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1. Introduction

1.1. Let hn ¼ Spð2n;RÞ=UðnÞ be the Siegel upperhalf space of rank n. The quotient

space Spð2n;ZÞnhn has three remarkable properties: (a) it is the moduli space of
principally polarized Abelian varieties, (b) it has the structure of a quasi-projective

complex algebraic variety which is defined over the rational numbers Q, and (c) it

has a natural compactification (the Baily–Borel Satake compactification) which is

defined over the rational numbers.

Now let Cn ¼ GLðn;RÞ=OðnÞ be the symmetric cone of positive definite symmetric

matrices and let Z ¼ GLðn;ZÞnCn. One might ask whether similar statements hold

for Z. Is Z in some sense a moduli space for principally polarized real Abelian

varieties? Does it admit the structure of a real algebraic variety, possibly defined over

Q? If so, does it admit a compactification which is also defined over the rational

numbers? The answer to all these questions is ‘no’. In fact, Silhol [Si] constructs

the moduli space of real principally polarized Abelian varieties and he shows that

it is a (topological) ramified covering of Z. Moreover Silhol constructs a compactifi-

cation of this moduli space, analogous to the Baily–Borel compactification. However,

neither the moduli space nor this compactification has an algebraic structure.

?Research partially supported by NSF grants # DMS 9900324 and DMS 0139986.

Compositio Mathematica 139: 1–27, 2003. 1
# 2003 Kluwer Academic Publishers. Printed in the Netherlands.

https://doi.org/10.1023/B:COMP.0000005079.56232.e3 Published online by Cambridge University Press

https://doi.org/10.1023/B:COMP.0000005079.56232.e3


In this paper we show that all three statements (a), (b), and (c) above may be

recovered if we consider real Abelian varieties with an appropriate level structure.

To be precise, let N ¼ 4m for some m5 1, let G‘ðN Þ be the principal congruence sub-

group of GLðn;ZÞ of level N, and let ZðN Þ ¼ G‘ðN ÞnCn. Then (a) the moduli space

of real principally polarized Abelian varieties with level N structure consists of

finitelymany copies ofZðN Þ. These various copies are indexed by a certain (nonAbelian

cohomology) set H1ðC=R;GðN ÞÞ. Morever, (b) this moduli space may be naturally
identified with the real points XR of a quasi-projective algebraic variety X which is

defined over the rational numbers. See Theorems 4.2 and 6.6. Finally, (c) the variety

XC has a compactification which is defined over Q.

1.2. In fact the variety XC is just the moduli space GðN Þnhn of Abelian varieties with
principal polarization and level N ¼ 4m structure. (Here, GðN Þ denotes the principal
congruence subgroup of Spð2n;ZÞ of level N.) The first observation is that there is an

involution t on Spð2n;RÞ whose fixed point set is GLðn;RÞ, which passes to an anti-

holomorphic involution on XC. This implies that the set of real points of XC consists

of finitely many arithmetic quotients of the symmetric cone Cn. What is not so

obvious, however, is that these quotients are copies of a single arithmetic quotient

G‘ðN ÞnCn or that this set of real points may be realized as the moduli space of real

principally polarized Abelian varieites with level N structure. Indeed, these state-

ments are likely false for N 6� 0 ðmod 4Þ. The key technical tool (which is needed

for both these facts) is the lemma of Comessatti and Silhol ([C, Si, Si2]) describing

certain conditions on the period matrix of a principally polarized Abelian variety

A which are necessary in order for A to admit a real structure.

1.3. Let V ¼ VC denote the Baily–Borel Satake compactification of XC. It is

an algebraic variety defined over Q. Complex conjugation t:VC ! VC is an anti-

holomorphic involution whose fixed point set is the set of real points VR. This set

is compact and it contains XR as an open set. One might ask whether VR is a

compactification of XR, that is, whether VR ¼ �XR, where �XR denotes the closure

of XR in VC. We have been able to prove this (Section 10) in the special case

N ¼ 2k (that is, for the principal congruence subgroup Gð2kÞ of level 2k) for k5 2,

and we suspect it is otherwise false unless n ¼ 1; (cf. Section 5). However, we

have been able to show (for general Gð4mÞ) that the complement VR � �XR has a high

codimension. The variety VC has a stratification

VC ¼ V 0C [ V1C [ 
 
 
 [ VnC

such that each VrC is a union of arithmetic quotients Gnhn�r of finitely many copies of
the Siegel space of rank n� r. The largest stratum V 0C is just XC. Denote by V

r
R the

t-fixed points in VrC. In Proposition 9.2 we show that

V 0R [ V1R � �XR � VR:

Although the moduli space XR consists of finitely many disjoint copies of the

locally symmetric space ZðN Þ, the compactification �XR is not a disjoint union: some

of these copies of ZðN Þ may become glued together along the boundary.
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1.4. The questions in the first paragraph, and others like them, were posed by

G. Shimura, J. Millson and M. Kuga [J] in the early 1970’s, in the context of

attempts to associate automorphic forms on groups of Hermitian type to auto-

morphic forms on groups of non-Hermitian type. One of many missing ingredients

in the theory of automorphic forms for groups of non-Hermitian type arises from the

fact that the associated locally symmetric space does not appear to have an algebraic

structure, or to be associated with elliptic curves or Abelian varieties. On the other

hand, suppose XC is a moduli space for Abelian varieties with certain polarization,

endomorphism, and level structures, and suppose that X has a model defined over R.

