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The post-injection migration of a plume of CO2 through an inclined, confined porous layer
across which the permeability varies is studied theoretically. We derive a sharp-interface
lubrication model which accounts for the capillary trapping of CO2 at the receding
edge of the plume. Eventually the CO2 becomes entirely trapped in the pore throats,
and the final run-out distance is a key quantity for determining storage security and
efficiency. We deploy asymptotic approximations to show that when the CO2 plume
migrates a long distance relative to its initial length, the run-out distance is approximately
proportional to the permeability at the top of the layer. The permeability structure away
from the top boundary is important at early and intermediate times. Dissolution of the
CO2 and three-dimensional effects are incorporated, which demonstrate that the influence
of heterogeneity is quite general. The initial distribution of the CO2 at the end of the
injection phase also influences the post-injection spreading and trapping. At low injection
rates, the CO2 remains near the top of the layer so that the end-of-injection plume shape
has a small aspect ratio leading to a relatively large run-out length. At very high fluxes, the
end-of-injection shape and hence the final run-out distance becomes nearly independent
of the injection flux because the role of buoyancy becomes negligible during injection.
Our results illustrate the strong control of reservoir heterogeneity on the sweep efficiency
of a CO2 plume and hence the storage capacity. In many situations, it may be possible to
increase the storage volume by injecting at a higher rate.

Key words: porous media, gravity currents

1. Introduction

Carbon capture and storage (CCS) is one of the key technologies for reducing CO2
emissions in the short and medium term. CCS involves capturing carbon dioxide,
compressing it and then transporting it to storage sites where it is sequestered in geological
formations one to two kilometres below the surface (Bickle 2009). In the UK, the current
government target is to capture and store 20 Mt CO2 per year by 2035 and 100 Mt CO2 per
year by 2050 (Gummer 2018).

One of the major challenges for the deployment of CCS is determining the volume of
CO2 that can be stored safely in a particular target geological strata or ‘reservoir’. Often
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the geological strata are characterised by laterally extensive, but relatively thin layers of
permeable rock, saturated with brine and overlaid by a layer of very low permeability,
called a seal rock. Many target reservoirs have anticline structures, so that the buoyant
CO2 can collect below the seal rock at the crest of the formation, displacing the brine
downwards. However, in some cases the permeable layer has a small inclination which
extends over a very large distance. In this case, a plume of buoyant CO2 will gradually
migrate updip, with a small fraction (known as the residual saturation) of the CO2 being
trapped by capillary forces as the tail of the flow is displaced upwards by the formation
water. This so-called capillary trapping is a key stage in the geo-sequestration process,
since the plume of CO2 eventually becomes immobile (Hunt, Sitar & Udell 1988; Hesse,
Orr & Tchelepi 2008; Bickle 2009). The fraction of the pore space in the target reservoir
which actually traps the CO2 is critical for efficient use of the reservoir and is therefore
a source of considerable interest (see figure 1). It is very challenging to increase the
efficiency of the storage because the CO2 is buoyant and very mobile and so tends to
focus just below the upper boundary of the target reservoir, bypassing much of the pore
space below (Hesse et al. 2008). To date many assessments of the fraction of the pore
space which can be accessed by the plume have been based on the assumption that the
flow properties of the geological strata are constant in space. However, many sedimentary
deposits are formed by the deposition of particles from suspension flows, and the intensity
and particle load in these flows varies in time as the flows either wax or wane (e.g. Kneller
& McCaffrey 2003; Dennielou et al. 2006). As a result, the layers may be vertically
graded in mean grain size d, and this leads to vertical gradients in the permeability,
which depends on d2 as well as the variance in the grain size, amongst other factors
(Allen 1960; Dullien 2012). With vertical changes in grain size of a factor of 2–3, we
expect permeability changes of a factor of 4–9 across one element of the geological
strata; curiously, the porosity of the formation is much less sensitive to these changes
in grain size (e.g. figure 13 in Fitch et al. 2015). The vertical grading may extend over a
significant lateral scale owing to the formation of such sedimentary layers from sustained
suspension flows. Such changes in permeability may have a significant impact on the
velocity structure of the CO2 plume as it migrates updip (Hinton & Woods 2018, 2019),
and in turn this may impact the fraction of the pore space in the geological strata accessed
by the plume. In some geological formations, variations in the permeability may also arise
from post-depositional reactions, for example associated with the dolomitisation reaction
produced by a gravitational intrusion of sea-water into a carbonate deposit, or through
reactions associated with hydrothermal circulation, which can lead to preferential reaction
near the top or the base of the formation (Verdon & Woods 2007; Phillips 2009). It is the
purpose of this paper to explore the impact of such permeability gradients on the efficiency
of capillary trapping as a plume migrates updip in a reservoir of finite vertical extent and
which is bound above and below by less permeable seal layers in the geological strata (see
figure 2).

We build from the existing and substantial literature on this topic, but which has largely
focussed on capillary trapping in homogeneous reservoirs, and we compare the present
results with these earlier models as a reference. In an inclined layer which is bounded
only by a seal layer at the top, the motion of the ambient fluid is unimportant, and simple
estimates of the run-out time and distance have been obtained (Woods 2014). In horizontal
(and nearly horizontal) layers, Kochina, Mikhailov & Filinov (1983) found similarity
solutions of the second kind for the evolution of the plume as it is gradually trapped. The
volume of the mobile CO2 evolves as a power law function of time where the exponent
in the power law depends on the fraction of the pore space in which CO2 is trapped. Our
modelling provides a quantitative basis for assessing the impact of vertical permeability
grading on the efficiency of sequestration and may lead to new technical solutions to

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

97
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.972


Capillary trapping and varying permeability 910 A44-3

Trapped CO2

Trapped CO2
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FIGURE 1. Schematic of the trapped CO2 when the plume has become immobilised. The region
that is swept by the CO2 is shaded. This pore space is not entirely occupied by CO2, as shown in
the zoomed-in box. It is trapped and surrounded by ambient brine.
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FIGURE 2. Schematic diagram showing the migration of buoyant CO2 in an inclined, confined
layer of porous rock with vertically varying permeability.

enhance access to the pore space. Indeed, it has been shown that in a homogeneous
reservoir, the initial injection phase, which determines the structure and shape of the
mobile CO2, has an important impact on the trapping efficiency (Kochina et al. 1983;
Juanes et al. 2006; MacMinn & Juanes 2009), and so we explore the combination of
this effect with the vertical gradient in permeability. Generally, increasing the injection
rate leads to a more localised injection plume, and this may reduce the run-out distance.
Thus more CO2 may be stored if the fluid is injected at a higher rate (cf. Bachu 2015). In
addition, other models have included a background hydrological flow and shown that this
may enhance the rate of trapping as the post-injection plume migrates through the layer
(Juanes, MacMinn & Szulczewski 2010; MacMinn, Szulczewski & Juanes 2010).

There are many other processes which arise during the sequestration of CO2 including
dissolution into the ambient brine (Riaz & Cinar 2014) and leakage into the seal layer
(Farcas & Woods 2009). It has previously been shown that dissolution may have a
significant effect on the storage efficiency (MacMinn, Szulczewski & Juanes 2011;
MacMinn & Juanes 2013). Also, transverse flow (into the page in figure 1) may reduce the
extent of the CO2, especially if the transverse extent of the initial plume is small relative
to its updip extent. Since we are interested primarily in understanding the importance of
vertical variations in permeability on the storage efficiency, we present a two-dimensional
model and neglect transverse flow and dissolution in our initial analysis. However, we
reintroduce these effects later in the manuscript and demonstrate that although they change
the behaviour, our results and principles concerning the influence of heterogeneity are
robust to the inclusion of these additional processes.

We note that when the plume becomes very thin, the capillary entry pressure may
prevent the mobile CO2 spreading further (Zhao et al. 2014). However, it is often the case
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that this entry pressure is very small compared to the hydrostatic pressure and so the effect
may be neglected; we assume this henceforth (Hesse et al. 2008).

