ISOMETRIES OF MEASURABLE FUNCTIONS

Michael Cambern

Let (X, Σ, μ) be a σ-finite measure space and denote by $L^{\infty}(X, K)$ the Banach space of essentially bounded, measurable functions F defined on X and taking values in a separable Hilbert space K. In this article a characterization is given of the linear isometries of $L^{\infty}(X, K)$ onto itself. It is shown that if T is such an isometry then T is of the form $(T(F))(x)=U(x)(\Phi(F))(x)$, where Φ is a set isomorphism of Σ onto itself, and U is a measurable operator-valued function such that $U(x)$ is almost everywhere an isometry of K onto itself. It is a consequence of the proof given here that every isometry of $L^{\infty}(X, K)$ is the adjoint of an isometry of $L^{1}(X, K)$.

1. Introduction

Throughout this article (X, Σ, μ) will denote a σ-finite measure space, and the letter K will represent a separable Hilbert space which may be either real or complex. We denote by (•, •) the inner product in K, and by S the one-dimensional Hilbert space which is the scalar field associated with K.

A function F from X to K will be called measurable if the scalar function $\langle F, e\rangle$ is measurable for each $e \in K$. Then for $1 \leq p \leq \infty$, we denote by $L^{p}(X, K)$ the Banach space of (equivalence classes of) measurable functions F from X to K for which the norm

Received 14 January 1981.

$$
\begin{aligned}
& \|F\|_{p}=\left\{\int\|F(x)\|^{p} d \mu\right\}^{1 / p}, p<\infty, \\
& \|F\|_{\infty}=\operatorname{ess} \sup \|F(x)\|
\end{aligned}
$$

is finite. $\left(\|\cdot\|_{p}\right.$ will denote the norm in $L^{p}(X, K)$ and $\|\cdot\|$ that in K.$) If F \in L^{p}(X, K)$, we define the support of F, which will be denoted by $\operatorname{supp}(F)$, to be the set $\{x \in X: F(x) \neq 0\}$.

Let $\left\{e_{1}, e_{2}, \ldots\right\}$ be some orthonormal basis for K. For $F \in L^{p}(X, K)$, we define the measurable coordinate functions f_{n} by $f_{n}(x)=\left\langle E(x), e_{n}\right\rangle$. Then almost everywhere we have $\sum_{n}\left|f_{n}(x)\right|^{2}<\infty$, and $F(x)=\sum_{n} f_{n}(x) e_{n}$. Moreover, it is clear that each f_{n} belongs to ${ }_{L}{ }^{p}(X, S)$.

In [1, p. 178], Banach determined the isometries of $L^{p}(X, S)$, $1 \leq p<\infty, p \neq 2$, for the case in which X is the unit interval and μ Lebesgue measure. Lamperti later obtained a complete description of the isometries of $L^{p}(X, S)$ for an arbitrary σ-finite measure space (X, Σ, μ), and the same values of p, [8]. The first such result for vector-valued functions was obtained in [2], where the surjective isometries of $L^{p}(X, K)$, for $l \leq p<\infty, p \neq 2$, were characterized. This result was also established, via quite different methods, in [6] by Fleming and Jamison, and strengthened in [9] by Sourour, who replaced the Hilbert space K by a separable Banach space E having only trivial L^{p}-summands. In this article we investigate the surjective isometries of $L^{\infty}(X, K)$.

If K is the one-dimensional Hilbert space S, then since $L^{\infty}(X, S)$ is isometrically isomorphic to $C(Y)$, where Y is the maximal ideal space of $L^{\infty}(X, S)$, a description of the isometries can be obtained through an application of the Banach-Stone theorem. And if K is finite dimensional, it can be shown that $L^{\infty}(X, K)$ is isometrically isomorphic to $C(Y, K)$, the space of continuous functions on Y to K, under the map
$\sum_{n=1}^{N} f_{n} e_{n} \rightarrow \sum_{n=1}^{N} \hat{f}_{n} e_{n}$, where $f \rightarrow \hat{f}$ is the Gelfand representation of $L^{\infty}(X, S)$. In this case the description we give in this article can also be obtained from what is known about isometries of spaces of continuous vector-valued functions [3]. However when K is infinite dimensional, the continuity on Y of the coordinate functions \hat{f}_{n} no longer implies continuity for $\sum_{n} \hat{f}_{n} e_{n}$, and thus the problem requires different methods of approach.