In [Sh1], Shimura showed that the set of real points XR does not necessarily give a

moduli space for real Abelian varieties (with the corresponding PEL structures).

These questions were partially investigated by A. Adler [A], H. Jaffee [J], S. Kudla

[K], M. Kuga, J. Millson, K.-Y. Shih [Shh], and G. Shimura [Sh1, Sh3, Sh4]. Kudla,

for example, enumerated the possible real forms and determined the number of con-

nected components of the set of real points of certain compact arithmetic quotients

Gnh n of a product of upper half planes. Related results concerning products h nr of
Siegel upper half-spaces appear in [Sh3]. Since 1975 however, this line of investiga-

tion appears to have been abandoned. Indeed, it is unlikely that this work could have

progressed much further without (some analog of ) the lemma of Comessatti and

Silhol. We believe Theorems 4.2 and 6.6, and the related results in [GT], are but

two examples of a much more general phenomenon involving arithmetic quotients

of symmetric cones associated to (formally real) Jordan algebras.

2. Non-Abelian Cohomology

2.1. Let G be a reductive algebraic group defined over Q, let K be a maximal

compact subgroup of G ¼ GðRÞ, and let G � GðQÞ be an arithmetic subgroup.

Set D ¼ G=K and X ¼ GnG=K with projection p:D! X. Suppose t:G! G is an

involution which preserves K and G. Then t passes to an involution on X and we
denote by X t the fixed point set. Let hti be the group f1; tg and let H1ðhti;GÞ be
the first non-Abelian cohomology set. For any g 2 G let fg: hti ! G be the mapping
fgð1Þ ¼ 1 and fgðtÞ ¼ g. Then fg is a 1-cocycle iff gtðgÞ ¼ 1, in which case its cohomo-
logy class is denoted ½ fg�. A cocycle fg is a coboundary iff there exists h 2 G so that
g ¼ tðhÞh�1. To every such 1-cocycle fg we associate the ‘g-twisted’ involutions
tg:D! D by x 7! tðgxÞ and tg:G ! G by g0 7! tðgg0g�1Þ. Let D tg be the fixed point

set in D of the involution tg and let G tg be the fixed group in G of the involution tg.
To describe X t it is necessary to understand the various D tg : if Z 2 D, then

pðZ Þ 2 X t iff there exists g 2 G such that Z 2 D tg. For completeness, we recall the

proof of the following theorem ([Ro1, Ro2, RoS]) of Rohlfs.

THEOREM 2.2. Suppose G is torsion free. Then the association

fg 7!XðtgÞ ¼ pðD tgÞ ¼ G tgnD tg
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determines a one to one correspondence between the cohomology set H1ðhti;GÞ and the
connected components of the fixed point set X t.

Proof 2:3: The twisted involution tg:D! D acts by isometries so ([H] Chapter I

Section 13.5) the fixed point set D tg is nonempty. If x; x0 2 D tg then the unique

geodesic connecting them is also fixed by tg, so D tg is connected. Its image in X is a

connected component XðtgÞ of X t which depends only on the cohomology class of fg.

It is easy to check that fg and fg0 are cohomologous iff XðtgÞ \ Xðtg0Þ 6¼ f. &

2.4. In general, the cohomology set H1ðhti;GÞ may be difficult to compute, the
connected component XðtgÞ may be difficult to describe, and distinct components
may fail to be isomorphic. We will introduce additional hypotheses which will

allow us to address these three issues. Let G0 � GðQÞ be a t stable arithmetic sub-
group which contains G. Let y:G! G be the Cartan involution corresponding to

K. Consider the following possible hypotheses (cf. Remark 2.7, Theorem 4.2 and

Proposition 4.6).

(1) G is Zariski connected, t:G ! G is defined over R, its fixed point set

G t ¼ G t
ðRÞ is Zariski connected, and y preserves G t,

(2) H1ðhti;K Þ is trivial,
(3) H1ðhti;GÞ ! H1ðhti;G0Þ is trivial,
(4) G0 contains G as a normal subgroup,
(5) t acts trivially on GnG0, and
(6) G is torsion free.

We remark that if G0 satisfies conditions (3) and (4) then there is an arithmetic group
G with G � G � G0 which satisfies conditions (3), (4), and (5), namely

G ¼ GðG;G0Þ ¼ fa 2 G0j tðaÞa�1 2 Gg: ð2:4:1Þ

LEMMA 2.5. Suppose G � G0 � GðQÞ are arithmetic subgroups. Then the following

statements hold.

ðaÞ Under hypothesis ð1Þ above, G t is reductive, y restricts to a Cartan involution of
G t, and K t is a maximal compact subgroup of G t.

ðbÞ Under hypothesis ð2Þ above, D t ¼ G t=K t.

ðcÞ Under hypothesis ð3Þ above, for each cohomology class ½ fg� 2 H
1ðhti;GÞ there

exists h 2 G0 such that g ¼ tðhÞh�1, in which case,

D tg ¼ hD t and G tg ¼ hG t ¼ hG th�1:

ðdÞ Under hypotheses ð3Þ, ð4Þ, and ð5Þ this association fg 7!h determines a one to one

correspondence

H1ðhti;GÞ ffi GnG0=G t
0 : ð2:5:1Þ

ðeÞ Under hypotheses ð3Þ, ð4Þ, ð5Þ, and ð6Þ the fixed point set X t is the disjoint union of
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isomorphic copies

X t ¼
a

h2GnG0=G t
0

hG tnhD t

of the quotient G tnD t.