In § 2 we formulate the model for the post-injection evolution of the CO2 plume
including capillary trapping at the receding CO2–brine interface. We assume the
displacement is slow enough that the gravity–capillary equilibrium is maintained in any
vertical cross section and that there is a sharp interface between the CO2 and the brine,
which is valid provided that the layer thickness is large compared to the capillary transition
zone (e.g. Hesse et al. 2008). The governing equation is integrated numerically, and the
results demonstrate that at late times the role of buoyancy across the layer is negligible.
This motivates the asymptotic analysis of § 3 in which we consider the release of a
rectangle of CO2 and neglect the diffusive term, which is equivalent to assuming the initial
release has a small aspect ratio. This provides a set of reference calculations that illustrate
the influence of a linear cross-layer permeability variation on the run-out distance. The
asymptotic analysis identifies the different stages of migration of the CO2 and how these
are controlled by the parameters in the problem, such as the permeability variation across
the layer. We also include dissolution and three-dimensional effects in §§ 3.3, 3.4. In § 4,
we study the role of the initial distribution of the CO2, which is characterised by the
dimensionless injection flux. Finally, the implications of our results are explored in § 5.
We show that since the storage efficiency is inversely proportional to the run-out distance
then in some layers one can compensate for the efficiency reduction associated with an
unfavourable permeability gradient by increasing the injection flux.

2. Model

We consider the release of a fixed volume of supercritical CO2 with density ρ and
viscosity μr in a porous layer saturated with brine with density ρ + Δρ and viscosity μa.
The setup is shown in figure 2 where dark grey represents the CO2, light grey represents
the trapped CO2 and white represents the brine. The X and Z axes are defined as shown
in figure 2 with the top of the layer corresponding to Z = 0. The layer has thickness H0,
is bounded above and below by impermeable layers and is inclined at an angle θ to the
horizontal. The absolute permeability, K(Z/H0), varies with depth and the porosity, φ, is
constant. The presence of the ambient brine reduces the effective permeability of the CO2
by a factor, kr, known as the relative permeability. Likewise the flow of the ambient brine
is inhibited by the CO2, and we denote its relative permeability by ka. We assume that the
interface between the fluids at Z = H(X,T) is sharp. There can be intermingling of the
fluids especially at the leading edge of the plume, but previous experimental studies have
shown that the mixing region is relatively small, and elsewhere a sharp interface model is
accurate (Golding & Huppert 2010; Pegler, Huppert & Neufeld 2014).

Provided that the horizontal lengthscale is much larger than the layer thickness, H0, the
pressure in the injected and ambient fluids is hydrostatic and given by (Bear 1971)

P(X,Z,T) =
{

P0(X)+ ρgZ cos θ + Pc 0 < Z < H
P0(X)+ (ρ + Δρ)gZ cos θ − ΔρgH cos θ H < Z < H0,

(2.1)

where P0(X) is the unknown pressure at the top boundary (Z = 0) and Pc is the constant
capillary pressure. The Darcy flux per unit height in the injected and ambient fluids is
given by

Ur = −λrK̄k(Z/H0)

[
∂P0

∂X
+ ρg sin θ

]
, (2.2)
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Ua = −λaK̄k(Z/H0)

[
∂P0

∂X
− Δρg cos θ

∂H
∂X

+ (ρ + Δρ)g sin θ
]
, (2.3)

respectively, where λr = kr/μr and λa = ka/μa are the mobilities of the two fluids and
k(Z/H0) is the dimensionless permeability defined relative to the mean permeability, K̄ =
(1/H0)

∫ H0

0 K(Z/H0) dZ. The unknown pressure gradient, ∂P0/∂X, can be eliminated by
applying the constraint that the total net flux in the X direction vanishes:∫ H(X,T)

0
Ur dZ +

∫ H0

H(X,T)
Ua dZ = 0. (2.4)

The flow rate (2.2) is integrated over the thickness of the injected fluid to obtain the fluxes,
Qr and Qa, in the injected and ambient fluids, respectively,

Qr = −Qa =
∫ H(X,T)

0
Ur dZ

= ΔρgK̄H0

μr

mψ(H/H0)
[
1 − ψ(H/H0)

]
m + (1 − m)ψ(H/H0)

(
sin θ − ∂H

∂X
cos θ

)
, (2.5)

where

m = μr/kr

μa/ka
(2.6)

is the mobility ratio and

ψ(H/H0) = 1
H0

∫ H

0
k(Z/H0) dZ (2.7)

is the depth-integrated permeability.
To obtain an equation for the evolution of the interface, we consider local mass

conservation in the CO2 phase,

φ̂
∂H
∂T

= −∂Qr

∂X
, (2.8)

where the effective porosity, φ̂, is reduced owing to capillary trapping of CO2 within the
pores and takes the following values relative to the porosity of the rock, φ:

φ̂ =
{
φ(1 − Sa − Sr) for ∂H/∂T < 0
φ(1 − Sa) for ∂H/∂T > 0,

(2.9)

where Sa represents the saturation of immobile ambient fluid left behind as the injected
fluid invades the pore space, whilst Sr represents the saturation of the CO2 left behind as
the brine invades the region occupied by CO2. Upon substituting for the flux, Qr in (2.8),
we obtain the following advection–diffusion type equation for the shape of the interface,
Z = H(X,T):

∂H
∂T

= −ΔρgK̄

μrφ̂

∂

∂X

{
mψ(H/H0)

[
1 − ψ(H/H0)

]
m + (1 − m)ψ(H/H0)

(
sin θ − ∂H

∂X
cos θ

)}
. (2.10)

We assume that the rock is invaded by the CO2 for the first time so the ambient brine is
initially unsaturated with CO2. The horizontal lengthscale of the injected CO2 is initially
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910 A44-6 E. M. Hinton and A. W. Woods

X ∼ L and so we introduce the scaled properties

h = H/H0, x = X/L, t = T/T0, (2.11a–c)

where the timescale,

T0 = μrφ(1 − Sa − Sr)L
ΔρgK̄ sin θ

, (2.12)

corresponds to the lengthscale, L, divided by the along-layer buoyancy velocity in the case
that the brine displaces the CO2. The dimensionless governing equation is

σ−1 ∂h
∂t

+ ∂

∂x
[g(h)] = F ∂

∂x

[
g(h)

∂h
∂x

]
, (2.13)

where

g(h) = mψ(h)[1 − ψ(h)]
m + (1 − m)ψ(h)

(2.14)

is the flux function, and

σ =
{

1 for ht < 0
1 − ε for ht > 0,

(2.15)

with

ε = Sr/(1 − Sa) (2.16)

representing the effect of the capillary trapping of the CO2 at the receding edge of the
plume. The parameter ε is a function of the geometry of the pore space and the interfacial
tension between the CO2, the brine and the mineral surfaces (Bear 1971; Lake 1989). The
parameter multiplying the diffusive term on the right-hand side of (2.13) is

F = H0

L tan θ
, (2.17)

and this quantifies the importance of the component of buoyancy acting perpendicular to
the boundary relative to the component acting parallel to the boundary.

In a uniform layer, the permeability functions are k(z) ≡ 1 and ψ(h) ≡ h, and (2.13)
reduces to the governing equation of Hesse et al. (2008). It is also useful to note that
ψ(0) = 0, ψ(1) = 1 and hence g(0) = g(1) = 0, which corresponds to zero net flux in
the x direction. To illustrate the effect of variations in permeability, we use a linear
permeability profile,

k(z) = 1 + Δk (z − 1/2) , (2.18)

where −2 < Δk < 2 is the permeability difference across the layer relative to the mean
permeability. If the permeability in the layer is higher at the top (z = 0) then Δk < 0, and
if the permeability is higher at the bottom (z = 1) then Δk > 0. We assume throughout
this work that the porosity, φ, and the saturations, Sa and Sr (and hence ε), are constant in
the layer. This is consistent with a varying permeability provided that the pore geometry
is constant while the pore size may vary, as has been observed in some porous layers (e.g.
figure 13 in Fitch et al. 2015).
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Velocity
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z

FIGURE 3. Velocity profiles (2.19), (2.20) in the mobile CO2 and the ambient brine in the case
that the permeability increases towards the top of the layer (Δk = −1) and m = 0.2. The profiles
are shown for h = 0.5.

