Hawaii, Tahiti, and Australia
(Csurhes 1998; Spotswood et al. 2012). Heterogenous environ-
mental effects were determined to be stronger than genetic dis-
position in determining seedbank persistence of M. ferruginata
DC. in Brazil (Mendes-Rodrigues et al. 2010). In this case, life-
history traits expressed in the EMW are likely determined by the
constitution of both species and habitat. The similarities of the
corresponding research in Tahiti and Australia are invaluable to
our confidence in research and management of M. calvescens in
Hawaii.
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Figure 3. The hypothetical invasion curve depicted by a logistic growth function to
determine effective management countermeasures.
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A single M. calvescens satellite colonizing a new location can
rapidly create large-scale and long-term impact on a landscape if
succeeding to maturity. Eliminating satellite targets before they
reach maturity (referred to as “juvenilizing” by Meyer et al.
[2011]) is an effective form of landscape-level management.
Figure 4A and B shows the population dynamics simulated in a
stage matrix model of a new M. calvescens propagule bank
managed at different harvest rates over time. Here, containment is
simulated when harvest rates are equally replenished by mature
fecundity (λ= 1). This model was closest to containment at a
harvest rate of 0.696 (λ= 0.997), with one juvenile reaching
maturity and replenishing the propagule bank every 4 yr. This
model repeats these oscillating fecundity events for centuries
beyond the scale of these figures (unpublished data). Slight shifts
(± ) in harvest rates from containment (0.695 and 0.697) depict
the dramatic (sensitive) fluctuation between failure and eradica-
tion, albeit suboptimal. Failure (λ= 1.38), in this case, shows
juvenile recruitment and maturity quickly outpacing harvest rates.
Suboptimal eradication was closely coherent to containment for
more than five decades (λ= 0.995) and then began exhausting the
propagule bank (λ= 0.76) until extinction at the 80th year. This
resulted in 2,577 juvenile added recruits being harvested over that
period, in excess of the initial propagule bank (xi= 320). Optimal
eradication was achieved at the lowest harvest rate (0.717), with
all 320 juvenile recruits eliminated before reaching maturity
(λ= 0.76) and extinction occurring at the 24th year. All harvest
rates in excess of optimal have the same outcomes (e.g., 0.999;
Figure 4A and B), with only diminishing residency of juveniles. It
should be noted that presumed containment in this model is only
temporal, while maturity occurring randomly within the dispersal
kernel would result in range expansion nullifying spatial con-
tainment (Cacho et al. 2008; Moody and Mack 1988; Panetta
2007; Shigesada et al. 1995). Optimal and excess harvest rates
have the shortest time to extinction and mitigate range expansion.

Cacho et al. (2007) describe the mortality factor as a product
of target detectability and treatment efficacy. As described earlier,
harvest rates (i.e., mortality factor) are largely dictated by detec-
tion. Moreover, ungerminated propagules are inconspicuous to
search efforts. Hence, the path to exhausting the propagule bank
is determined by recruitment rate derived from the persistence

kernel (see Figure 2B) and search effort to adequately detect
targets. In the model, a new mature disperses 320 first-generation
progeny across an 841-ha isotropic area. The optimal harvest rate
searched this area and exhausted this propagule bank in the 24th
year, with the least search effort at 29.6 h (Figure 5A and B).
Ninety percent of that total effort was expended within the first 9
yr. Excess search effort exhausted the propagule bank at the same
time, but with increasing effort up to 161.3 h at a harvest rate of
0.999; more than a 5-fold increase. Suboptimal harvest rates
greatly compounded the efforts, with every mature M. calvescens
augmenting the propagule bank and extending the time to
extinction. Here, the lowest suboptimal rate of 0.697 required
254.7 h of search effort to exhaust the compounded propagule
bank; almost a 9-fold increase. Failed and containment harvest
rates required search efforts in perpetuity and were greater than
the extinction points for suboptimal and excess harvest rates.
While it is difficult or impractical to optimally manage the
extinction of an incipient propagule bank over time, this model
suggests that search effort is less sensitive to excess harvest rates
and is least likely to fail in exhausting the propagule bank and,
furthermore, will mitigate range expansion.