Proof 2:6: Part (a) is proven in [Sa] Ch. I Theorem 4.2 and Corollary 4.5 (pages

15 and 17). Now consider part (b). Clearly, G t=K t � D t so it suffices to show that

G t acts transitively on D t. Let x ¼ gK 2 D t. Then tðgÞK ¼ gK so the element

k ¼ g�1tðgÞ lies in K. Moreover, fk is a cocycle, so by (2) there exists u 2 K with
k ¼ utðuÞ�1 ¼ g�1tðgÞ. Then gu ¼ tðguÞ 2 G t and x ¼ guK. Part (c) is straight-

forward. Part (d) follows from the long exact sequence

associated to the sequence 1! G ! G0 ! GnG0 ! 1. Part (e) follows from Rohlfs’

theorem and parts (c) and (d) however it is also easy to verify directly. First check

that X t ¼ pð
S
h2G0 hD

tÞ. If h 2 G0 then tðhÞh�1 2 G by (5), which implies that

pðhD tÞ � X t. On the other hand, if x 2 D and pðxÞ 2 X t then there exists g 2 G such
that tðxÞ ¼ gx. By (6), fg is a cocycle, so by (3) there exists h 2 G0 such that
g ¼ tðhÞh�1, hence x 2 hD t. To see that the union (2.5.1) is disjoint, suppose

pðhD tÞ \ pðh0D tÞ 6¼ f. Then there exists x; x0 2 D t and g 2 G such that ghx ¼ h0x0,
hence tðghÞx ¼ tðh0Þx0. This gives

x ¼ tðh�1g�1h0Þx0 ¼ tðh�1g�1h0Þðh�1g�1h0Þ�1x:

For any u 2 G0, (5) implies that tðuÞu�1 2 G, which is torsion free. Take u ¼ h�1g�1h0.
Then tðuÞ ¼ u so u 2 G t

0 and h
0 ¼ ghu 2 GhG t

0 . &

Remark 2:7: If G is semisimple, connected and simply connected and if t:G ! G

is defined over R then, according to a theorem of Raševskiĩ ([Ra1, Ra2]) and

Steinberg [St], the complex group GðCÞ t ¼ G t
ðCÞ is connected, so its group of real

points G t is Zariski connected.

3. Symplectic Group

3.1. The symplectic group G ¼ Spð2n;RÞ may be realized as the group of 2n by 2n

real matrices

Spð2n;RÞ ¼
A B
C D

� ����� tAD� tCB ¼ I
tAC; tBD symmetric

( )

¼
A B
C D

� ����� A tD� B tC ¼ I

A tB;C tD symmetric

( )
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If J ¼
�

0 In
�In 0

�
is the standard symplectic form on R2n then g 2 Spð2n;RÞ iff tgJg ¼ J.

The inverse of such a symplectic matrix is

A B
C D

� ��1

¼
tD �tB
�tC tA

� �
ð3:1:1Þ

Identify GLðn;RÞ ,! Spð2n;RÞ with its image under the embedding

A 7!
A 0
0 tA�1

� �

A Cartan involution y of Spð2n;RÞ is given by yg ¼ JgJ�1, that is,

y
A B
C D

� �
¼

D �C
�B A

� �

Its fixed point set is the unitary group K ¼ UðnÞ which is embedded in the symplectic

group by

Aþ iB 7!
A B
�B A

� �
:

The symplectic group acts transitively on the Siegel upper halfspace

hn ¼ fZ ¼ Xþ iY 2Mn�nðCÞ j
tZ ¼ Z and Y > 0g

by fractional linear transformations: if g ¼ A B
C D

� �
then

gZ ¼ ðAZþ BÞðCZþDÞ�1:

Then StabGðiI Þ ¼ UðnÞ, and hn ffi G=K.

3.2 Let I� ¼
�I 0
0 I

� �
2 GLð2n;RÞ. Consider the involution t: Spð2n;RÞ ! Spð2n;RÞ

which is defined by tðgÞ ¼ I�gI�, that is,

t
A B
C D

� �
¼

A �B
�C D

� �
ð3:2:1Þ

The following properties of t are easily verified by direct calculation:

(1) t is an involution of G, i.e. tðgh�1Þ ¼ tðgÞðtðhÞÞ�1.
(2) tðgÞ ¼ g, g 2 GLðn;RÞ

(3) ty ¼ yt so tðUðnÞÞ ¼ UðnÞ
(4) If C ¼ Aþ iB 2 UðnÞ then tðCÞ ¼ �C ¼ A� iB.

It follows that t passes to an involution (which we denote by the same letter)
t: hn ! hn on the Siegel space such that

tðg 
 Z Þ ¼ tðgÞ 
 tðZ Þ

for all g 2 Spð2n;RÞ and for all Z 2 hn. In fact t: hn ! hn is the antiholomorphic
involution given by tðZ Þ ¼ � �Z. Its fixed point set is the orbit

iCn ¼ GLðn;RÞ 
 iI �Mn�nðCÞ ð3:2:2Þ
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of the general linear group. Here, Cn ffi GLðn;RÞ=OðnÞ denotes the cone of positive

definite symmetric real matrices. (See also Proposition 4.6.)