We note that the dimensionless velocity in the injected fluid is

ur(x, z, t) = [1 − ψ(h)]mk(z)
m + (1 − m)ψ(h)

(
1 − F ∂h

∂x

)
, (2.19)

whilst in the ambient fluid, the dimensionless velocity is

ua(x, z, t) = −ψ(h)mk(z)
m + (1 − m)ψ(h)

(
1 − F ∂h

∂x

)
. (2.20)

An example of the velocity profile in the mobile CO2 and the ambient brine is shown in
figure 3 for h = 0.5 in the case that the permeability increases towards the top boundary
(Δk = −1) and m = 0.2.

Equation (2.13) is integrated numerically, and details are provided in appendix A. The
numerical results in the case of a step function release (h = 0 for x > 1/2 and h = 1 for
x < 1/2) are compared to our asymptotic results in figure 4 in the case of no capillary
trapping (ε = 0). Each panel corresponds to different values of the mobility ratio, m, and
the permeability gradient, Δk. We use three values of the parameter F , and results are
shown at time t = 1. The asymptotic predictions obtained in § 3, in which the diffusive
term in the governing equation (2.13) is neglected, are shown as red dotted-dashed lines.
The approximations show good agreement with the numerical results provided that F �
1. Figures 4(b) and 4(c) demonstrate that the interface may develop a shock-like region of
fixed extent at the top or bottom depending on the parameter values and we explore this
further in the next section.

We have neglected dissolution of the CO2 into the ambient brine but reintroduce it in
§ 3.3 and discuss its importance. Throughout the majority of this paper, we focus on the
two-dimensional setup described above. Three-dimensional effects are discussed in further
detail in § 3.4.

3. A rectangular release of CO2

The post-injection evolution of the plume in the case of varying permeability and
capillary trapping is complex and the behaviour may depend sensitively on the initial
shape of the plume. Therefore, we begin our analysis by considering the simple
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(a) 0

0.5

Asymptotic

F = 0.01

F = 0.1

F = 1

Slightly

increasing k

Strongly

increasing k

Strongly

decreasing k

h

1.0

(b) 0

0.5h

1.0

(c) 0

0.5h

1.0
–1.5 –1.0 –0.5 0 0.5

x
1.0 1.5 2.0 2.5

–1.5 –1.0 –0.5 0 0.5 1.0 1.5 2.0 2.5

–1.5 –1.0 –0.5 0 0.5 1.0 1.5 2.0 2.5

FIGURE 4. The three regimes for the early evolution of the upslope interface. We use ε = 0
and t = 1. (a) Δk = 0.5 and mobility ratio, m = 0.3 (no fixed-extent regions). (b) Δk = 1.5
and m = 0.5 (fixed-extent region at the top). (c) Δk = −1 and m = 1 (fixed-extent region at the
bottom).

idealised initial condition,

h =
{

1 for − 1/2 < x < 1/2
0 otherwise.

(3.1)

The initial dimensionless volume of the plume is unity. This corresponds to a dimensional
volume of φ(1 − Sa)H0L. Initial conditions that are more realistic for the context of CO2
sequestration are considered in § 4. In the present section, we determine the evolution of a
plume with initial shape given by (3.1) for reference. We refer to the part of the interface
initially at x = 1/2 as the ‘upslope’ interface and the part initially at x = −1/2 as the
‘downslope’ interface. At early times, the evolution of the two interfaces is independent
and we analyse the upslope interface first.

The relative significance of the diffusive term on the right-hand side of (2.13) diminishes
as the extent of the plume grows. This motivates asymptotic analysis in which the diffusive
term is neglected. The primary aim of this analysis is not to provide precise solutions to
the model, which can be provided through numerical integration, but rather to elucidate
the key stages and processes in the migration of the plume and their dependence on the
parameters in the problem, particularly the permeability variation.

The diffusive term may be neglected when the extent is large (x � F ). The very early
parabolic behaviour in which the diffusive term dominates is ignored in our asymptotic
calculations because the volume that is capillary trapped during this period is negligible
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Capillary trapping and varying permeability 910 A44-9

(Hesse et al. 2008). We seek solutions to the approximate equation

∂h
∂t

+ σg′(h)
∂h
∂x

= 0, (3.2)

which is a first-order hyperbolic partial differential equation. We solve (3.2) using the
method of characteristics. In (x, t) space, the lines of constant h are given by

dx

dt
= σg′(h) ≡ σ

m[1 − ψ(h)]2 − ψ(h)2

[m + (1 − m)ψ(h)]2
mk(h). (3.3)

We note that g′(0) > 0 and g′(1) < 0, and initially the upslope interface advances at the
top (h = 0) and recedes at the bottom of the layer (h = 1). There is a height, h0, at which
the interface is stationary, given by the solution to g′(h0) = 0, which is equivalent to

ψ(h0) = m̂ ≡ [1 + m−1/2]−1. (3.4)

For a uniform layer (Δk = 0) we recover the stationary height, h0 = m̂ obtained by Hesse
et al. (2008). The stationary height is independent of the trapping parameter, ε.

The interface advances in 0 < h < h0 and recedes in h0 < h < 1, and this determines
the value of σ at each height in (3.2). If g′(h) is a monotonically decreasing function
of h in (0, 1) then the method of characteristics can be applied to obtain the implicit
solution to (3.2) everywhere. For a linear permeability profile, the condition that g′(h) is
monotonically decreasing corresponds to

m < (2 − Δk)2/(2Δk) for Δk ≥ 0

m > −2Δk/(2 + Δk)2 for Δk < 0

}
(3.5)

and in this case, the shape of the upslope interface is given by

x =
{

1/2 + (1 − ε)g′(h)t for 0 < h < h0,

1/2 + g′(h)t for h0 < h < 1.
(3.6)

The advancing portion of the interface is slowed by the reduction in flux associated with
capillary trapping at the receding interface. The interface evolves as a growing rarefaction
wave, and the solution (3.6) shows good agreement with our numerical results at t = 1 for
F � 1 (see figure 4a).

If g′(h) is not a monotonically decreasing function of h in (0, 1) then the characteristics
cross in (x, t) space and a discontinuity (i.e. a shock) develops in the upslope interface.
There is a shock at the top that includes h = 0 if g′′(0) > 0 (see figure 4b). For a linear
permeability profile, g′′(0) > 0 is equivalent to

m >
(2 − Δk)2

2Δk
and Δk > 0. (3.7)

There is a shock at the bottom (see figure 4c) that includes h = 1 if g′′(1) > 0, which is
equivalent to

m <
−2Δk

(2 + Δk)2
and Δk < 0. (3.8)

For a linear permeability profile, these are the only two possibilities; an internal shock
that does not include h = 0 or h = 1 is not possible. The shocks occur when the interface
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FIGURE 5. Parameter space delineating the different shapes of the upslope interface for m ≤ 1.
The letters correspond to the panels in figure 4.

predicted by the flux function, x = g′(h)t, has a turning point, which arises when the flow
velocity at the top (or bottom) of the layer is sufficiently small compared to the mean flow
velocity. Therefore, a shock at the top (or bottom) occurs when the permeability is low at
the top (or bottom), corresponding to Δk > 0 (or Δk < 0).

The three cases of (a) no shock, (b) a shock at the top of the layer and (c) a shock at the
bottom are shown in figure 4 and delineated in parameter space in figure 5.

