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ABSTRACT. Inclinometry with embedded probes is analyzed with a Stokes model of a solid body
floating in a fluid with much smaller viscosity for a two-dimensional flow field. The assumption that such
a probe behaves like a Lagrangian unit vector is only justified for probes embedded in a Newtonian fluid
with lengths at least four times their width. A fluid with Glen-type rheology results in a slightly smaller
rotation rate of the probe compared to Newtonian fluids.

INTRODUCTION
Continuously measuring inclinometers embedded in glacier
ice allow us to monitor the tilt and azimuth angles of the axis
of the instrument with high temporal resolution (Gudmunds-
son and others, 1999; Pfeffer and others, 2000; Marshall and
others, 2002; Amundson and others, 2006). The instruments
constitute a solid body of given geometry floating in a
comparably soft viscous fluid. Due to the different properties
of the probe and the fluid, the local strain field is perturbed
by the probe. It is thus not obvious how the local strain rates
in the ice are reflected in the rotation axis and rate of the
instrument.

An inclinometer that is fully equipped for, for example,
two-axis gravity sensors and three-axis magnetometers is in
principle suited to measure the absolute orientation of a
rigid tripod attached to the instrument with respect to a
given coordinate system (Fig. 1). Thus, we can monitor the
rotation in space (e.g. through the changes in the tilt or
zenith angle and the azimuth of the long axis of the
inclinometer, and the rotation angle about this axis).

The spatial rotation of the probe is a result of the
geometry of the instrument and of the deformation field of
the ice. The forward problem is the computation of the
rotation vector of the instrument for a given deformation
field, either the strain rate or velocity gradient components,
which is given by a Stokes problem for given boundary
conditions. The inverse problem requires the determination
of the deformation field from given rotation vectors of the
instrument, which is not straightforward.

It seems reasonable to assume that a spherical body
reflects the local rigid rotation of the ice motion. A very thin
linear probe is assumed to behave like a Lagrangian unit
vector (Keller and Blatter, 2012), a vector rigidly attached to
an infinitesimal piece of the ice and moving with this ice. In
this paper, we examine the validity of the latter assumption,
which we call the unit vector model. To this purpose, we
compare numerical model results of an extremely viscous
rectangular body, representing a solid, floating in a deform-
ing fluid, to the unit vector model.

We restrict our analysis to two dimensions defined by the
local horizontal flow direction, x1, and the direction
opposite to gravity, x3. Only normal strain and pure

horizontal shear are assumed, as in Keller and Blatter
(2012). The probe is assumed to be small enough such that
macroscopic inhomogeneities (e.g. in the fields of tempera-
ture and strain rate) are not significant, and large enough that
microscopic inhomogeneities (e.g. ice crystals) do not play a
role. The coupling of the instruments to the ice seems to be
difficult in temperate ice (Pfeffer and others, 2000; Keller
and Blatter, 2012). Therefore, we consider only the well-
defined cold case with no slip on the surface of the probe.
Furthermore, buoyancy is neglected.

UNIT VECTOR MODEL
The rectangular inclinometer always starts from a position
with a vertical long axis, i.e. with a zenith angle �0 ¼ 0.
With this assumption, equations (15) and (16) of Keller and
Blatter (2012) reduce to

�ðtÞ ¼ arctan
L13
2 L33

1� e�2tL33
� �� �

, ð1Þ

where �ðtÞ is the zenith angle of the instrument axis as a
function of time and L13 and L33 are components of the
velocity gradient tensor, Lij ¼ @ui=@xj. The time derivative of
Eqn (1) at t ¼ 0 yields

d�
dt

����
t¼0

¼ L13: ð2Þ

Thus, at the starting point with �ð0Þ ¼ 0, the influence of L33
vanishes and the rotation rate of the unit vector, Eqn (2),
reflects only the rotation part of the velocity field. For t ! 1
the angle � approaches a limit angle

�1 ¼ arctan
L13
2L33

� �
ð3Þ

with L33t > 0; for L33t < 0, the limit angle is �=2. The limit
angles are determined by the directions of the principal
strain-rate components.

NUMERICAL MODEL
The model solves a Stokes problem for a square domain
including a rectangular or circular domain representing the
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solid floating in the fluid (Fig. 2). On the boundary between
the solid and fluid bodies, continuity of the velocity and
stress fields is imposed. The viscosity of the solid is chosen
seven orders of magnitude larger than that of the fluid
representing the ice. The conditions on the boundary of the
square are chosen as

u1 ¼ �x1L33 þ x3L13
and

u3 ¼ x3L33,

ð4Þ

such that the field of strain rate within the domain is
homogeneous with given values for L13 and L33 and the
drifting velocity in the center of the domain vanishes, if the
solid body is not included. The square domain �2 is
centered at the origin. For reasons of symmetry, the
rectangular probe rotates about the origin and is always
started from an upright position, �0 ¼ 0.