NOTATION 3.3. For g 2 G and Z 2 hn we will usually write �g ¼ tðgÞ and ~Z ¼ tðZ Þ.
For any g 2 Spð2n;RÞ, define the locus of g-real points

h tg
n ¼ fZ 2 hn j gZ ¼ � �Zg ð3:3:1Þ

as in Section 2.1. If G � Spð2n;RÞ is an arithmetic subgroup such that tG ¼ G, define
the set h tG

n of G-real points to be the union
S

g2G h
tg
n .

LEMMA 3.4. Let g 2 Spð2n;RÞ and let hgn be the set of points in hn which are fixed
under the action of g. Then hgn \ iCn is a proper real algebraic subvariety of iCn unless
g ¼ �I 2 GLðn;RÞ.

Proof 3:5: Suppose A B
C D

� �

 iY ¼ iY. Then AY ¼ YD and B ¼ �YCY. These are

algebraic equations for Y. Suppose every Y 2 Cn is a solution. Taking Y ¼ tI (with

t > 0) gives A ¼ D and B ¼ �t2C. So B ¼ C ¼ 0 and AY ¼ YA for all Y 2 Cn, which

implies that A is a scalar matrix and that D ¼ tA�1. So the scalar is �1. &

4. The Variety Gð4mÞnhn

4.1. We shall be concerned with the following arithmetic groups:

. Gð1Þ ¼ Spð2n;ZÞ

. GðN Þ ¼ g 2 Gð1Þj g � Iðmod N Þ
� �

. G2mð2Þ ¼
A B
C D

� �
2 G

��� A;D � I ðmod 2Þ
B;C � 0 ðmod 2mÞ

	 


. G‘ð1Þ ¼ GLðn;ZÞ

. G‘ðN Þ ¼ fg 2 G‘ð1Þ j g � Iðmod N Þg

(The analogous construction of Gmð2Þ does not yield a group unless m is even.)

Throughout the remainder of the paper we will be interested in the case N ¼ 4m

and m5 1. The main result in this section is the following.

THEOREM 4.2. For all m5 1, the mapping H1ðhti;Gð4mÞÞ ! H1ðhti;G2mð2ÞÞ is
trivial.

4.3. Let X ¼ GðN Þnhn. Then X has the structure of a quasi-projective complex alge-
braic variety. The involution tðZ Þ ¼ � �Z passes to an anti-holomorphic involution

on X and defines a real structure on X. (It is a theorem of Shimura [Sh2] that the

Baily–Borel compactification V of X even admits the structure of an algebraic variety

defined over the rational numbers. See Section 8.) Let S ¼ h tG
n be the set of all

Gð4mÞ-real points in hn. Denote by Gð4mÞnS the image of S in X ¼ Gð4mÞnhn. Note
that Gð4mÞ is normal in Gð2Þ and, in the notation of (2.4.1),

G2mð2Þ ¼ GðGð4mÞ;Gð2ÞÞ:
So Lemma 2.5 gives the following:
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COROLLARY 4.4. The set XR of real points of X is precisely Gð4mÞnS. It consists of
the disjoint union

XR ¼
a
g

gG‘ð4mÞngiCn ð4:4:1Þ

of finitely many copies of G‘ð4mÞnCn, indexed by elements

g 2 Gð4mÞnG2mð2Þ=G‘ð2Þ ¼ H
1ðhti;Gð4mÞÞ: ð4:4:2Þ

4.5. The following tower of groups contains Gð4mÞ:

G2mð2Þ � Gð2Þ � Spð2n;ZÞ � Spð2n;RÞ:

We will show that the image of H1ðhti;Gð4mÞÞ in the cohomology of each of these is
trivial, starting with the rightmost.

PROPOSITION 4.6. With respect to the above action ð3:2:1Þ, the ðnon-AbelianÞ

cohomology sets H1ðhti;UðnÞÞ and H1ðhti; Spð2n;RÞÞ are trivial.

Proof 4:7: Let g ¼ A B
�B A

� �
2 UðnÞ and suppose fg is a 1-cocycle, that is, g ~g ¼ I.

Then A2 þ B2 ¼ I and AB ¼ BA. Comparing with (3.1.1) gives tA ¼ A and tB ¼ B.

Such commuting symmetric matrices may be simultaneously diagonalized by an

orthogonal matrix h 2 OðnÞ. In other words, hðAþ iBÞh�1 ¼ L 2 UðnÞ is a diagonal

matrix. Choose a square root, m ¼
ffiffiffiffi
�L

p
2 UðnÞ (by choosing a square root of each

diagonal entry) and set d ¼ h�1mh. Since ~h ¼ h and �m ¼ m�1, we find

~dd�1 ¼ h�1tð mÞm�1h ¼ h�1 �m �mh ¼ h�1Lh ¼ Aþ iB

so fg is a coboundary, hence H
1ðUðnÞÞ ¼ 0. From this we may also conclude:

if g2Spð2n;RÞ and if fg is a 1-cocycle then

fg is a coboundary iff h tg
n 6¼ f: ð4:7:1Þ

For, suppose Z 2 h tg
n . Write Z ¼ hðiI Þ for some h 2 Spð2n;RÞ. Then ~h�1ghðiI Þ ¼

~h�1gZ ¼ ~h�1 ~Z ¼ tðiI Þ ¼ iI hence a ¼ ~h�1gh 2 UðnÞ. Moreover, a~a ¼ ~h�1g~g ~h ¼ I so
by the preceding paragraph there exists d 2 UðnÞ with a ¼ ~dd�1. Therefore
g ¼ tðhdÞðhdÞ�1.
At this point we remark that if g ¼ A B

C D

� �
2 Spð2n;RÞ and if g~g ¼ I, then

A ¼ tD; C ¼ tC; B ¼ tB; A2 � BC ¼ I; CA ¼ tAC; and AB ¼ B tA: ð4:7:2Þ

Next we consider two special cases. Let g ¼ A B
C D

� �
2 Spð2n;RÞ and suppose g~g ¼ I.