For the case of zero capillary trapping (ε = 0), the height, hs, and speed, vs, of the
shock at the top can be calculated from continuity of the interface at h = hs and a
Rankine–Hugoniot condition, associated with mass conservation:

vs = g′(hs), vshs = g(hs). (3.9a,b)

We note that vs > 0 and hence hs < h0 and the shock does not include the stationary
height. The shape of the interface can now be obtained for ε ≥ 0:

x =

⎧⎪⎨
⎪⎩

1/2 + (1 − ε)vst for 0 < h < hs

1/2 + (1 − ε)g′(h)t for hs < h < h0

1/2 + g′(h)t for h0 < h < 1,
(3.10)

where h0 is again the height at which g′(h0) = 0. This shape is compared to our numerical
results in figure 4(b).

We may carry out similar analysis in the case of a shock at the bottom to obtain the
equations

vs = g′(hs), vs(1 − hs) = −g(hs), (3.11a,b)

where the shock lies in h ∈ [hs, 1]. The shock velocity, vs, is negative and hs > h0. The
shape of the interface is (see figure 4c)

x =

⎧⎪⎨
⎪⎩

1/2 + (1 − ε)g′(h)t for 0 < h < h0

1/2 + g′(h)t for h0 < h < hs

1/2 + vst for hs < h < 1.
(3.12)

We have found three regimes for the evolution of the upslope interface before it interacts
with the downslope interface. Our results apply provided that the plume is sufficiently
long so that the diffusive term, corresponding to the component of buoyancy acting
perpendicular to the boundary, is negligible. We also note that in the case that there is
a shock at the top of the layer, which occurs when Δk > 0 and the mobility ratio satisfies
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(3.7), the buoyant injected fluid may preferentially migrate along the bottom of the layer
where the permeability is highest. The introduction of a shock near h = 0 corresponds to
a weak solution of the governing equation, and the assumption underlying this solution
is that cross-layer buoyancy-driven flow is sufficiently fast that the buoyant injected fluid
always lies above the denser ambient fluid. However, if the layer inclination, θ , is sufficient,
this may not occur and the interface may advance upslope most rapidly in the middle
of the layer leading to a possible cross-layer Rayleigh–Taylor type instability and the
invalidation of our model. Such behaviour has been observed in layers which partition
into two sublayers of differing permeability in the case of an injection-driven flow and
an inclined buoyancy-driven flow (Huppert, Neufeld & Strandkvist 2013; Debbabi et al.
2018). This instability does not occur in cases with no shock or with a shock at the bottom
of the layer, which is associated with the high mobility of the ambient fluid. We now focus
the analysis on these two cases; the case of a shock at the top of the layer is included for
completeness noting the caveat above.

The downslope interface is initially a line across the layer at x = −1/2. At early times,
the interface is stationary because in 0 < h < h0 the characteristic velocity of the interface
(3.3) is upslope and in h0 < h < 1 it is downslope, but owing to buoyancy the injected fluid
cannot lie below the ambient fluid and hence there is no motion (for further details, see
Hesse et al. 2008). The early-time approximation of the downslope interface as a stationary
line at x = −1/2 perpendicular to the boundaries is accurate provided that F � 1 (Gunn
& Woods 2011).

3.1. Interaction with the downslope interface
We next analyse the evolution of the interface after it detaches from the bottom boundary.
The downslope interface remains at x = −1/2 until the receding part of the upslope
interface collides with it (see figures 6 and 7). The time of this collision, t1, is obtained by
considering the fastest receding point on the upslope interface. In the absence of a shock
at the top of the layer, the fastest point is at h = 1 and the time is given by the solution to
1/2 + g′(1)t1 = −1/2. If there is a shock at the top of the layer then g′(1) is replaced by
the velocity of the shock. The collision time is given by

t1 =
{[

mk(1)
]−1 no shock at h = 1

−v−1
s shock at h = 1.

(3.13)

The injected fluid subsequently detaches from the lower boundary, y = 1, and the
downslope interface, which is approximated by a line perpendicular to the boundary,
begins to move with velocity

dX
dt

= g(H)/H, (3.14)

where x = X (t) is the location of the travelling downslope interface and h = H(t) is its
thickness. We note that H(t) is the evolving thickness of the downslope interface at the
trailing edge of the plume, whereas hs is used to denote the fixed location of a shock
in the slumping of the upslope interface, when it occurs. The initial condition for (3.14)
is X (t1) = −1/2,H(t1) = 1 if there is no shock at h = 1 in the upslope interface and
X (t1) = −1/2,H(t1) = hs if there is a shock (see figure 6).
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FIGURE 6. Evolution of the mobile CO2. The results from our asymptotic approximations
(F = 0; § 3) are shown as continuous black lines. We include the cases ε = 0.2 and ε = 0. The
rows correspond to t = 1, t = t1 (the detachment time), and t = 50. The columns corresponds
to parameter values of m = 0.1, Δk = 0.5; m = 0.1, Δk = −0.3; and m = 0.1, Δk = 1.6. The
numerical results with F = 0.2 are plotted as red dot-dashed lines in the bottom row. Note the
different axes.

At first, the downslope interface advances into the portion of the upslope interface that
is receding (h > h0). At such times, the continuity of the interface at h = H requires that

X = 1/2 + g′(H)t. (3.15)

We can combine (3.14) and (3.15) to obtain the following equation for the evolution of the
shock height:

dH
dt

= g(H)− Hg′(H)
Hg′′(H)t . (3.16)

This equation is separable with implicit solution

g(H)− Hg′(H) = 1/t, (3.17)

where the constant of integration is obtained using the initial condition arising from the
collision at t = t1 and is independent of whether or not there is a shock at the top of
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FIGURE 7. The location of the mobile CO2 (black) and the trapped CO2 (grey) at four times:
(a) t = 3, (b) t = 7, (c) t = 9, (d) t = 20. We use a mobility ratio m = 0.2, trapping parameter
ε = 0.25 and the permeability decreases towards the bottom of the layer with Δk = −0.2. The
height, h0, at which the flux function, g′(h), changes sign is indicated by a blue dot.
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FIGURE 8. The evolution of the height of the trailing shock after the detachment from the lower
boundary at t = t1 with m = 0.2. (a) A uniform layer and (b) a layer in which the permeability
increases towards the top (Δk = −1). In (b) there was a shock at h = 1 in the upslope interface
so H(t1) < 1.

the layer in the original upslope interface. The downslope interface height, H(t), satisfies
(3.17) until it reaches the advancing portion of the interface. We denote this time t = t2,
given by the solution to H(t2) = h0. The evolution of H(t) in the time period t1 < t < t2
is independent of ε (see figure 8). We substitute H = h0 into (3.17) to obtain the time at
which the downslope interface reaches the advancing portion,

t2 = (1 + m−1/2)2, (3.18)

which is independent of Δk and ε.
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In the special case that there is no trapping (ε = 0), (3.17) provides the downslope
interface height at all times and H tends to 0 as t → ∞ (provided there is no shock in
the upslope interface at the top of the layer).

For ε > 0, the evolution of the travelling shock changes as it enters the advancing
portion of the plume (see figure 8). At such times (t > t2), the condition for the continuity
of the interface at h = H(t) (3.15) is adjusted to

X = 1/2 + (1 − ε)g′(H)t. (3.19)

We combine this with the Rankine–Hugoniot condition (3.14) to obtain the advancing
version of (3.16),

dH
dt

= g(H)− (1 − ε)Hg′(H)
H(1 − ε)g′′(H)t . (3.20)

This equation is separable but can only be integrated analytically in the special case of
equally viscous fluids in a uniform layer (Hesse et al. 2008). Instead, we integrate (3.20)
numerically. The travelling shock height is then determined for all t > t1. Beyond the shock
(x > X (t)), the shape of the interface is given by the upslope solution obtained earlier.