Our model arbitrarily assumes an M. calvescens plant reaching
first maturity and dispersing a small number of propagules uni-
formly across suitable habitat. However, it is often possible to
encounter older mature plants that have already dispersed mul-
tiple generations of propagules (Meyer 1998) or for propagules to
be deposited in microsites that influence germination and growth
(Mendes-Rodrigues et al. 2010). We considered these scenarios
with the output sensitivity of time to extinction and optimal
harvest rate against variations of propagule bank size and annual
recruitment rate inputs (Figure 6A and B). Time to extinction was
proportional to propagule bank size and inversely proportional to
recruitment rate. Optimal harvest rate was also proportional to
propagule bank size and annual recruitment rate.

Hester et al. (2010) determined treatment cost to be negligible
in comparison with search cost with Australia’s M. calvescens
management strategies. The costs of controlling a weed invasion
are influenced by a number of factors, including plant detect-
ability, area accessibility, and methods used (Cacho et al. 2007;
Hester et al. 2010). The HBT treatment platform has greatly
enhanced helicopter surveillance of inaccessible areas in the
EMW (Leary et al. 2014). An isotropic progeny density raster was
created with annular rings derived from the percentiles of the
leptokurtic dispersal kernel (Figure 7A). Pixel area costs were
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density dependent, ranging widely from US$329.27 nearest the
maternal source to US$0.42 out to the maximum range distance
(Figure 7B). The total variable cost coinciding with the optimal
search effort and elimination of all progeny was>US$41,600. The
most distant 1% of progeny occupy the lowest-cost pixel areas but
required 88% of the effort to search for and eliminate (Figure 7C).
Thus, 75% of the total cost was obligated to completing this task,
with a majority of this effort identifying where targets are not
located (i.e., pnd). Resources dedicated to finding remote, incipient
populations can reduce future impact and avoid future cost to
protect an area of interest (Mehta et al. 2007). Here, we further
acknowledge the value of surveillance protecting the landscape by
confirming nondetection as a measurable probability reducing
uncertainty.

The variable cost outputs were inversely proportional to sub-
optimal harvest rates and proportional to excess harvest rates
(Figure 8A). Hence, the optimal harvest rate has the lowest total
variable cost. Cost appears less sensitive to excess rates, where the
highest excess harvest rate 0.999 was more economical than
suboptimal harvest rates< 0.70. More to the point, the suboptimal
harvest rate of 0.71, just below optimal, was equitable to the
excess harvest rate of 0.87. Similar to the optimal harvest rate,
variable costs were proportional to propagule bank size and
annual recruitment rate (Figure 8B and C) but appear to be much
more sensitive to dispersal range (i.e., area expansion)
(Figure 8D). This offers a further preference for exhausting the
propagule bank with excess harvest rates over suboptimal, where
life history and local occupation are uncertain. We further show
that investments below optimal would fail to eradicate, warrant-
ing a strategy reduction with more attainable goals or possibly
doing nothing (Cacho et al. 2008).