We consider � � R2, a square domain filled with two
Newtonian or Glen-type non-Newtonian immiscible and
incompressible fluids. At time t, the two fluids occupy the
domains �1ðtÞ and �2ðtÞ (Fig. 2) which are defined by a
continuous level set function ’,

�1ðtÞ ¼ x 2 �;’ðx, tÞ < 0f g
�2ðtÞ ¼ x 2 �;’ðx, tÞ > 0f g: ð5Þ

Given the fluid velocity u, the level set function ’ must
satisfy the advection equation

@’

@t
þ u � r’ ¼ 0, ’ðt ¼ 0Þ ¼ ’0, ð6Þ

so the contour line ’ ¼ 0 (level set) always follows the
boundary between �1ðtÞ and �2ðtÞ.

Neglecting inertial terms, the mass and momentum
conservation equations are

r � u ¼ 0 ð7Þ

�r � �ðruþruTÞ	 
þrp ¼ �g, ð8Þ
where p is the pressure, g is the acceleration of gravity and
the superscript T denotes the transpose of the velocity
gradient tensor ru. The density � and the viscosity � are

defined by

� ¼ �1
2
½1� sgnð’Þ� þ �2

2
½1þ sgnð’Þ�

� ¼ �1
2
½1� sgnð’Þ� þ �2

2
½1þ sgnð’Þ�,

ð9Þ

where �i and �i are the densities and viscosities in the
corresponding domains �i. Note that Eqns (7) and (8) are
understood in the weak sense, thus assuming the continuity
of forces and velocity at the interface between the two fluids.
To approximate the rigid body motion, ruþruT ¼ 0 in �1,
we can set �1 to a very large value.

Let �t be the time-step, for each i > 0: given ’i, an
approximation of ’ðtiÞ, we compute �i and �i using Eqn (9)
and search uiþ1, piþ1 at time tiþ1 ¼ ti þ�t such that

�r � �i ruiþ1 þ ðruiþ1ÞT
h in o

þrpiþ1 ¼ �ig,

r�uiþ1 ¼ 0:
ð10Þ

The Stokes problem is solved using finite elements with
linear polynomials to approximate the pressure, and
quadratic polynomials to approximate the velocity. Given
a velocity uiþ1, the new level set �iþ1 is computed by solving
Eqn (6) between ti and tiþ1 with the so-called method of
characteristics (see, e.g., Pironneau, 1989). The model is
implemented using the FreeFem++ software for solving
partial differential equations (http://www.freefem.org/). Ex-
tensive tests of the accuracy and convergence of the model
are presented in Jaber (2012).

NUMERICAL EXPERIMENTS
Equation (1) can be considered to be a function of two
dimensionless variables, L13=L33 and dimensionless time
t L33. To generate the flow field in the interior of the domain,
correspondingly, a dimensionless Stokes equation is solved.
Only the ratios between the strain-rate components, and
thus also between the stress components, are relevant.
Consequently, the choice of the dimensionless constant
viscosity is also free. In the presented results we chose the

Fig. 2. Computation domain with the two fluid domains �1ðtÞ and
�2ðtÞ and the level set function ’ðx, tÞ. �ðtÞ is the zenith angle of
the long axis of the inclinometer.

Fig. 1. Geometrical set-up of an inclinometer. The orientation in
space of the tripod of vectors e1, e2 and e3 fixed to the instrument is
given with respect to a coordinate system x1, x2 and x3. The angles
� and � are the zenith and azimuth angles of the long axis, and � is
the rotation angle about this axis.
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viscosity of the fluid �2 ¼ 10 and the viscosity of the solid
probe �1 ¼ 108, which makes its deformation rate small
enough to make the probe almost rigid for the time-span of
the model experiments. In all experiments, the model
domain is a square with a side length 2, the structured
mesh size is 0.01 and the time-step is �t ¼ 0:0028.

Aspect of probe: Newtonian fluid
In this experiment, we consider L13=L33 ¼ 1=3. The width of
the rectangles is chosen 0.1 and the lengths vary from 0.2 to
0.4. The evolution of the tilt angle �ðtÞ for the different
aspect ratios, length to width, of the probe is plotted in
Figure 3, together with the unit vector solution according to
Eqn (1). Rectangles with aspect ratios larger than 4 are
closely approximated by the behavior of a unit vector with a
comparable limit tilt angle. Conversely, for aspect ratios
close to and below 2, the rectangles continue to rotate. The
same discrimination applies to the starting rotation rate. The
initial rotation rate L13 of the Lagrangian unit vector is close
to the modeled rotation rate for large enough aspect ratios
(>4) but overestimates it for smaller aspect ratios.

Newtonian and Glen-type fluids
The local perturbation of the flow field and thus the strain-
rate components of a given probe also changes the viscosity
of a non-Newtonian fluid. We implemented the viscosity
according to the modified Glen’s flow law (Greve and
Blatter, 2009),

0 ¼ 2nAdn�1
e �n þ 2A�n�1

0 � � 1, ð11Þ
where de is the second invariant of the strain-rate tensor,
n ¼ 3 is the flow law exponent, A is a rate factor and the
residual stress �0 is a small positive constant acting as a
regularization parameter. With the chosen values of
A ¼ 0:08 and �0 ¼ 0:3, the viscosity in the unperturbed
region corresponds to the viscosity in the Newtonian fluid
solutions. The viscosity is updated every time-step using a
fixed point iteration scheme.