The asymptotic results obtained are shown in figure 6. The top row (figure 6a–c) shows
the interfaces at t = 1, where each column corresponds to different values of m and Δk.
We use ε = 0.2 and ε = 0. In figure 6(a), there are no shocks in the upslope interface; in
figure 6(b), there is a shock at the bottom of the upslope interface whilst in figure 6(c),
there is a shock at the top of the upslope interface. The second row shows the interfaces
at the time of detachment from the bottom boundary, and the bottom row corresponds to
t = 50. The numerical results at t = 50 with F = 0.2 (red dotted dashed lines) show good
agreement with the asymptotic results. This is because the diffusive term in the governing
equation becomes negligible for x � F . In the case that the mobility ratio is small and the
permeability is high at the top of the layer (figures 6(g) and 6(h)), the migration distance
is large and the agreement is excellent. However, when the permeability is low at the top
of the layer, which corresponds to Δk > 0, the plume migrates less far, and neglecting the
diffusive term is a poorer approximation (figure 6i).

For ε > 0, there is a time, t∞, at which H(t∞) = 0 and the plume vanishes if there is no
shock at the top of the upslope interface. In the case that there is a shock at the top of the
upslope interface, the plume vanishes when H = hs. We define the maximum extent that
the plume runs upslope as

x∞ = 1/2 + (1 − ε)g′(0)t∞ = 1/2 + (1 − ε)k(0)t∞. (3.21)

The extent of the plume is larger when the permeability at the top of the layer is high (Δk <
0) because the plume has a longer finger at the top (see figure 9a). The run-out extent
may also be interpreted by considering the late-time behaviour. At late times the plume
occupies a thin region (h � 1), and the governing equation (2.13) may be approximated
by

∂h
∂t

+ k(0)
∂h
∂x

= 0. (3.22)

This suggests that if the early-time and intermediate behaviour when h ∼ 1 were ignored
then the runout extent would vary linearly with the permeability at the top of the layer,
k(0). This linear relationship is shown to be a good approximation when the plume
runs a long distance (x∞ � 1) in figure 10. Since x∞ ∼ k(0)t∞ (see (3.21)), the run-out
time is approximately independent of the permeability structure when the plume runs a
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FIGURE 9. Contours of (a) the run-out extent of the plume and (b) the time at which all the CO2
is trapped for m = 0.1 calculated from our F � 1 analysis. The labels correspond to log(x∞)
and log(t∞), respectively.

–1.5 –1.0 –0.5

�k
0

Asymptotic prediction (�k ≤ 0)

Asymptotic prediction (�k > 0)

Numerical results with F = 0.5

x∞ = k(0) × const

0.5 1.0 1.5
0

50

100
x∞

150

200

FIGURE 10. Run-out extent (x∞) in the case m = 0.2 and ε = 0.25 as a function of the
permeability contrast, Δk. The numerical results (red crosses) in the case F = 0.5 show
excellent agreement with the asymptotic predictions in the case that Δk ≤ 0. We also include
the prediction of linear dependence on k(0) (dashed line).

long distance (see figure 9). However, the dimensional final run-out time is inversely
proportional to the layer’s mean permeability, K̄, as can be seen through the scaling (2.12).
The dimensional run-out distance is independent of the mean permeability. It was shown
by Hesse et al. (2008) that the run-out extent also increases with smaller mobility ratios m.

Finally, we note that our run-out predictions are valid even in the case that F is not
small provided that the plume has spread a long distance (as is the case for Δk < 0).
This is demonstrated by comparing our run-out predictions to the numerical results in the
case m = 0.2 and F = 0.5 in figure 10. The relative error of the asymptotic predictions
are 4 % for Δk = −1, 5 % for Δk = 0 and 32 % for Δk = 1, associated with a much
shorter plume for which the neglected diffusive term is relatively important. The run-out
distance is increased when the diffusive terms are included in the calculations because
the buoyant highly mobile CO2 finger slumps further upstream owing to the hydrostatic
pressure gradients.
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3.2. Volume of mobile CO2

We apply our results to calculate the volume, ν(t), of the mobile CO2. In the case that
there is no trapping (ε = 0), the dimensional volume is always (1 − Sa)φH0L, which in
dimensionless terms is ν = 1. In the period in which the downslope interface migrates
into the receding portion of the plume (0 < t < t2), the volume can be calculated from the
reduction in the extent of the advancing region associated with trapping at the receding
edge,

ν(t) = 1 − ε

∫ h0

0
g′(z) dz = 1 − ε

(
1 + m−1/2)−2

t. (3.23)

At later times (t > t2), the volume may be obtained from the shock height, H(t),
ν(t) = (1 − ε)t[g(H)− Hg′(H)]. (3.24)

3.3. The relative importance of dissolution of CO2

This work has so far neglected any dissolution of the CO2 into the ambient brine
which might occur (Nordbotten & Celia 2006). Here we incorporate a simple model for
dissolution and calculate how it couples with the effects of vertically varying permeability.
The dimensionless governing equation (2.13) is adjusted to (MacMinn et al. 2011;
MacMinn & Juanes 2013)

σ−1 ∂h
∂t

+ ∂

∂x
[g(h)] = F ∂

∂x

[
g(h)

∂h
∂x

]
− σ−1n, (3.25)

where the loss term is

n = QdμrL
ΔρgK̄H0 sin θ

(3.26)

and Qd is the dimensional flux per unit length of the interface associated with dissolution.
As an example, in real geological strata the dissolution parameter may be of the order
of n ∼ 10−6 (Szulczewski et al. 2012; MacMinn & Juanes 2013). The effect of capillary
trapping is adjusted to account for the dissolution term,

σ =
{

1 for ht < −n

1 − ε for ht > −n.
(3.27)

For simplicity, we assume that the CO2-saturated brine does not fully flood the layer,
which would limit the rate of dissolution (MacMinn et al. 2011). It is straightforward
to adapt our numerical method to incorporate the dissolution term. The final run-out
extent obtained from numerical integration of (3.25) is shown in figure 11 as a function
of the dimensionless dissolution flux, n, for particular parameter values. As expected (and
studied previously) the extent is reduced with greater dissolution. The extent increases in
the case that the permeability increases towards the top boundary. Figure 12 shows the ratio
of the run-out distances in a layer in which the permeability increases towards the top with
a layer of constant permeability. It was shown earlier that this ratio tends to k(0), which is
1.5 in the case that Δk = −1, for very large run-out distances. Figure 12 demonstrates that
the run-out ratio is insensitive to the dissolution; the run-out ratio varies by just 2.5 % for
0 < n < 10−4. This suggests that although dissolution can have a significant influence on
the plume migration, the layer heterogeneity is still key for accurate quantitative modelling.
Indeed, the principles we derive in this paper concerning permeability variations carry
through to the case in which dissolution is non-negligible.
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FIGURE 11. Final run-out extent, x∞, as a function of the dissolution parameter, n, in the case of
a uniform layer (Δk = 0) and a layer with permeability that increases towards the top (Δk = −1).
The circles denote the predictions without dissolution (n = 0). We use F = 0.5, ε = 0.4 and
m = 0.2.

10–6 10–5

n
10–4

1.30

x ∞
 (
�

k 
=

 –
1
)/

x ∞
 (
�

k 
=

 0
)

n = 0

1.35

1.40

FIGURE 12. Ratio of the final run-out distance in a layer with permeability increasing towards
the top to the final run-out distance in a layer with constant permeability (cf. figure 11).

3.4. Cross-slope effects
Hitherto we have analysed a two-dimensional model for the post-injection flow of
CO2. Injection wells are often relatively long in the transverse direction (into the
page in figure 2), which motivates a two-dimensional approximation. Presently, we
analyse the evolution of a three-dimensional plume to determine the impact of vertically
heterogeneous permeability in this case. The transverse coordinate is denoted by Y and
is scaled with the initial transverse extent, W (i.e. y = Y/W). The initial condition in
dimensionless coordinates is given by

h =
{

1 for − 1/2 < x < 1/2,−1/2 < y < 1/2
0 otherwise.