Many model studies support the current convention of
prioritizing the elimination of incipient populations over higher-
density infestations (Mehta et al. 2007; Moody and Mack 1988;
Taylor and Hastings 2004), including outside-in containment in
lieu of eradication when resources become limited (Cacho et al.
2008; Chadès et al. 2011; Leung et al. 2010). Cacho et al. (2008)
modeled the optimization of a control strategy with two switching
points: (1) transition from eradication to containment and (2)
transition from containment to terminating control strategy.
Here, we acknowledge that eradication or comprehensive con-
tainment of M. calvescens invading the EMW is an unattainable
goal with the current resources. However, we also recognize that
termination of the control program would be detrimental to the
remaining uninvaded EMW. Instead, we infer a third phase of
management, switching from containment to protecting assets
that could have environmental, cultural, or economic significance
(Downey et al. 2011; Hobbs and Humphries 1995). From 2012 to
2016, HBT helicopter operations were conducted under an
assumed containment strategy. In this approach, only 28% of
operations were unintentionally invested in the first-priority
watershed asset, while 21% and 51% of operations were relegated
to second- and third-priority assets, respectively. This was
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comparable to the number of M. calvescens targets eliminated in
these areas: 25%, 18%, and 57%, respectively. In retrospect, direct
management within the first-priority watershed asset resulted in
42% of the total area receiving some level of protection
(Figure 9A), while secondary and tertiary management only
offered protection to 22% and 6% of the first-priority area,
respectively (Figure 9B and C). The highest cost investments were
recorded in the third-priority buffer from 2012 to 2016, exceeding
the average cost of investments in the first-priority area more
than 2-fold (Figure 10A). Direct management within the first-
priority watershed asset avoided the most costs, due to both the
larger area protected and the level of impact in the vicinity of the
target locations (Figure 10B). Management within the first-
priority watershed asset avoided more than US$184 in future
management costs for every US$1 invested, while investments in
second- and third-priority areas contributed more modest returns
of US$27 and US$3, respectively (Figure 10C). Because these
operations were likely undersupported in meeting a comprehen-
sive containment objective, we emphasize how these ratios may
justify a transition to protecting the highest priority watershed
asset as a future strategy.

In this case study, eradication of satellite M. calvescens occu-
pying first-priority watersheds is justified by the highest possible

return in designated asset protection. This is effectively the
inverse of the “outside-in” containment strategy described earlier;
instead, an “inside-out” approach centralizes active management
within the asset boundary and radiates out with an exclusion
front demarcated from the boundary out to dispersal range of M.
calvescens. Inherently, the high returns in asset protection will
diminish with excess effort (see Figure 4). Furthermore, protec-
tion over time will also eventually be compromised with
encroachment of unchecked populations breaching the exclusion
zone. By digressing to a defensive last stand, this trade-off is
unavoidable and may lead to divestment and eventual program
termination (Cacho et al. 2008; Rejmánek and Pitcairn 2002). On
the other hand, there are also, yet to be fully realized limits of
suitable habitat and the impact that could be imposed on this
priority area. Pouteau et al. (2011) predicted precipitation, ele-
vation (i.e., temperature), and slope steepness as major variables
explaining the M. calvescens distribution in French Polynesia; the
EMW shares many of these same conditions. We predict that a
M. calvescens suitable habitat model for the EMW will further
economize an asset protection strategy by refining optimal
investment strategies and measures of cost-effectiveness in
accordance with the likelihood and magnitude of impact on the
landscape.

This history of M. calvescens management in the EMW is a
case study of valiant management efforts originally intending to
eradicate, but ultimately operating with insufficient support
(Meyer et al. 2011). Moreover, current support has also become
insufficient to contain the invasion front spread across a majority
of the EMW below 1,000 m a.s.l. Thus, scaling management to

Figure 9. Impact mitigated within the first-priority watershed asset (red zone
between 400 and 1,200 m a.s.l.) by efforts to remove Miconia calvescens from the
first- (A; red), second- (B; yellow), and third-priority (C; blue) asset areas. Note
contour line intervals at 30 m a.s.l. (i.e., 100 feet a.s.l.).
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local eradication in smaller, priority asset areas may be warranted
in protecting critical ecosystem services vulnerable toM. calvescens
incursion. Here, we have developed a spatiotemporal model that
measures management effort required to eliminate M. calvescens
satellites before reaching maturity, extinguishing incipient
populations. Cost-effectiveness is determined by the avoidance of
future cost obligations to eliminate future progeny in newly
impacted areas. Future research is needed to further develop a
spatially explicit priority system for the EMW that valuates
ecosystem services associated with this forested watershed and a
suitability model that helps us better predict life-history traits
(e.g., persistence, maturity, and fecundity) influenced by a variety
of environmental factors in this heterogenous system.
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