A mapping Φ of Σ onto itself, defined modulo null sets, is called a regular set isomorphism if it satisfies the properties

$$
\left.\begin{array}{rl}
\Phi\left(A^{\prime}\right) & =[\Phi(A)]^{\prime} \\
\Phi\left(\bigcup_{n=1}^{\infty} A_{n}\right.
\end{array}\right)=\bigcup_{n=1}^{\infty} \Phi\left(A_{n}\right),
$$

and

$$
\mu[\Phi(A)]=0 \text { if, and only if, } \mu(A)=0 \text { for all sets } A, A_{n} \text { in } \Sigma
$$

(Throughout, A^{\prime} will denote the complement of A.) A regular set isomorphism induces a linear transformation, also denoted by Φ, on the space of measurable scalar functions defined on X, which is characterized by $\Phi\left(X_{A}\right)=\chi_{\Phi(A)}$, where X_{A} is the characteristic function of the measurable set A. This process is described by Doob in [5, pp. 453-454].

Given a regular set isomorphism Φ of Σ onto itself, and $F=\sum_{n} f_{n} e_{n}$ in $L^{p}(X, K)$, we define $\Phi(F)$ by the equation

$$
(\Phi(F))(x)=\sum_{n}\left(\Phi\left(f_{n}\right)\right)(x) e_{n}
$$

The fact that, in the case in which K is infinite dimensional, the series on the right is indeed convergent in K for almost all x was established in [2, p. 10]. One readily verifies that the definition of $\Phi(F)$ is independent of the choice of orthonormal basis for K.

We will use the fact that the set of extreme points of the unit ball in $L^{\infty}(X, K)$ consists of those elements F such that $\|F(x)\|=1$ almost
everywhere on X. Throughout the article, given $e \in K$, we denote by \mathbf{e} that element of $L^{\infty}(X, K)$ which is constantly equal to e.

2. Isometries

Throughout, T will denote a fixed isometry of $L^{\infty}(X, K)$ onto itself.

LEMMA 1. Let E be an element of $L^{\infty}(X, K)$ with $\|E(x)\|=1$ almost everywhere. If $A \in \Sigma$ then $\operatorname{supp}\left(T\left(\chi_{A} \cdot E\right)\right)$ and $\operatorname{supp}\left(T\left(\chi_{A}, \cdot E\right)\right)$ are disjoint measurable sets whose union is almost everywhere equal to X. Moreover, $\left\|\left(T\left(X_{A} \cdot E\right)\right)(x)\right\|$ is equal to one almost everywhere on $\operatorname{supp}\left(T\left(X_{A} \cdot E\right)\right)$.

Proof. Note that since E is an extreme point of the unit ball in $L^{\infty}(X, K)$, so is $T(E)$, and thus we have, almost everywhere,

$$
\begin{equation*}
I=\|(T(E))(x)\|=\left\|\left(T\left(\chi_{A} \cdot E\right)\right)(x)+\left(T\left(\mathrm{X}_{A}, \cdot E\right)\right)(x)\right\| \tag{I}
\end{equation*}
$$

First suppose that $\left\|\left(T\left(X_{A} \cdot E\right)\right)(x)\right\| \neq 1$ almost everywhere on $\operatorname{supp}\left(T\left(\chi_{A} \cdot E\right)\right) ;$ that is, there is a measurable subset $B \subseteq \operatorname{supp}\left(T\left(\chi_{A} \cdot E\right)\right)$ with $\mu(B)>0$ and $\left\|\left(T\left(X_{A} \cdot E\right)\right)(x)\right\|<1-\varepsilon_{1}$ for some $\varepsilon_{1}>0$ on B.

The set $\left\{x:\left\|\left(T\left(X_{A}, \cdot E\right)\right)(x)\right\|=1\right\}$ cannot intersect $\operatorname{supp}\left(T\left(X_{A} \cdot E\right)\right)$ in a set of positive measure. For $\left\|X_{A} \cdot E \pm X_{A} \cdot \cdot E\right\|_{\infty}=1$ gives $\left\|\left(T\left(\mathrm{X}_{A} \cdot E\right)\right)(x) \pm\left(T\left(\mathrm{X}_{A}, \cdot E\right)\right)(x)\right\| \leq 1$ almost everywhere, and $\left(T\left(\mathrm{X}_{A}, \cdot E\right)\right)(x)$ is an extreme point of the unit ball of K for all $x \in\left\{x:\left\|\left(T\left(X_{A}, \cdot E\right)\right)(x)\right\|=1\right\}$. Thus $\left\|\left(T\left(X_{A}, \cdot E\right)\right)(x)\right\|<1$ almost everywhere on $\operatorname{supp}\left(T\left(X_{A} \cdot E\right)\right)$, so that we can find a subset C of B with $\mu(C)>0$ and $\left\|\left(T\left(X_{A}, \cdot E\right)\right)(x)\right\|<1-\varepsilon_{2}$ on C, for some $\varepsilon_{2}>0$.