Due to its symmetry, a circular probe only sees the rotation
part of the velocity field, and thus rotates with an angular
velocity ! ¼ @�=@t ¼ L13. A square probe is expected to
rotate continuously, without stabilizing in a tilt position.
Figure 4 shows the time evolution of an axis fixed to a circle
with diameter 0.1 and to a square with side 0.1. Due to its
symmetry, a circle must rotate uniformly with rotation rate
L13 in a Newtonian fluid, which is confirmed in the numerical
simulation. Contrary to this, the square rotates slightly slower
in the tilt position compared to the upright position.

The rotation rates of square and circular bodies are
consistently smaller in a Glen-type fluid than in a New-
tonian fluid with constant viscosity (Fig. 4). The no-slip
condition on the surface of the body drags the fluid with the
surface, so the shear rate is smaller closer to the body than
anywhere further away, in particular along the sides of the
square. This increased drag seems to slow down the rotation
in the Glen-type fluid.

Figure 5 shows an example of the evolution of the zenith
angle for a rectangular probe with aspect ratio 4 for an
asymptotic strain field of L13=L33 ¼ 1 for both Newtonian
and Glen-type fluids. For this aspect ratio, the unit vector
model closely matches the rotation of the rectangle for the
Newtonian fluid. For the transient phase, the unit vector
model overestimates the rotation rate of the rectangle in the
Glen-type fluid, and thus underestimates L13. Furthermore,
the zenith angle converges towards a smaller limit angle
than the unit vector, and thus underestimates the ratio
L13=L33. The directions of the principal strain-rate com-
ponents of the perturbed strain fields are different for
Newtonian and Glen-type fluids.

CONCLUSIONS AND DISCUSSION
The assumption that an inclinometer probe embedded in
glacier ice behaves like a Lagrangian unit vector (Keller and
Blatter, 2012) is tested with a Stokes model of the motion of

Fig. 4. The evolution of the tilt angle � as a function of
dimensionless time ~t ¼ t L33 for a circular and a square shape for
Newtonian and Glen-type fluids for L13 ¼ L33 ¼ 1=3: the dashed
lines show the the results for a Newtonian fluid, the solid lines for a
Glen-type fluid, the corresponding upper lines for the square, the
corresponding lower lines for circles. The upper dashed line also
corresponds to a rotation with angular velocity _! ¼ L13.

Fig. 3. The evolution of the tilt angle � for a Newtonian fluid with
L13 ¼ L33 ¼ 1=3 as a function of dimensionless time ~t ¼ t L33 for
rectangular shapes with different aspect ratios: 2, 3 and 3.5 for the
indicated dashed lines, 4 for the dotted line almost hidden in the
solid line for the unit vector model.
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a rectangular solid (very viscous) body floating in a fluid,
with both Newtonian and Glen-type rheology. The assump-
tion turned out to be viable only for Newtonian fluids and if
the length-to-width ratio of the probe exceeds �4. At the
start of the rotation with an upright long axis, the rotation
rate is slightly smaller for smaller aspect ratios of the
rectangle but approaches the rotation rate of the unit vector
solution for large enough aspect ratios. The limit angle
decreases with increasing aspect ratio and also approaches
the limit angle of the unit vector solution for large enough
aspect ratios. For smaller aspect ratios, the shear strain L13 is
overestimated at the start with � ¼ 0, and the ratio L13=L33
from the limit angle is underestimated with the unit vector
solution (Fig. 3). A modified Glen-type fluid yields smaller
rotation rates compared to the Newtonian fluid and a
smaller limit angle. Thus, the unit vector solution consist-
ently overestimates L13 and L13=L33.

We cannot exclude a significant influence on the rotation
rate due to the three-dimensional shape of the probe and the
attached cable, especially if the probe is shorter than the
recommended four times the width. To avoid such
complication it may be advisable to use a freely floating
wireless probe as developed recently (Hart and others,
2006; Smeets and others, 2012). An embedded inclinometer
thus is not a trivial instrument for the measurement of strain

rates in glaciers. This was demonstrated for the application
of the unit vector model in Keller and Blatter (2012) and is
demonstrated in the experiments presented here, and may
be even more critical if the strain field is truly three-
dimensional. This may require additional numerical model-
ing not only of the behavior of a given inclinometer in the
local strain field, but also a modeling of the larger-scale
strain field in the glacier to plan field experiments and to
constrain the interpretation of the inclinometer readings.
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Fig. 5. The evolution of the angle � as a function of dimensionless
time ~t ¼ t L33 for a rectangle with aspect ratio 4 for a Newtonian
(dashed line) and a Glen-type (solid line) fluid with L13 ¼ L33 ¼ 0:4.
The upper line for the linear fluid alsomatches the unit vector model.
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