Suppose either (1) A ¼ D ¼ 0 and C ¼ �B�1 is diagonal, or (2) C ¼ 0. Then fg is a

coboundary. For in case (1), let B ¼ diagðb1; b2; . . . ; bnÞ and let Z ¼ iY where

Y ¼ diagðjb1j; jb2j; . . . ; jbnjÞ. Then g 
 Z ¼ �BZ�1B ¼ � �Z ¼ tðZ Þ so fg is a cobound-
ary by (4.7.1). In case (2), the cocycle fg is equivalent to fg0 where

g0 ¼
A 0
0 tA

� �
¼ ~hgh�1
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and

h ¼
I 1

2A
�1B

0 I

� �

using (4.7.2). Then A2 ¼ I so A is GLðn;RÞ-conjugate to a diagonal matrix L (with
eigenvalues �1). Therefore fg0 is equivalent to the 1-cocycle defined by the element
L 0
0 L�1

� �
2 UðnÞ. It follows that fg0 is cohomologically trivial.

Now consider the case of a general 1-cocycle fg0 where g0 ¼ A0 B0

C0 D0

� �
. By (4.7.2), C0 is

symmetric so there exists k 2 OðnÞ so that C ¼ kC0tk ¼ C1 0
0 0

� �
where C1 2Mr�rðRÞ is

diagonal and nonsingular. Let h1 ¼
k 0
0 k

� �
. Then fg0 is cohomologous to fg where

g ¼ ~h1g0h�11 ¼
A B
C D

� �

and (4.7.2) holds. Write A ¼ A1 A2
A4 A4

 �
where A1 2Mr�rðRÞ and A4 2Mðn�rÞ�ðn�rÞ ðRÞ,

and similarly for B and D. Then CA ¼ tAC implies that A2 ¼ A3 ¼ 0.

Set h2 ¼
I x
0 I

 �
where

x ¼
C�11

tA1 0
0 0

� �
:

Then A2 � BC ¼ I implies that fg is cohomologous to fg where

Since g ~g ¼ I use case (1) and (2) above to find Zr 2 hr and Zn�r 2 hn�r so that

0 �C�11
C1 0

� �
Zr ¼ � �Zr and

A4 B4
0 tA4

� �
Zn�r ¼ � �Zn�r:

Set Z ¼ Zr 0
0 Zn�r

 �
. Then gZ ¼ � �Z hence the corresponding cocycle is cohomologi-

cally trivial. &

LEMMA 4.8. Let g 2 Spð2n;ZÞ. Fix m5 1.

ð1Þ If g 2 GðmÞ then ~gg�1 2 Gð2mÞ.
ð2Þ If g 2 Gð2mÞ then ~gg 2 Gð4mÞ.
ð3Þ If ~gg�1 2 Gð4mÞ then g ¼ bu for some b 2 G2mð2Þ and for some u 2 GLðn;ZÞ.

Proof 4:9: Let g ¼ A B
C D

� �
. Since ~g ¼ g� 0 2B

2C 0

� �
we have

~gg�1 ¼ I�
�2B tC 2B tA
2C tD �2C tA

� �
: ð4:9:1Þ
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This gives part (1). If g ¼ Iþ 2mg0 then ~gþ g is even, and ~gg ¼ Iþ 2mð ~g0 þ g0Þ þ

4m2 ~g0g which proves part (2). Now suppose that ~gg�1 2 Gð4mÞ so that B tC �

B tA � C tD � 0 mod 2mÞ. Then

B ¼ Bð tAD� tCBÞ ¼ ðB tAÞD� ðB tCÞB � 0 ðmod 2mÞ
tC ¼ ð tAD� tCBÞ tC ¼ tAðD tCÞ � tCðB tCÞ � 0 ðmod 2mÞ:

Moreover, since C tB � 0 ðmod ð2mÞÞ and A tD� B tC ¼ I we see that A tD �

I ðmod 2Þ. Hence A is invertible ðmod 2Þ. But reduction ðmod 2Þ is a surjective

mapping GLðn;ZÞ ! GLðn;Z=ð2ÞÞ hence there exists U 2 GLðn;ZÞ so that U �

A ðmod 2Þ from which it also follows that U�1 � tD ðmod 2Þ. Let u ¼
U 0
0 tU�1

� �
. Then

b ¼ gu�1 ¼ AU�1 B tU
CU�1 D tU

� �
2 G2mð2Þ: &

The following proposition is a consequence of the theorem of Silhol [Si] (Theorem

1.4) and Comessatti, and will be proven in Section 7.

PROPOSITION 4.10. Let g 2 Gð2Þ and suppose that Z 2 hn is not fixed by any ele-
ment of Spð2n;ZÞ other than �I. Suppose that ~Z ¼ gZ. Then there exists

h 2 Spð2n;ZÞ such that g ¼ ~hh�1.