Let $\varepsilon=\min \left\{\varepsilon_{1}, \varepsilon_{2}\right\}$. Then we certainly have $\left\|T\left(X_{A} \cdot E\right) \pm \varepsilon \cdot \chi_{C} \cdot E\right\|_{\infty} \leq 1$
and $\left\|T\left(X_{A}, \cdot E\right) \pm \varepsilon \cdot X_{C} \cdot E\right\|_{\infty} \leq 1$, so that $\left\|X_{A}(x) \cdot E(x) \pm\left(T^{-1}\left(\varepsilon \cdot \chi_{C} \cdot E\right)\right)(x)\right\| \leq 1$ and $\left\|\mathrm{X}_{A},(x) \cdot E(x) \pm\left(T^{-1}\left(\varepsilon \cdot \mathrm{X}_{C} \cdot E\right)\right)(x)\right\| \leq 1$ almost everywhere. But since $T^{-1}\left(\varepsilon \cdot \chi_{C} \cdot E\right)$ is not the zero element of $L^{\infty}(X, K)$, its support must meet
either A or A^{\prime} in a set of positive measure, contradicting the fact that $X_{A}(x) \cdot E(x)$ is an extreme point of the unit ball of K almost everywhere on A, and $X_{A},(x) \cdot E(x)$ is an extreme point of the unit ball of K almost everywhere on A^{\prime}.

This contradiction shows that $\left\|\left(T\left(X_{A} \cdot E\right)\right)(x)\right\|=1$ almost everywhere on $\operatorname{supp}\left(T\left(X_{A} \cdot E\right)\right)$. Similarly, $\left\|\left(T\left(X_{A} \cdot \cdot E\right)\right)(x)\right\|=1$ on $\operatorname{supp}\left(T\left(X_{A}, \cdot E\right)\right)$. It is clear that $\operatorname{supp}\left(T\left(X_{A} \cdot E\right)\right)$ and $\operatorname{supp}\left(T\left(X_{A}, \cdot E\right)\right)$ are measurable. The fact that these sets are disjoint again follows since

$$
\left\|\left(T\left(X_{A} \cdot E\right)\right)(x) \pm\left(T\left(X_{A}, \cdot E\right)\right)(x)\right\| \leq 1
$$

almost everywhere, and $\left(T\left(X_{A} \cdot E\right)\right)(x)$ is an extreme point of the unit ball in K for all $x \in \operatorname{supp}\left(T\left(X_{A} \cdot E\right)\right)$. Finally, the union of $\operatorname{supp}\left(T\left(X_{A} \cdot E\right)\right)$ and $\operatorname{supp}\left(T\left(X_{A}, \cdot E\right)\right)$ is, by (1), equal to X.

LEMMA 2. With E as in Lemma 1 define, for $A \in \Sigma$, $\Phi(A)=\operatorname{supp}\left(T\left(X_{A} \cdot E\right)\right)$. Then Φ is a regular set isomorphism of Σ onto itself.

Proof. It follows immediately from Lemma 1 that for $A \in \Sigma$,

$$
\Phi\left(A^{\prime}\right)=[\Phi(A)]^{\prime}
$$

Note that $\mu(A) \neq 0$ if and only if $X_{A} \cdot E \neq 0$ in $L^{\infty}(X, K)$ which is true if and only if $T\left(X_{A} \cdot E\right) \neq 0$ in $L^{\infty}(X, K)$ and this holds if and only if $\mu[\Phi(A)]>0$. Thus trivially we have

$$
\mu[\Phi(A)]=0 \quad \text { if, and only if, } \mu(A)=0
$$

Now suppose that A and B are disjoint measurable sets. Since $\left\|\left(T\left(X_{A} \cdot E\right)\right)(x) \pm\left(T\left(X_{B} \cdot E\right)\right)(x)\right\| \leq 1$ almost everywhere and $\left(T\left(X_{A} \cdot E\right)\right)(x)$ is an extreme point of the unit ball in K for all $x \in \operatorname{supp}\left(T\left(X_{A} \cdot E\right)\right), \Phi(A)$ and $\Phi(B)$ must be almost everywhere disjoint. Thus if B is a measurable subset of the measurable set A, then B and A^{\prime} are disjoint so that $\Phi(B)$ and $\Phi\left(A^{\prime}\right)$ are disjoint. Hence $B \subseteq A$ implies that $\Phi(B) \subseteq \Phi(A)$. It is easily seen that the reverse implication is also true: $\Phi(B) \subseteq \Phi(A)$ implies that $B \subseteq A$. The sentence before last also implies that A and
B are disjoint if and only if $\Phi(A)$ and $\bar{\varphi}(B)$ are disjoint.
Next assume that $\left\{A_{1}, A_{2}, \ldots\right\}$ is a pairwise disjoint sequence of measurable sets and let $A=\bigcup_{n=1}^{\infty} A_{n}$. Then since $A_{n} \subseteq A$ for all n, we have $\Phi\left(A_{n}\right) \subseteq \Phi(A)$ for all n, so that $\bigcup_{n=1}^{\infty} \Phi\left(A_{n}\right) \subseteq \Phi(A)$. Set $B=\Phi(A)-\bigcup_{n=1}^{\infty} \Phi\left(A_{n}\right)$. We would like to show that $\mu(B)=0$. To this end we first show that Φ maps Σ onto itself.

