Mathematical Notes.

Review of Elementary Mathematics and Science.
PUBLISHED BY

THE EDINBURGH MATHEMATICAL SOCIETY

Edited by G. D. C. STOKES, M.A., D.Sc.

Mo. 18
Maty 1918.

Geometrica Proof of a Trigonometrical Identity.-

 The following proof of the identity$$
1-\cos ^{2} A-\cos ^{2} B-\cos ^{2} C-2 \cos A \cos B \cos C=0
$$

where A, B, C are the angles of a triangle differs from that given by Dr Bell in the last number of Mathematical Notes and from that given in "New Trigonometry for Schools" by Lock and Child in that the area of the triangle is made use of.

$D E F$ is the pedal triangle of $A B C . \triangle D E C$ is similar to $\triangle A B C$, $C E$ and $C B$ being corresponding sides.

$$
\begin{gathered}
\therefore \frac{\triangle D E C}{\triangle A B C}=\frac{C E^{2}}{B C^{2}}=\frac{a^{2} \cos ^{2} C}{a^{2}}=\cos ^{2} C \\
\therefore \triangle D E C=S \cos ^{2} C
\end{gathered}
$$

where S denotes the area of $A B C$.
(201)

MATHEMATICAL NOTES.

\quad Similarly	$\triangle A F E=S \cos ^{2} A$
and	$\triangle B F D=S \cos ^{2} B$

$$
\therefore \quad \triangle D E F=S\left(1-\cos ^{2} A-\cos ^{2} B-\cos ^{2} C\right)
$$

But

$$
\frac{F E^{2}}{C B^{2}}=\frac{\triangle A F E}{\triangle A B C}=\cos ^{2} A
$$

$\therefore F E=a \cos A$. Similarly $D E=c \cos C$, and angle

$$
F E D=180^{\circ}-2 B
$$

$\therefore \quad \triangle D E F^{\prime}=\frac{1}{2} F E . E D \sin F E D$

$$
\begin{aligned}
& =\frac{1}{2} a \cos A \cdot c \cos C \cdot \sin \left(180^{\circ}-2 B\right) \\
& =\frac{1}{2} a c \cos A \cos C \cdot 2 \sin B \cos B \\
& =\frac{1}{2} a c \sin B \cdot 2 \cos A \cos B \cos C \\
& =S \cdot 2 \cos A \cos B \cos C .
\end{aligned}
$$

The result follows by equating the two values found for $\triangle D E F$.
A. G. Buraess.

Proof of some Triangle Formulae. - Let I be the incentre of $\triangle A B C$, and let the excentre opposite A be I_{1}. Draw perpendiculars $I F$ and $I_{1} F_{1}$ to $A B . \quad \angle I B I_{1}=90^{\circ}$.

$$
\therefore \quad \angle F B I=90^{\circ}-\angle F_{1} B I_{1}=\angle F_{1} I_{1} B .
$$

Hence $\triangle F B I$ is similar to $\triangle F_{1} I_{1} B$.

$$
\begin{aligned}
& \therefore & \frac{I F}{F B} & =\frac{B F_{1}}{F_{1} I_{1}} \\
& \therefore & I F \cdot F_{1} I_{1} & =F B \cdot B F_{1} .
\end{aligned}
$$

Again $\angle A I_{1} B=\frac{1}{2}\left(180^{\circ}-B\right)-\frac{A}{2}=\frac{C}{2}$
$\therefore \triangle B A I_{1}$ is similar to $\triangle I A C$.

$$
\begin{align*}
& \therefore & \frac{A I}{A C} & =\frac{A B}{A I_{1}} \\
& \therefore & A I \cdot A I_{1} & =A B \cdot A C . \tag{202}
\end{align*}
$$