(3.28)

The dimensionless governing equation (2.13) is adjusted to account for cross-slope effects,

σ−1 ∂h
∂t

+ ∂

∂x
[g(h)] = F ∂

∂x

[
g(h)

∂h
∂x

]
+ (F/w2)

∂

∂y

[
g(h)

∂h
∂y

]
, (3.29)

where h = h(x, y, t) and w = W/L is the aspect ratio of the initial shape. The relative
importance of transverse flow depends on the aspect ratio and the inclination of the
aquifer through the parameter, F . The system is integrated numerically as described in
appendix A. Cross-sections of the mobile CO2 in the x direction are shown in figure 13
at t = 30 in the case that ε = 0.25 and F = 0.5 for an aspect ratio w = 5. There is
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FIGURE 13. Cross-sections of the thickness of the mobile CO2 in the case that m = 0.2, ε =
0.25, Δk = 0, F = 0.5 at t = 30 with aspect ratio w = 5. The shape in the absence of cross-flow
effects (w = ∞) is also included.
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FIGURE 14. Run-out distance from the three-dimensional simulation as a function of the aspect
ratio, w, for m = 0.2, ε = 0.6, and F = 0.5 for a layer with constant permeability (Δk = 0) and
a layer with permeability increasing towards the top (Δk = −1). The two-dimensional results
are indicated by circles.

good agreement between the cross-sections near the centreline and the two-dimensional
prediction corresponding to w = ∞. Away from the centreline, the trailing region of fixed
extent advances faster, and eventually this affects the trailing region at the centreline,
which in turn shortens the run-out extent.

Figure 14 shows the runout distance in a layer of constant permeability (Δk = 0) and a
layer in which the permeability increases towards the top (Δk = −1) as a function of the
aspect ratio, w, for the case ε = 0.6. Although the transverse flow can significantly reduce
the extent of the current, its effect is similar for both layers considered. Indeed, the ratio of
the run-out distance between the two layers varies by only 4 % with the aspect ratio varying
from 1 < w < ∞. Hence, similar to the case of including dissolution, three-dimensional
effects can be important but they are also influenced by the heterogeneity.

In the next section, we return to the original model that neglects three-dimensional flow
and dissolution. We note that both of these effects act to shorten the extent of the current.
Thus, our results from the original model provide conservative estimates of the run-out
distances and most importantly demonstrate the impact of vertical permeability variations.

4. Impact of the plume shape at the end of injection

Thus far in this paper we have considered a rectangular release of CO2. MacMinn
& Juanes (2009) showed that the distribution of the CO2 at the end of injection can
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have a significant influence on run-out length in a uniform horizontal layer. Permeability
variations effect the interface evolution in the injection period, which in turn effects the
post-injection trapping (Hinton & Woods 2018). We first describe the behaviour in the
injection period. The interface shape during the injection period is complex because
it is difficult to determine the proportion of the flux that is partitioned upstream and
downstream of the injection point. For simplicity, we assume that the porous layer is
sealed far downslope so that all of the injected flux flows upslope. The interface shape
in this setting has been calculated in the case of constant permeability (Gunn & Woods
2011). It was shown that provided the injection period is sufficiently long, the diffusive
terms may be neglected and the governing equation is hyperbolic. To obtain the interface
shape, we generalise the results of Gunn & Woods (2011) to the case of vertically varying
permeability by adapting the work of Hinton & Woods (2018). During the injection period
there is no trapping because ∂h/∂t ≥ 0 everywhere.

The shape of the interface at the end of injection is controlled by the dimensionless
parameter

q = Qμr

ΔρgK̄H0 sin θ
, (4.1)

where Q is the injection flux. In the case that q < 1, the layer does not flood because the
injection is slow but for q > 1, the layer floods.

The injection period is 0 < T < Ti and we chose the lengthscale L to satisfy

(1 − Sa)φLH0 = QTi, (4.2)

so that the dimensionless volume of fluid at the end of the injection period is ν = 1.
Dimensionless time is still defined from the end of the injection period (t = 0 at T = Ti).
We continue to assume that F � 1 and neglect the diffusive term in the governing
equation (2.13). We note that alternating injection strategies, where brine is injected
between periods of CO2 injection, may enhance the capillary trapping, but such behaviour
is beyond the scope of this article (Ide, Jessen & Orr Jr. 2007).

4.1. Fast injection (fully-flooded layer, q ≥ 1)
If the layer fully floods then at the end of the injection period the downslope interface is
a shock from h = 0 to h = 1 at x = 0. We assume that this downslope interface is a line
perpendicular to the boundaries, which is accurate for F � 1. For a detailed discussion
of its structure, see Gunn & Woods (2011). The upslope interface shape is given by

x = q−1g′(h)+ f ′(h) (4.3)

in dimensionless variables, where

f (h) = ψ(h)
m + (1 − m)ψ(h)

, (4.4)

is the flux function associated with injection. These shapes are shown for some parameter
values in figure 15. The initial shape upslope tends towards x = f ′(h) for q � 1.
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FIGURE 15. Interface shape at the end of the injection period for m = 0.2 in the cases of
(a) uniform layer (Δk = 0) and (b) layer with permeability that increases towards the top
(Δk = −1).

The injection term, f ′(h) in (4.3), does not introduce new shocks to the interface
provided that (Hinton & Woods 2018)

m <
(2 − Δk)2

Δk2 − 2Δk + 4
, (4.5)

which is the case in most CO2 storage projects and we assume this herein. The asymptotic
analysis for the post-injection behaviour in the regime F � 1 is similar to that described
in § 3 with a few extra details, which are given in appendix B.

4.2. Slow injection (not fully-flooded, q < 1)
In the case that q < 1, the layer is not fully-flooded by the injected fluid (figure 15). The
upslope interface has the same shape as (4.3) at the end of injection but only occupies a
fraction 0 < h < hi of the layer thickness. The downslope interface is at x = 0 and 0 ≤
h ≤ hi, and there is an intermediated region where the interface has constant height, h = hi
between the upslope and downslope regions (see figure 15). The depth that is flooded hi
depends on the injection rate. Mass conservation imposes

ψ(hi) = q. (4.6)

Since ψ(h) is an increasing function and ψ(1) = 1, the layer is not fully flooded provided
that q < 1. The asymptotic analysis for the post-injection behaviour in the regime F � 1
for the case of a layer that is not fully-flooded by CO2 is given in appendix C.

The run-out distance predicted by the asymptotic analysis is shown as a function of q in
figure 16 with a mobility ratio m = 0.2 and trapping parameter ε = 0.3. The predictions
for three permeability structures are shown. With small q, corresponding to relatively weak
injection, the flow during the injection period is strongly influenced by the along-layer
component of buoyancy and the end-of-injection plume has a long finger at the top of
the layer (see figure 15). This leads to a substantial increase in the run-out distance. At
large values of q, the end-of-injection shape becomes independent of further increases to
q and the along-layer component of buoyancy is negligible in comparison to the injection
pressure. Thus the run-out distance becomes insensitive to further increases to q.
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FIGURE 16. Run-out extent (x∞) with a mobility ratio m = 0.2 and ε = 0.3. The initial shape
is described in § 4 and is characterised by q, which quantifies the relative magnitude of the input
flux during the injection period.