Thus suppose that B is any measurable set. We have

$$
T(E)=\chi_{B} \cdot T(E)+\chi_{B}, T(E)
$$

so that

$$
E=T^{-1}\left[\chi_{B} \cdot T(E)\right]+T^{-1}\left[\chi_{B}, \cdot T(E)\right]
$$

By Lemma 1 (interchanging the roles of T and T^{-1}, A and B, E and $T(E)$), the two elements on the right in the last equation have disjoint supports, and have norm equal to one almost everywhere on their respective supports. Thus $T^{-1}\left[\chi_{B} \cdot T(E)\right]$ is of the form $X_{C} \cdot E$ for some $C \in \Sigma$, and hence
(2)

$$
T\left(\chi_{C} \cdot E\right)=\chi_{B} \cdot T(E)
$$

which says that $\Phi(C)=B$. Thus Φ is onto.

$$
\text { Now with } B=\Phi(A)-\bigcup_{n=1}^{\infty} \Phi\left(A_{n}\right) \text {, take } C \in \Sigma \text { with } \Phi(C)=B . \quad \text { By }
$$

what was established in the second paragraph of this proof, we must have $C \subseteq A$ in this instance. Thus if we suppose that B, hence C, has positive measure, then, for some n, C meets A_{n} in a set of positive measure. But $\Phi(C)$ and $\Phi\left(A_{n}\right)$ are disjoint, and this contradiction shows that we must have $\mu(B)=0$. Thus

$$
\Phi\left(\begin{array}{ll}
\bigcup_{n=1}^{\infty} & A_{n}
\end{array}\right)=\bigcup_{n=1}^{\infty} \Phi\left(A_{n}\right)
$$

completing the proof of the lemma.
NOTE. Equation (2) tells us that for each $A \in \Sigma$,

$$
T\left(\chi_{A} \cdot E\right)=\chi_{\Phi(A)} \cdot T(E)
$$

From this it follows that for every $f \in L^{\infty}(X, S)$ we have

$$
T(f \cdot E)=\Phi(f) \cdot T(E)
$$

LEMMA 3. If E_{1} and E_{2} are two pointwise orthogonal elements of $L^{\infty}(X, K)$ with $\left\|E_{j}(x)\right\|=1$ almost everywhere on $X, j=1,2$, then $T\left(E_{1}\right)$ and $T\left(E_{2}\right)$ are pointwise orthogonal for almost all x.

Proof. Using the polarization identity [7, p. 274] (and assuming the space is complex), we have
$\left\langle\left(T\left(E_{1}\right)\right)(x),\left(T\left(E_{2}\right)\right)(x)\right\rangle=\frac{1}{4} \sum_{n=1}^{4} i^{n}\left\|\left(T\left(E_{1}\right)\right)(x)+i^{n}\left(T\left(E_{2}\right)\right)(x)\right\|^{2}$ $=\frac{3}{4} \sum_{n=1}^{4} i^{n}\left\|\left(T\left(E_{1}+i^{n} E_{2}\right)\right)(x)\right\|^{2}$.

But the elements $E_{1}+i^{n} E_{2}, n=1,2,3,4$, are extreme points of the ball of radius $\sqrt{2}$ centered at the origin in $L^{\infty}(X, K)$. Hence $\left\|\left(T\left(E_{1}+i^{n} E_{2}\right)\right)(x)\right\|=\sqrt{2}$ almost everywhere on X, so the inner product $\left(\left(T\left(E_{1}\right)\right)(x),\left(T\left(E_{2}\right)\right)(x)\right)$ is almost everywhere equal to zero.

If K is a real Hilbert space, the corresponding polarization identity also gives the desired result.

LEMMA 4. Let E_{1} and E_{2} be as in Lemma 3, and for $j=1,2$, Let Φ_{j} be the regular set isomorphism of Σ onto itself that is associated with E_{j} as in Lemma 2. Then $\Phi_{1}=\Phi_{2}$.