4.11. PROOF OF THEOREM 4.2.

Let g 2 Gð4mÞ and suppose fg is a cocycle. Its image in H1ðhti; Spð2n;RÞÞ is a

coboundary so there exists h 2 Spð2n;RÞ with g ¼ ~hh�1. This implies that

h tg
n ¼ hiCn is a copy of the cone of positive definite matrices. By Lemma 3.4 there

exist points Z 2 h tg
n which are not fixed by any element of Spð2n;ZÞ other than

�I and in fact the set of such points is the complement of a countable union of

proper (real) algebraic subvarieties of h tg
n . Applying Proposition 4.10, we conclude

that g ¼ ~hh�1 for some h 2 Spð2n;ZÞ. By Lemma 4.8 (3) we may write h ¼ bu for
some b 2 G2mð2Þ and some u 2 GLðn;ZÞ. Then ~hh�1 ¼ ~bb�1 ¼ g which proves that
fg is trivial in H

1ðhti;G2mð2ÞÞ. &

5. Upper Half-plane

For the upper half-plane h1 it is possible to do a little better since the group Gð2Þ=� I
acts freely.

LEMMA 5.1. A point Z 2 h1 is Gð2Þ-real if and only if gZ is Gð2Þ-real, for every
g 2 SLð2;ZÞ.

Proof 5:2: Suppose tðZ Þ ¼ gZ for some g 2 Gð2Þ. Then

tðgzÞ ¼ tðgÞtðzÞ ¼ ðtðgÞg�1Þðggg�1ÞgZ 2 Gð2Þ 
 Gð2Þ 
 gZ: &
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LEMMA 5.3. If a point y 2 h1 is Gð2Þ-real, then there exists b 2 SLð2;ZÞ and there

exists Y 2 C1 ¼ Rþ so that y ¼ b 
 iY.
Proof 5:4: Say ~y ¼ gy for some g 2 Gð2Þ. We consider two cases: (a) when y is not

fixed by any element of SL2ðZÞ other than �I and (b) when y is fixed by some other

nontrivial element of SL2ðZÞ:

In case (a), the result is just Proposition 4.10. Now consider case (b). There are two

classes of elements which are fixed by nontrivial subgroups of SL2ðZÞ. These are the

translates (by elements of SL2ðZÞ) of i and the translates of o ¼ e2pi=3: In the first

case, y ¼ b 
 i (for some b 2 SL2ðZÞ) and the conclusion follows. In the second case,
the stabilizer of o is the subgroup

S ¼ �I;�
0 �1
1 1

� �
;�

�1 �1
1 0

� �� �
:

Suppose y ¼ go (for some g 2 SL2ðZÞ). We claim that y is not Gð2Þ-real. Suppose
otherwise. Then ~y ¼ gy gives ~o ¼ g0o where

g0 ¼ ~g�1gg ¼ ð ~g�1gÞg�1gg 2 Gð2Þ

by Lemma 4.8. But ~o ¼ � �o ¼ jo where j ¼ 0 �1
1 0

� �
. So j�1g0 stabilizes o or g0 ¼ js for

some s 2 S: However none of these matrices js lies in Gð2Þ, which is a contradiction.
This completes the proof of Lemma 5.3. &

The group Gð2Þ does not induce any identifications on the cone iC1. However, iC1
is preserved by the subgroup S0 ¼ �I;�vf g where v ¼ 0 �1

1 0

� �
: So we obtain

THEOREM 5.5. The set of real points of X ¼ Gð2Þnh1 consists of the union of 3 copies
of the cone C1 ffi Rþ,

XR ¼
[

b2Gð2ÞnSL2ZÞ=S0
b 
 iC1: &

We remark that a fundamental domain for XR in h1 is the union of the half
lines with real part 0 and 1 and the semicircle of radius 1/2 centered at 1/2. In the

Baily–Borel compactification of X these three half lines are joined end to end, to

form a single circle which passes through the three distinct cusps 1; 0; 1:

6. Moduli Space Interpretation

6.1. Recall [La] that a symplectic form Q on C
n is compatible with the complex struc-

ture if Qðiu; ivÞ ¼ Qðu; vÞ for all u; v 2 C
n: A compatible form Q is positive if the sym-

metric form Rðu; vÞ ¼ Qðiu; vÞ is positive definite. If Q is compatible and positive then

it is the imaginary part of a unique positive definite Hermitian form H ¼ Rþ iQ: Let

L � C
n be a lattice and let H ¼ Rþ iQ be a positive definite Hermitian form on C

n:
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A basis of L is symplectic if the matrix for Q with respect to this basis is 0 I
�I 0

� �
: The

lattice L is symplectic if it admits a symplectic basis.

A principally polarized Abelian variety is a pair ðA ¼ C
n=L;H ¼ Rþ iQÞ where H

is a positive definite Hermitian form on C
n and where L � C

n is a symplectic lattice

relative to Q ¼ ImðH Þ: A real structure on ðA;H Þ is a complex anti-linear involution

k:Cn
! C

n such that kðLÞ ¼ L: A real structure k on ðA;HÞ is compatible with the
polarization H if Qðku; kvÞ ¼ �Qðu; vÞ for all u; v 2 C

n: In this case (following [Si])

we refer to the triple ðA;H; kÞ as a real principally polarized Abelian variety. If
ðA0;H0; k0Þ is another such, then an isomorphism between them is a complex linear
mapping f:Cn

! C
n such that

(a) fðLÞ ¼ L0,
(b) f�ðHÞ ¼ H

0,

(c) f�ðkÞ ¼ k0, that is, fkf�1
¼ k0:

Let ðA ¼ C
n=L;H ¼ Rþ iQÞ be a principally polarized Abelian variety. A level N

structure on A is a choice of basis fUi;Vjg (with 14 i; j4 n) for the N-torsion points

of A, which is symplectic, in the sense that there exists a symplectic basis fui; vjg for L

such that

Ui �
ui
N

and Vj �
vj

N
ðmodLÞ

(for 14 i; j4 n). For a given leven N structure, such a choice fui; vjg determines a

mapping

F:Rn
� Rn

! C
n

ð6:1:1Þ

such that FðZn
� Zn

Þ ¼ L; by FðeiÞ ¼ ui and Fð fjÞ ¼ vj where fei; fjg (with 14 i; j

4 n) is the standard basis of Rn
� Rn: The choice fui; vjg (or equivalently, the map-

ping F Þ will be referred to as a lift of the level N structure. It is well defined modulo

the principal congruence subgroup GðN Þ, that is, if F 0:Rn
� Rn

! C
n is another lift

of the level structure, then F 0 � F�1 2 GðN Þ:
A level N-structure fUi;Vjg is compatible with a real structure k if for some (and

hence for any) lift fui; vjg of the level structure,

k
ui
N


 �
� �

ui
N

ðmod LÞ and k
vj

N


 �
� þ

vj

N
ðmod LÞ

for all 14 i; j4 n: In other words, the following diagram commutes (mod L).

1
N Zn

� Zn
ð Þ �!

F

1
NL

tI�# #k

1
N Zn

� Zn
ð Þ �!

F 1
NL

ð6:1:2Þ

where (cf. Section 3.2) I� ¼
�I 0
0 I

� �
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DEFINITION 6.2. A real principally polarized Abelian variety with level N struc-

ture is a quadruple A ¼ ðA ¼ C
n=L;H ¼ Rþ iQ; k; fUi;VjgÞ where ðA;H; kÞ is a real

principally polarized Abelian variety and where fUi;Vjg is a level N-structure which

is compatible with k: An isomorphism

A ¼ ðA;H; k; fUi;VjgÞ ffi ðA0;H0; k0; fU0
i;V

0
jgÞ ¼ A0

ð6:2:1Þ

is a complex linear mapping f:Cn
! C

n such that (a), (b), and (c) of Section 6.1

hold, and such that

(d) f ui
N

� �
�
u0i
N ðmod L0Þ and f vj

N

� �
�

v0j
N ðmod L0Þ for 14 i; j4 n

for some (and hence for any) lift fui; vjg and fu
0
i; v

0
jg of the level structures.

6.3. Fix N5 1: Each Z 2 hn determines a principally polarized Abelian variety
ðAZ;HZ Þ with level N structure as follows. Let Q0 be the standard symplectic form

on Rn
� Rn with matrix 0 I

�I 0

� �
(with respect to the standard basis of Rn

� Rn). Let

FZ:R
n
� Rn

! C
n be the real linear mapping with matrix ðZ; I Þ, that is,

FZ
x
y

� �
¼ Zxþ y:

Then QZ ¼ ðFZÞ�ðQ0Þ is a compatible, positive symplectic form and LZ ¼ FZ
ðZn

�Zn
Þ is a symplectic lattice with symplectic basis FZ(standard basis). The Hermi-

tian form corresponding to QZ is

HZðu; vÞ ¼ QZðiu; vÞ þ iQZðu; vÞ ¼
tuðImðZ ÞÞ�1 �v for u; v 2 C

n:

Then the pair ðAZ ¼ C
n=LZ;HZ Þ is a principally polarized Abelian variety. If z1; z2

are the standard coordinates on C
n then, with respect to the above symplectic basis

of L, the differential forms dz1; dz2 have period matrix ðZ; I Þ: If fe1; . . . ; en;

f1; . . . ; fng denote the standard basis elements of R
n
� R

n then the collection

fFZðei=N Þ;FZð fi=N Þg ðmod LÞ is a level N structure on ðAZ;HZ Þ, which we refer

to as the standard level N structure.

Let Z;O 2 hn. Suppose c: ðAO ¼ C
n=LO;HOÞ ! ðAZ ¼ C

n=LZ;HZ Þ is an iso-

morphism of the corresponding principally polarized Abelian varieties, that is,

cðLOÞ ¼ LZ and c�ðHOÞ ¼ HZ: Set h ¼
tðF�1Z cFOÞ ¼ A B

C D

� �
: Then: h 2 Spð2n;ZÞ;

O ¼ h 
 Z, and cðMÞ ¼ tðCZ þDÞM for all M 2 C
n: Since h 
 Z is symmetric, the

following diagram commutes:

x
y


 �
Rn

� Rn
�!
Fh
Z

C
n M

# # #c #
th x

y


 �
Rn

� Rn
�!
FZ

C
n tðCZþDÞM

ð6:3:1Þ
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Let Z 2 hn with ~Z ¼ tðZ Þ ¼ � �Z: Then the following diagram commutes:

x
y


 �
Rn

� Rn
�!
FZ

C
n M

# # # #
tI�

x
y


 �
Rn

� Rn
�!
FtðZ Þ

C
n �M

ð6:3:2Þ

6.4. The points in h tGð1Þ
n give rise to Abelian varieties with a real structure, as fol-

lows. Suppose Z 2 hn; g ¼
A B
C D

� �
2 Spð2n;ZÞ and suppose that g 
 Z ¼ tðZ Þ: Define

kðg;Z Þ:Cn
! C

n by M 7!tðCZþDÞ �M: ð6:4:1Þ

Then kðg;Z Þ is a real structure on ðAZ;HZ Þ which is compatible with the polari-
zationHZ; and the following diagram (which is the composition of the two preceding

diagrams) commutes:

x
y


 �
Rn

� Rn
�!
FZ

C
n M

# # # #kðg;Z Þ

tg tI� x
y


 �
Rn

� Rn
�!
FZ

C
n tðCZþDÞ �M

ð6:4:2Þ

PROPOSITION 6.5. Let Z 2 hn and g 2 Spð2n;RÞ and suppose that ~Z ¼ g 
 Z: Then
g 2 GðN Þ iff the real structure kðg;Z Þ on ðAZ;HZ Þ is compatible with the standard
level N structure, and in this case the quadruple