5. Implications of the results for CO2 storage

In the present section, our results are applied to quantify the volume of CO2 that can be
stored and immobilised via capillary trapping in example geological layers. In particular,
we explore the influence of a permeability gradient across the layer and the relative
magnitude of the input flux during the injection phase. To assist our analysis, we first
define the ‘sweep efficiency’ for a particular layer. The free surface when the plume is
immobilised is given by Z = HR(X), which is shown as a shaded region in figure 1; this is
the region that is ‘swept’ by the plume. The sweep efficiency is the ratio of the area of the
grey region to the area of the red dashed box. This ratio can be calculated by equating the
injected volume of CO2 to the trapped volume of CO2 (Hesse et al. 2008). The injected
volume is

V = φ(1 − Sa)LH0, (5.1)

whilst the final trapped volume is

V =
∫ L∞

0
φSrHR(X) dX, (5.2)

where L∞ = Lx∞ is the dimensional run-out distance. This volume represents the trapped
CO2, which does not occupy all the pore space in the grey region in figure 1. The storage
efficiency is given by

G =
∫ L∞

0 HR(X) dX
L∞H0

= 1
εx∞

, (5.3)

where the second equality arises from applying the equations (5.1) and (5.2) for the trapped
and injected volumes of CO2. The ‘sweep efficiency’ can also be defined as the ratio of the
fraction of pore space accessed to the maximum possible fraction in the case of a perfect
sweep, which is at most 1.

We first consider how the sweep efficiency, G, depends on the trapping parameter, ε,
and the permeability gradient, Δk. in the idealised case that the initial release of CO2
takes the form of a rectangle which floods the whole depth of the formation as analysed
in § 3. Figure 17 shows the sweep efficiency predicted by our asymptotic results for a
mobility ratio of m = 0.2. In the case of a larger capillary trapping fraction, ε, the plume
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FIGURE 17. Sweep efficiency 1/(εx∞) for m = 0.2 for the case of a rectangular initial release.
The efficiency is plotted as a function of Δk for two values of ε.

becomes immobilised more quickly and the finger of CO2 at the top of the layer progresses
a shorter distance. As a result, a greater fraction of the available pore space is accessed.
In the case of lower permeability at the top of the layer (Δk = 1), the finger extent is
reduced, which enhances the sweep efficiency. Conversely, the sweep efficiency is lower
in the case that the permeability is higher at the top of the layer (Δk = −1). We note that
with a lower mobility ratio m, the CO2 plume has a longer finger at the top of the layer
leading to a lower sweep efficiency as has been well-studied by other researchers (Hesse
et al. 2008; MacMinn & Juanes 2009). As discussed in § 3, the run-out distance, x∞ is
approximately proportional to the permeability at the top of the layer, k(0) for Δk ≤ 0
and this is illustrated by the black dotted and dashed lines in figure 17. The constants of
proportionality, c1 and c2 are a functions of ε and m.

We next analyse layers with the same mean permeability and the same permeability at
the top of the layer, k(0), but with different permeability structures, to explore the influence
of such heterogeneity. We consider layers with nonlinear permeability structures given by
(Hinton & Woods 2020)

k(z) = 1 + Δk
2

tanh[( y − 1/2)/a]
tanh[1/(2a)]

, (5.4)

which is shown in figure 18(a), and

k(z) = 1 − Δk
2

cosh[( y − 1/2)/a] − 2a sinh[1/(2a)]
cosh[1/(2a)] − 2a sinh[1/(2a)]

, (5.5)

which is shown in figure 18(b). These profiles satisfy k(0) = 1 − Δk/2 and
∫ 1

0 k(z) dz = 1.
The storage efficiency for these profiles in the case that Δk = −1, ε = 0.25 and m = 0.2
is shown in figures 18(c) and 18(d) as a function of the profile parameter a. The late-time
behaviour of each plume, when it occupies a thin region near z = 0, is similar because k(0)
is fixed. The discrepancy between the storage efficiencies thus depends primarily on the
early and intermediate behaviour, which is sensitive to the full permeability structure. This
discrepancy and dependence on the permeability structure may be characterised through
the height, h0, at which the flux function, g′(h), changes sign from positive in 0 < z < h0
to negative in h0 < z < 1 (cf. (3.4)). This height, h0, is plotted as a function of a for
the respective permeability profile in figures 18(e) and 18( f ). The storage efficiency is
inversely related to this height. When h0 is small, there is a larger amount of CO2 trapped
in h0 < z < 1, −1/2 < x < 1/2 prior to the plume detaching from the lower boundary
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FIGURE 18. (a,b) Nonlinear permeability profiles given by (5.4) and (5.5) with shape parameter
a. (c,d) Corresponding storage efficiencies for these profiles in the case that Δk = −1, ε = 0.25
and m = 0.2. (e, f ) The height, h0 at which the flux function g′(h) changes from positive to
negative.

(see figure 7) and hence there is less mobile CO2 that runs upslope so the storage efficiency
is greater.

We next consider how the sweep efficiency depends on the shape of the plume at the
end of the injection phase. We characterise this in terms of the dimensionless injection
flux, q (4.1). In figure 19, the sweep efficiency predicted by our asymptotic results is
plotted as a function of the permeability structure (for modest gradients, |Δk| < 1) for five
values of q. At low values of q, the layer is not fully flooded by the CO2 while it is fully
flooded for larger values of q. This leads to a substantial increase in the sweep efficiency.
However, ultimately, at sufficiently large values of q, the efficiency becomes insensitive
to q because the injection shape is independent of the role of buoyancy. The influence of
Δk on the storage efficiency is significant at all values of q. For comparison, in figure 19,
we also include some calculations for the sweep efficiency in the case of a rectangular
initial condition as considered in § 3. The rectangular initial shape is more localised than
any of the more realistic end-of-injection shapes and the efficiency is correspondingly
increased by at least 20 %. The associated predictions of the sweep efficiency are therefore
overestimates, and this effect is especially important in the case that q is small.

The behaviour of the plume and hence the sweep efficiency may be somewhat different
in the case that the trapping parameter is very small. Figure 20 shows the run-out distance
as a function of q for a mobility ratio m = 0.2 in a layer with constant permeability
(Δk = 0). The run-out distance in the case of a rectangular release is denoted by a square.
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FIGURE 19. The sweep efficiency, 1/(εx∞), as a function of the permeability structure, Δk,
with m = 0.2. The sweep efficiency in the case of the rectangular initial condition of § 3 is
included.
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FIGURE 20. The dependence of the sweep efficiency on the initial conditions for three values
of the trapping parameter, ε, in a layer with constant permeability (Δk = 0) and mobility ratio
m = 0.2. The initial condition is characterised by the parameter q, and the squares show the
sweep efficiency in the case of a rectangular release.

When ε = 0.25, there is a similar dependence on q to that described above. However, in the
case that ε = 0.05, the run-out distance has a very weak dependence on q and the plume
is predicted to run a very long distance. Over such long distances, the flow behaviour
becomes independent of the end-of-injection plume shape and hence changes in q have
little impact on the sweep efficiency. For higher values of ε, the CO2 is trapped faster and
thus has a shorter extent, which means that the initial shape has a stronger influence on the
run-out extent and sweep efficiency.

These results demonstrate the significant uncertainty in the sweep efficiency and hence
storage potential for CO2 injected into a heterogeneous porous rock. In the case that the
trapping fraction is at least 0.1, this uncertainty can be managed in part by increasing
the rate of injection provided that the overpressure is not too large to fracture the system.
Unfortunately, in the case that ε is small, this approach of increasing the injection rate has
less effect on the run-out distance. We also note that it may be beneficial to increase the
injection pressure above the fracture point because this may improve the injectivity and
the storage efficiency. However, fractures may also increase the likelihood of leakage of
CO2. A detailed study of this trade-off is beyond the scope of the present article.
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As a quantitative example of these calculations, we consider a laterally extensive layer
of rock, into which we inject from a long horizontal well of length 5 km. The layer has
porosity φ = 0.2, inclination gradient tan θ = 0.02 and thickness H0 = 10 m. We assume
that the CO2 runs updip and estimate the storage potential and the distance run-out by
the CO2 when it is all capillary trapped. We take typical parameter values of m = 0.2
and SR = 0.35, Sa = 0.3, which yields ε = 0.5 (Bachu & Bennion 2008). We suppose
that CO2 is injected for 10 years at a rate of 0.5 Mt per year distributed across the 5 km
well. With density ρ = 750 kg m−3, the total volume of CO2 injected is 6.7 × 106 m3,
which corresponds to a characteristic end-of-injection length of L = 1 km (see (5.1)). The
transverse length is thus much greater than the lateral end-of-injection length and so the
ensuing motion can be approximated as two-dimensional (see § 3.4). The flux per unit
length of well during the injection period is Q = 4 × 10−6 m2 s−1. The importance of
buoyancy is quantified by the parameter