Proof. Let $A \in \Sigma^{\infty}$ and consider
(3) $\left(T\left(X_{A} \cdot\left(E_{1}+E_{2}\right) / \sqrt{2}\right)\right)(x)=(1 / \sqrt{2})\left(T\left(X_{A} \cdot E_{1}\right)\right)(x)+(1 / \sqrt{2})\left(T\left(X_{A} \cdot E_{2}\right)\right)(x)$

$$
=(1 / \sqrt{2}) X_{\Phi_{1}(A)}(x)\left(T\left(E_{1}\right)\right)(x)+(1 / \sqrt{2}) X_{\Phi_{2}(A)}(x)\left(T\left(E_{2}\right)\right)(x)
$$

Now the left hand side of (3) is equal to

$$
\begin{aligned}
& X_{\Phi_{1,2}(A)}(x)\left(T\left(E_{1}+E_{2}\right) / \sqrt{2}\right)(x) \\
& \quad=(1 / \sqrt{2}) X_{\Phi_{1,2}}(A)^{(x)\left(T\left(E_{1}\right)\right)(x)+(1 / \sqrt{2}) X_{\Phi_{1,2}}(A)(x)\left(T\left(E_{2}\right)\right)(x)},
\end{aligned}
$$

where $\Phi_{1,2}$ is the regular set isomorphism associated with $\left(E_{1}+E_{2}\right) / \sqrt{2}$ via Lemma 2. Thus, by the almost everywhere linear independence of $\left(T\left(E_{1}\right)\right)(x)$ and $\left(T\left(E_{2}\right)\right)(x)$ we have

$$
\chi_{\Phi_{1}(A)}(x)=\chi_{\Phi_{1,2}}(A)^{(x)=\chi_{\Phi_{2}(A)}}{ }^{(x)}
$$

almost everywhere, and hence $\Phi_{1}=\Phi_{2}$.
LEMMA 5. Suppose that F_{1}, F_{2} are elements of $L^{\infty}(X, K)$ such that $F_{1}(x)$ and $F_{2}(x)$ are orthogonal in K for almost all x. Then $\left.<\left(T\left(F_{1}\right)\right)(x),\left(T\left(F_{2}\right)\right)(x)\right)=0$ almost everywhere.

Proof. First suppose that $F_{1}=g_{1} G_{1}$ and $F_{2}=g_{2} G_{2}$, where the g_{j} are elements of $L^{\infty}(X, S)$ with $\operatorname{supp}\left(g_{j}\right)=\operatorname{supp}\left(F_{j}\right)$ and the G_{j} are measurable vector functions such that $\left\|G_{j}(x)\right\|=1$ on $\operatorname{supp}\left(F_{j}\right)$, $j=1,2$. Let $A=\operatorname{supp}\left(F_{2}\right)-\operatorname{supp}\left(F_{1}\right)$. On A we have $F_{2}(x)=\sum_{n} f_{n}(x) e_{n}$, the convergence being almost everywhere pointwise in K. Since $A=\cup{ }_{n} A_{n}$, where $A_{n}=\left\{x \in A: f_{n}(x) \neq 0\right\}$ we can define a measurable vector function H_{1} on A by $H_{1}(x)=\overline{f_{2}(x)} e_{1}-\overline{f_{1}(x)} e_{2}$, for $x \in A_{1} \cup A_{2}$, and for $n>2, H_{1}(x)=\overline{f_{n}(x)} e_{1}-\overline{f_{1}(x)} e_{n}$ for $x \in A_{n}-\left(A_{1} \cup \ldots \cup A_{n-1}\right)$. Then $H_{1}(x)$ is almost everywhere orthogonal to $F_{2}(x)$ on A, and the vector function J_{1} defined on A by $J_{1}(x)=H_{1}(x) /\left\|H_{1}(x)\right\|, x \in A$, is such that $\left\|J_{1}(x)\right\|=1$ for $x \in A$ and
$J_{1}(x)$ is pointwise orthogonal to $F_{2}(x)$ almost everywhere on A.
Similarly we can find a measurable vector function J_{2} defined on $B=\operatorname{supp}\left(F_{1}\right)-\operatorname{supp}\left(F_{2}\right)$ such that $\left\|J_{2}(x)\right\|=1$ on B and $\left\langle F_{1}(x), J_{2}(x)\right\rangle=0$ almost everywhere on B. We now define measurable vector functions E_{1} and E_{2} by

$$
\begin{aligned}
& E_{1}(x)=\left\{\begin{array}{ll}
G_{1}(x), & x \in \operatorname{supp}\left(F_{1}\right), \\
J_{1}(x), & x \in A, \\
e_{1}, & x \in X-\left(\operatorname{supp}\left(F_{1}\right) \cup \operatorname{supp}\left(F_{2}\right)\right), \\
E_{2}(x)= \begin{cases}G_{2}(x), & x \in \operatorname{supp}\left(F_{2}\right), \\
J_{2}(x), & x \in B, \\
e_{2}, & x \in X-\left(\operatorname{supp}\left(F_{1}\right) \cup \operatorname{supp}\left(F_{2}\right)\right)\end{cases}
\end{array} . \begin{array}{l}
\end{array},\right.
\end{aligned}
$$

