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Abstract. Yarkovsky-Radzievskij effect exceeds the Poynting-Robertson effect in the perturb-
ing action on particles larger than 100 μm. We obtained formulae for averaged changes in a
meteoroid’s Keplerian orbital elements and used them to estimate dispersion in the Geminid
meteoroid stream. It was found that dispersion in semi-major axis of the model shower increased
nearly three times on condition that meteoroids rotation is fast, and the rotation axis is stable.
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To obtain the averaged changes in a meteoroid’s orbit we use equations for the deriva-
tives of the orbital elements in the form suggested by Burns (1976), namely db/dt =
F (a, ..., ω, v, E,m, r, Fr , Ft , Fn ), where b is one of the standard Keplerian orbital ele-
ments a, e, i,Ω, ω; r is the heliocentric distance, m is the meteoroid mass, v is the true
anomaly, E is the eccentric anomaly, and Fr , Ft , Fn are the radial, transverse, and nor-
mal components of the perturbing force. As in (Burns et al. 1979), we average the time
variation of the elements over the orbital period under the assumption that a and e are
essentially constant over this time interval and that the angular momentum is conserved.
The average change in any element b is then:〈

da

dt

〉
=

1
PH

∮
da

dt
r2 dv, (1)

where P is the orbital period and H = [aμ(1 − e2)]1/2 is the orbital angular momentum
of the meteoroid per unit mass, μ is the gravitational constant of the sun.

The perturbing Yarkovsky-Radzievskij force for fast rotators, according to Burns et al.
(1979) is

FY = kY r−7/2 , kY = 2.962 r2
m c−1σ1/4(1 − α)1/4γω−1/2

m S
7/4
0 r

7/2
0 cos ξ, (2)

where (1/γ) = 300 J/(m2 ·s1/2 ·K) is the thermal inertia, rm is the radius of the meteoroid,
α = 0.1 is the albedo, ωm = 104 rad/s is the angular velocity of the meteoroid (rm =
1 mm), S0 is the solar constant at heliocentric distance r0 = 1 au, ξ is the angle between
the rotational axis of the particle and its orbital plane (ξ = 45◦ for prograde, or ξ = 135◦

for retrograde rotation), c is the speed of light, and σ is the Stefan-Boltzmann constant.
The values of the parameters in (2) correspond to the model accepted by Olsson-Steel

(1987). As in (Olsson-Steel 1987), we assume that Fr = Ft = Fn = FY /
√

3 due to the
precession of the rotation axis and the frequent changes in the rotation speed. Even now,
when computers are much faster, the numerical integration of (1) is still very expensive,
so analytic expressions for the averaged changes in the orbital elements were found:

< ȧ >= k1I52 , < ė >= k2(I32c + eI12 + I12c), < i >= k2I12c cos ω,

< Ω̇ >= k2I12c sin ω/ sin i, < ω̇ >= −k2I32c/e − cos i < Ω̇ >,
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Table 1. Coefficients of expansion (3)

Integrals p0 p1 p2 p3 p4 p5 p6 p7 p8

I5 2 2 0
15
8

0 −
15

2 · 162
0 −

25
2 · 163

0 −
1575

2 · 165

I3 2 c 0
3
2

0 −
3

4 · 16
0 −

15
2 · 162

0 −
315

2 · 164
0

I1 2 2 0 −
1
8

0 −
15

2 · 162
0 −

105
2 · 163

0 −
15015
2 · 165

I1 2 c 0
1
2

0
3

4 · 16
0

35
8 · 162

0 −
1155

2 · 164
0

where

k1 = kY /[π
√

3μ ma2(1 − e2)5/2 ], k2 = kY /[2π
√

3μ ma3(1 − e2)3/2 ],
I52 =

∮
(1 + e cos v)5/2 dv, I32c =

∮
(1 + e cos v)3/2 cos v dv,

I12 =
∮

(1 + e cos v)1/2 dv, I12c =
∮

(1 + e cos v)1/2 cos v dv.

The integrals I are easily found as series by expanding the integrands using the binomial
formula

I = π
∞∑

j=0

pj e
j . (3)

Accuracy to 1% is achieved by keeping terms to eighth order in the eccentricity. The
expansion coefficients pj in (3) are given in Table 1.

Using the formulae we made some estimations for the Geminid meteoroid stream. The
model of the stream was like in (Ryabova 2007) and the meteoroid mass was taken as
3× 10−3 g. Direction of rotation (prograde or retrograde) for each meteoroid was chosen
using a pseudorandom number generator. The dispersion of the Geminids is anisotropic,
so the total dispersion and the dispersion observed at the Earth differ. The width of the
model shower is about 1.5 – 2.5◦ in solar longitude (Ryabova 2007). With YR-addition
the width increases by 0.3◦, remaining less than the observed width 5◦ (Fox et al. 1983).
As to the semi-major axis, YR-effect increases Δa for the model shower nearly 3 times.
We found that YR-effect, being the mass-dependant, increases the mass separation in
the stream about twice.
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† Part of this research was firstly fulfilled about 25 years ago. It remained unnoticed to
meteor astronomers community, because the English translation (Ryabova 1990) of the paper
was published in a hard-to-reach journal and, until recently, was absent from SAO/NASA ADS
database. The method was carefully revised and some corrections were introduced.
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