F = H0

L tan θ
= 0.5. (5.6)

Although this is not small, the run-out predictions from our F = 0 analysis show good
agreement with the numerical results with F = 0.5 for Δk ≤ 0 and m = 0.2, so the plume
becomes long and thin and the role of buoyancy is important only at early times (see
figure 10). We take the upslope buoyancy velocity to be

UB = ΔρgK̄ sin θ
μr

= 10−6 m s−1 (5.7)

and then q = Q/(UBH0) = 0.4. From these parameters, we calculate that the run-out
distance is 33 kilometres in a uniform layer and 47 kilometres in a layer in which the
permeability increases linearly towards the top with Δk = −1. The sweep efficiencies
in the two layers are G = 5.3 % and G = 4.2 %, respectively. We calculate that the
dimensional time for the CO2 to be entirely trapped is approximately 60 years in either
case.

6. Conclusion

We have investigated the capillary trapping of CO2 in an inclined layer of porous rock
in which the permeability varies with depth. CO2 is left behind in the pore throats as the
trailing edge of the CO2 plume is displaced by the ambient brine while the leading edge of
the CO2 migrates upslope. Eventually the trailing edge catches up with the leading edge
and all the CO2 becomes immobilised. In the case that the CO2 migrates a long distance
relative to its initial length, we have shown that the run-out distance is approximately
linearly proportional to the permeability at the top of the layer because the mobile CO2
predominantly occupies a region near this upper boundary. The permeability profile away
from the upper boundary influences the early and intermediate behaviour and this has
a smaller but important effect on the run-out distance and hence the fraction of pore
space that may be accessed by the CO2. The time taken for the CO2 to become entirely
immobilised is somewhat insensitive to the permeability structure given the same mean
permeability. We have shown that these principles concerning the impact of heterogeneous
permeability carry over to a three-dimensional geometry, where the plume has a finite
transverse extent, and to the case in which dissolution is important.

We have also considered the influence of the distribution of the CO2 at the end of
the injection period. Generally, increasing the injection rate leads to a deeper and more
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localised injection plume, and this reduces the run-out distance. At high rates of injection,
the plume shape during injection, and hence the post-injection trapping, becomes
independent of increases to the input flux. The run-out distance is then predominantly
controlled by the permeability structure of the rock.

Our results have significant implications for the assessment of the storage potential
of CO2 storage sites and of the optimal rate at which to inject the CO2. The economic
viability and security of a storage site depends critically on the volume of CO2 that can be
stored there. The volume stored can be significantly increased by injecting at a higher rate,
but eventually further increases in the injection rate do not change the storage volume.
Moreover, the injection rate may be limited by the fracture strength of the formation,
especially in lower permeability formations.
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Appendix A. Numerical method

The two-dimensional governing equation (2.13) is integrated numerically, using the
finite-difference method of Kurganov & Tadmor (2000). The system is solved on a fixed
domain (−a1, a2)× (0, tend), where a1 and a2 are chosen to exceed the greatest extent
of the plume in the time interval (0, tend). The boundary conditions at the ends of the
interval are h = 0 and the initial condition at t = 0 is given in each section of the paper.
The diffusive and advective fluxes in (2.13) are approximated by a second-order central
discretisation in the spatial coordinate. A minmod flux limiter (see § 2 of Kurganov &
Tadmor 2000) is used to accurately resolve the regions of fixed extent where the interface
has a large gradient. The time-stepping is achieved using a second-order Runge–Kutta
method. The numerical method is extended to consider diffusive fluxes in two spatial
dimensions following § 4.3 of Kurganov & Tadmor (2000).

Appendix B. Asymptotic analysis in the case of relatively fast injection (q ≥ 1)

We outline the asymptotic behaviour for the post-injection migration of CO2 in
the regime F � 1 for the end-of-injection shape described in § 4.1 corresponding to
sufficiently fast injection that the layer is fully flooded by CO2 (q ≥ 1). After the end
of injection, the interface evolves in a similar manner to that described in § 3, with shape
given by

x =
{

f ′(h)+ [
q−1 + (1 − ε)t

]
g′(h) for 0 < h < h0,

f ′(h)+ [
q−1 + t

]
g′(h) for h0 < h < 1,

(B 1)

where we have neglected diffusive terms as before. Provided the condition (4.5) is met,
there are two possibilities for the evolution of the upslope interface post-injection: (i) no
shocks develop until the interaction with the downslope interface or (ii) a shock develops
at the bottom of the layer as described in § 3. The case of a shock at the top is not possible
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given the requirement (4.5). For case (i), the interaction with the downslope interface
(x = 0) occurs at a time

t1 = 1 − q−1. (B 2)

Subsequently the downslope interface begins to move. Whilst the downslope interface
advances into the receding portion of the upslope interface (H > hs), its position [x =
χ(t)] and height [h = H(t)] evolves according to

χ = f ′(H)+ (q−1 + t)g′(H), dH
dt

= g(H)/H − g′(H)
(q−1 + t)g′′(H)+ f ′′(H) . (B 3a,b)

We numerically integrate to obtain H(t) and χ(t). The system changes, at time t = t2,
when the trailing downslope interface migrates into the advancing portion of the upslope
interface [i.e. H(t2) = h0],

χ = f ′(H)+ [
q−1 + (1 − ε)t

]
g′(H), dH

dt
= g(H)/H − (1 − ε)g′(H)

[q−1 + (1 − ε)t]g′′(H)+ f ′′(H) .
(B 4a,b)

We integrate this equation and obtain the run-out time and distance in the case ε > 0,
which occur when the CO2 has been entirely trapped (H = 0).

In case (ii), the upslope interface develops a shock at h = 1 at a time

ts = −f ′′(1)/g′′(1)− q−1. (B 5)

With a linearly varying permeability, this time can be rewritten as

ts = 1 − q−1 + 2m(1 + Δk/2)2

g′′(1)
> 1 − q−1(= t1), (B 6)

because g′′(1) > 0 is the condition required for a shock to develop in the upslope interface
at h = 1. The bottom of the upslope interface therefore interacts with the downslope
interface prior to a shock in the upslope interface occurring. The subsequent evolution
of the downslope shock is as in case (i) described above.

Appendix C. Asymptotic analysis in the case of relatively slow injection (q ≤ 1)

We outline the asymptotic behaviour for the post-injection migration of CO2 in
the regime F � 1 for the end-of-injection shape described in § 4.2 corresponding to
sufficiently slow injection that the layer is not fully flooded by CO2 (q ≤ 1). Immediately
after the end of injection, the downslope shock steadily moves into the constant thickness
region of the plume with position given by

χ = g(hi)t/hi. (C 1)

The shock eventually reaches the upslope interface. In the case that hi < h0 [corresponding
to q < (1 + m−1/2)−1], the upslope interface is nowhere receding and its trailing edge
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has position

x = f ′(hi)+ [
q−1 + (1 − ε)t

]
g′(hi) (C 2)

and the interaction occurs at time

t1 = f ′(hi)+ q−1g′(hi)

g(hi)/hi − (1 − ε)g′(hi)
. (C 3)

The shock height subsequently evolves according to (B 4). In the case that hi > h0, the
trailing edge of the upslope interface is receding and the interaction with the downslope
interface occurs at a time

t1 = f ′(hi)+ q−1g′(hi)

g(hi)/hi − g′(hi)
. (C 4)

The evolution of the downslope shock then evolves according to (B 3) until H = h0 and
then its height evolves according to (B 4).
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