Then $\left\|E_{j}(x)\right\|=1$ and $\left\langle E_{1}(x), E_{2}(x)\right\rangle=0$ almost everywhere.
We can write $F_{j}=g_{j} E_{j}, j=1,2$, so that by Lemma 4 and the note following Lemma 2, there exists a regular set isomorphism Φ of Σ onto itself such that $T\left(F_{j}\right)=\Phi\left(g_{j}\right) T\left(E_{j}\right)$ for $j=1,2$. We thus have

$$
\begin{aligned}
\left\langle\left(T\left(F_{1}\right)\right)(x),\left(T\left(F_{2}\right)\right)(x)\right\rangle & =\left\langle\left(\Phi\left(g_{1}\right)\right)(x)\left(T\left(E_{1}\right)\right)(x),\left(\Phi\left(g_{2}\right)\right)(x)\left(T\left(E_{2}\right)\right)(x)\right\rangle \\
& =\left(\Phi\left(g_{1}\right)\right)(x) \overline{\left(\Phi\left(g_{2}\right)\right)(x)\left\langle\left(T\left(E_{1}\right)\right)(x),\left(T\left(E_{2}\right)\right)(x)\right\rangle=0}
\end{aligned}
$$

almost everywhere by Lemma 3.
Now since every $F \in L^{\infty}(X, K)$ can be written in the form $F=g G$, where $g \in L^{\infty}(X, S)$ with $\operatorname{supp}(g)=\operatorname{supp}(F)$ and G is measurable with $\|G(x)\|=1$ almost everywhere on $\operatorname{supp}(F)$ (that is, let $g(x)=\|F(x)\|$ and $G(x)=F(x) /\|F(x)\|$ for $x \in \operatorname{supp}(F)$) the proof of the lemma is complete.

LEMMA 6. Let Φ be the regular set isomorphism of Σ onto itself determined by $T\left(\chi_{A} \cdot e_{n}\right)=\chi_{\Phi(A)} T\left(\mathrm{e}_{n}\right)$, for $n=1,2, \ldots$ and $A \in \Sigma$, and denote also by Φ the corresponding linear transformation of measurable scalar functions. Then the map defined for $F \in L^{\infty}(X, K)$ by $F \rightarrow \Phi(F)$ is an isometry of $L^{\infty}(X, K)$ onto itself.

Proof. It follows from Lemma 4, the separability of K, and the note following Lemma 2 that there exists a well defined regular set isomorphism Φ of Σ onto itself such that for all $n=1,2, \ldots$ and all bounded measurable scalar functions $f, T\left(f \cdot e_{n}\right)=\Phi(f) \cdot T\left(e_{n}\right)$. It is obvious that $\|\Phi(f)\|_{\infty}=\|f\|_{\infty}$ holds for all scalar simple functions f, and the fact that the same equality then holds for an arbitrary element f of $L^{\infty}(X, S)$ follows easily from the fact that Φ preserves the almost everywhere convergence of sequences of measurable functions.

Now using [2, p. 10] and the fact that Φ preserves the set of positive elements of $L^{\infty}(X, S)$, it follows that for $F \in L^{\infty}(X, K)$, $\|(\Phi(F))(\cdot)\|=\Phi(\|F(\cdot)\|)$, where $\|F(\cdot)\|$ denotes the $L^{\infty}(X, S)$ element g defined by $g(x)=\|F(x)\|$ for $x \in X$. Thus

$$
\|\Phi(F)\|_{\infty}=\text { ess } \sup \|(\Phi(F))(x)\|=\text { ess } \sup \Phi(\|F(x)\|) .
$$

But by the previous paragraph this last quantity is equal to ess sup $\|F(x)\|=\|F\|_{\infty}$ so that the map is norm preserving, and it is clear that it is also surjective.

We now define the measurable operator function $U(x)$ by first defining $U(x)$ on the basis vectors e_{n} of K via the equation $U(x) e_{n}=\left(T\left(\mathrm{e}_{n}\right)\right)(x)$, and then extending $U(x)$ linearly to K. By Lemma 3 , $\left\{\left(T\left(\mathrm{e}_{1}\right)\right)(x),\left(T\left(\mathrm{e}_{2}\right)\right)(x), \ldots\right\}$ is almost everywhere an orthonormal set in K, so that $U(x)$ is an isometry of K into itself almost everywhere. It thus follows from Lemma 6 that for $F \in L^{\infty}(X, K)$, the map $F(\cdot) \rightarrow U(\cdot)(\Phi(F))(\cdot)$ is an isometry of $L^{\infty}(X, K)$ into itself.

In the following lemma we use the fact that, modulo the usual conjugate-linear identification of K with its own dual space, $L^{\infty}(X, K)$ is the dual space of $L^{1}(X, K) \quad[4, p .282]$.

LEMMA 7. For $F=\sum_{n} f_{n} e_{n} \in L^{\infty}(X, K)$ define, for $N=1,2, \ldots$, $F_{N}=\sum_{n=1}^{N} f_{n} e_{n}$. Then $U(\cdot)\left(\Phi\left(F_{N}\right)\right)(\cdot)$ tends to $U(\cdot)(\Phi(F))(\cdot)$ in the weak * topology of $L^{\infty}(X, K)$.

Proof. The sequence $\left\{\Phi\left(F_{N}\right)\right\}$ converges almost everywhere to $\Phi(F)$
and is uniformly bounded in norm by $\|\Phi(F)\|_{\infty}=\|F\|_{\infty}$. Hence the sequence $\left\{U(\cdot)\left(\Phi\left(F_{N}\right)\right)(\cdot)\right\}$ converges almost everywhere to $U(\cdot)(\Phi(F))(\cdot)$, and is also uniformly bounded in norm by $\|F\|_{\infty}$. It follows that if $G \in L^{1}(X, K)$, then $G(\cdot) U(\cdot)\left(\Phi\left(F_{N}\right)\right)(\cdot)$ converges almost everywhere to $G(\cdot) U(\cdot)(\Phi(F))(\cdot)$, and is dominated by $\|F\|_{\infty}\|G(\cdot)\|$. Thus, by the dominated convergence theorem,

$$
\begin{aligned}
&\left|\int G(x) U(x)\left(\Phi\left(F_{I N}\right)\right)(x) d \mu-\int G(x) U(x)(\Phi(F))(x) d \mu\right| \\
& \leq \int\left\|G(x) U(x)\left(\Phi\left(F_{N}\right)\right)(x)-G(x) U(x)(\Phi(F))(x)\right\| d \mu \\
& \rightarrow 0 \text { as } N \rightarrow \infty .
\end{aligned}
$$

LEMMA 8. Let v be the measure defined on Σ by $\nu(A)=\mu\left[\Phi^{-1}(A)\right]$, for $A \quad \Sigma$, and let $h=\frac{d \nu}{d \mu}$. Define R mapping $L^{1}(X, K)$ to itself by $(R(G))(x)=U(x) h(x)(\Phi(G))(x)$, for $G \in L^{1}(X, K)$. Then R maps $L^{1}(X, K)$ isometrically onto itself and $T=R^{*^{-1}}$.

Proof. First note that, by the definition of a regular set isomorphism, ν is absolutely continuous with respect to μ and that, for $A \in \Sigma$, we have

$$
\begin{equation*}
\mu(A)=\nu[\Phi(A)]=\int_{\Phi(A)} d \nu=\int_{\Phi(A)} \frac{d \nu}{d \mu} d \mu=\int_{\Phi(A)} h d \mu \tag{4}
\end{equation*}
$$

Moreover, by [9, p. 283] the mapping R defined above is an isometry of $L^{1}(X, K)$ into itself.

If $G=\sum_{n} g_{n} e_{n} \in L^{\perp}(X, K)$, then the sequence $\left\{G_{N}\right\}$, where for $N=1,2, \ldots$ and $x \in X, G_{N}(x)=\sum_{n=1}^{N} g_{n}(x) e_{n}$, converges almost everywhere to G and is dominated by $\|G\|$. Thus, by the dominated convergence theorem, finite sums of the form $G_{N}=\sum_{n=1}^{N} g_{n} e_{n}$ are dense in $L^{1}(X, K)$, and it is clear that we still have a dense set if we restrict the coordinate functions g_{n} to be scalar simple functions. Moreover, it
is also clear that $L^{\infty}(X, K)$ elements of the form $H(x)=\sum_{n} s_{n}(x) e_{n}$, where the s_{n} are scalar simple functions, are dense in $L^{\infty}(X, K)$.

Thus suppose we have two such elements $G_{N} \in L^{1}(X, K)$ and $H \in L^{\infty}(X, K)$. We may suppose that $G_{N}=\sum_{i=1}^{N} \sum_{j=1}^{n} c_{i j} \chi_{A_{j}} e_{i}$ and $H=H_{1}+H_{2}$, where $H_{1}=\sum_{i=1}^{N} \sum_{j=1}^{n} d_{i j} x_{A_{j}} e_{i}, H_{2}=\sum_{i=N+1}^{\infty} s_{i} e_{i}$, the $c_{i j}, d_{i j}$ are scalars, and the A_{j} are pairwise disjoint measurable sets. We thus have

$$
\int\left\langle G_{N}, H\right\rangle d \mu=\int\left(\sum_{i=1}^{N} \sum_{j=1}^{n} c_{i j} \bar{d}_{i j} x_{A_{j}}\right) d \mu=\sum_{i=1}^{N} \sum_{j=1}^{n} c_{i j} \bar{d}_{i j} \mu\left(A_{j}\right),
$$

But by (4) this latter quantity is equal to

$$
\begin{aligned}
\sum_{i=1}^{N} \sum_{j=1}^{n} c_{i j} \bar{d}_{i j} \int_{\Phi\left(A_{j}\right)} & h d \mu \\
& =\int\left\langle\sum_{i=1}^{N} \sum_{j=1}^{n} h c_{i j} x_{\Phi\left(A_{j}\right)^{T}\left(\mathrm{e}_{i}\right), \sum_{i=1}^{N} \sum_{j=1}^{n} d_{i j} \chi_{\Phi}\left(A_{j}\right)^{\left.T\left(\mathrm{e}_{i}\right)\right\rangle d \mu}}=\int\left\langle U(x) h(x)\left(\Phi\left(G_{N}\right)\right)(x),\left(T\left(H_{1}\right)\right)(x)\right\rangle d \mu\right.
\end{aligned}
$$

and since by Lemma 5, $\left(T\left(H_{2}\right)\right)(x)$ is almost everywhere orthogonal in K to $T\left(\mathbf{e}_{i}\right), 1 \leq i \leq N$, this last integral equals

$$
\begin{aligned}
\int\left\langle U(x) h(x)\left(\Phi\left(G_{N}\right)\right)(x),\left(T\left(H_{1}\right)\right)(x)\right. & \left.+\left(T\left(H_{2}\right)\right)(x)\right) d \mu \\
& =\int\left(R\left(G_{N}\right), T(H)\right) d \mu=\int\left(G_{N}, R^{*} \circ T(H)\right\rangle d \mu
\end{aligned}
$$

Here R^{*} is, again modulo the conjugate-linear identification of K with its own dual, the Banach space adjoint of R [2, p. 11].

Thus for each H in $L^{\infty}(X, K)$ of the form considered, we have shown that the linear functionals on $L^{\perp}(X, K)$ determined by H and ($\left.R^{*} \circ T\right)(H)$ agree when evaluated at all elements G_{N} belonging to a dense
subset of $L^{1}(X, K)$. Hence, for such H, we have $\left(R^{*} \circ T\right)(H)=H$; and since this equality holds for all H belonging to a dense subset of $L^{\infty}(X, K)$, we have $R^{*}=T^{-1}$ and $R^{*^{-1}}=T$. Note that this implies that R is actually an isometry of $L^{l}(X, K)$ onto itself [10, p. 226].

THEOREM. For $F \in L^{\infty}(X, K), \quad(T(F))(x)=U(x)(\Phi(F))(x)$.
Proof. Let $F=\sum_{n} f_{n} e_{n}$ belong to $L^{\infty}(X, K)$, and for $N=1,2, \ldots$ set $F_{N}=\sum_{n=1}^{N} f_{n} e_{n}$. Then by an argument exactly analogous to that given in the proof of Lemma $7, F_{N} \rightarrow F$ in the weak $*$ topology of $L^{\infty}(X, K)$. Since adjoints of maps continuous with respect to the norm topology remain continuous with respect to the weak * topology, we have $T\left(F_{N}\right)=R^{*-1}\left(F_{N}\right) \rightarrow R^{*-1}(F)=T(F)$ weak $*$. But by Lemma 7 , $T\left(F_{N}\right)=U(\cdot)\left(\Phi\left(F_{N}\right)\right)(\cdot)$ tends weak $*$ to $U(\cdot)(\Phi(F))(\cdot)$, and the proof of the theorem is complete.

References

[1] Stefan Banach, Théorie des opérations Zinéaires (Monografje Matematyczne, 1. Z Subwencji Funduszu Kultury Narodowey, Warszawa, 1932).
[2] Michael Cambern, "The isometries of $L^{p}(X, K)$ ", Pacific J. Math. 55 (1974), 9-17.
[3] Michael Cambern, "On mappings of spaces of functions with values in a Banach space", Duke Math. J. 42 (1975), 91-98.
[4] Nicolae Dinculeanu, Vector measures (International Series of Monographs in Pure and Applied Mathematics, 95. Pergamon Press, Oxford, New York, Toronto; VEB Deutscher Verlag der Wissenschaften, Berlin, 1967).
[5] J.L. Doob, Stochastic processes (John Wiley \& Sons, New York; Chapman and Hall, London; 1953).
[6] R.J. Fleming and J.E. Jamison, "Classes of operators on vector valued integration spaces", J. Austral. Math. Soc. Ser. A 24 (1977), 129-138.
[7] Kenneth Hoffman and Ray Kunze, Linear algebra, Second edition (Prentice-Hall, Englewood Cliffs, New Jersey, 1971).
[8] John Lamperti, "On the isometries of certain function-spaces", Pacific J. Math. 8 (1958), 459-466.
[9] A.R. Sourour, "The isometries of $L^{p}(\Omega, x)$ ", J. Funct. Anal. 30 (1978), 276-285.
[10] Angus E. Taylor, Introduction to functional analysis (John Wiley \& Sons, New York; Chapman and Hall, London, 1958).

Department of Mathematics, University of California, Santa Barbara, California 93106, USA.