AZ;HZ; kðg;Z Þ; FZðei=N Þ;FZð fj=N Þ
� � �

is a real principally polarized abelian variety with ðcompatibleÞ level N structure.

The proof follows immediately from the diagrams (6.4.2) and (6.1.2). We remark

that if N5 3, and if Z 2 h tGðN Þ
n then there is a unique g 2 GðN Þ such that

~Z ¼ g 
 Z so we may unambiguously denote kðg;Z Þ simply by kZ: In this case, denote
by AZ the resulting real Abelian variety with principal polarization and (compatible)
level N structure. The proof of the following theorem will appear in Section 7.

THEOREM 6.6. Fix N ¼ 4m with m5 1: The association Z 7!AZ determines a
one to one correspondence between the points of XR and the set of isomorphism classes

of real principally polarized Abelian varieties with level N structure.

7. The Comessatti Lemma

Recall the following theorem of Silhol [Si] Theorem 1.4., (also [Si2]) and Comessatti [C].
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THEOREM 7.1. Let ðA;H; kÞ be a real principally polarized Abelian variety. Then
there exists Z ¼ Xþ iY 2 hn so that 2X is integral, and there exists an isomorphism of
real principally polarized Abelian varieties,

ðA;H; kÞ ffi ðAZ;HZ; sÞ

where sðMÞ ¼ �M is complex conjugation.

For the purposes of this paper we will need a slight restatement of this result.

LEMMA 7.2. ðAÞ Let Z 2 hn and suppose that ~Z ¼ g 
 Z for some g 2 Spð2n;ZÞ:

Then Z is equivalent under Spð2n;ZÞ to an element Xþ iY 2 hn such that 2X is

integral.

ðBÞ Let ðA;H; kÞ be a real principally polarized Abelian variety. Then there exists
g 2 Spð2n;ZÞ and there exists Z ¼ Xþ iY 2 hn such that ~Z ¼ g 
 Z and 2X is integral;
and there exists an isomorphism of real principally polarized Abelian varieties

ðA;H; kÞ ffi ðAZ;HZ; kðg;Z ÞÞ:

Proof 7:3: For part (B), Theorem 7.1 provides Z ¼ Xþ iY 2 hn so that 2X is
integral. Take g ¼ I �2X

0 I

� �
: Then ~Z ¼ � �Z ¼ g 
 Z and kðg;Z ÞðMÞ ¼ �M ¼ sðMÞ by

(6.4.2).

For part (A), given Z and g, apply part (B) to the real Abelian variety
ðAZ;HZ; kðg;Z ÞÞ to obtain an isomorphic real Abelian variety ðAZ 0 ;HZ 0 ; kðg0;Z 0ÞÞ

such that Z 0 ¼ X 0 þ iY 0 with 2X 0 integral. Then ðAZ;HZ Þ and ðAZ 0 ;HZ 0 Þ are iso-

morphic principally polarized Abelian varieties so there exists g 2 Spð2n;ZÞ with

Z 0 ¼ g 
 Z: &

7.4. PROOF OF PROPOSITION 4.10.

By Comessatti’s lemma, Z is equivalent (via some h 2 Spð2n;ZÞ) to some element

Xþ iY 2 hn with 2X 2Mn�nðZÞ: We claim, in this case, that X is integral. Trans-

lation by X is given by the symplectic matrix

TX ¼
I X
0 I

� �
so we may write Z ¼ hðXþ iY Þ ¼ hTXiY: Then tZ ¼ tðhTXÞiY ¼ gZ; so the follow-
ing element g�1tðhTXÞðhTXÞ

�1 fixes Z. By our assumption on Z, this implies that

g ¼ �ItðhTXÞðhTXÞ
�1

ð7:4:1Þ

or,

�T�2X ¼ ~h�1gh ¼ ð ~h�1hÞðh�1ghÞ 2 Gð2Þ:Gð2Þ

(using Lemma 4.8 and the fact that Gð2Þ is normal in Spð2n;ZÞ). So 2X is ‘even’,

hence X is integral. If the plus sign occurs in (7.4.1) then g ¼ tðhTXÞðhTXÞ
�1: If the

minus sign occurs, set o ¼ 0 �I
I 0

� �
: Then g ¼ tðhTXoÞðhTXoÞ

�1: &

In the next proposition we strengthen these results to include level structures.
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PROPOSITION 7.5. Suppose N5 3: Suppose A is a real Abelian variety with prin-

cipal polarization and level N structure. Then there exists Z 2 hn, there exists g 2
GðN Þ such that g 
 Z ¼ tðZ Þ, and there exists an isomorphism f:AZ ! A of real

principally polarized Abelian varieties with level structures. If N ¼ 4m ðand m5 1Þ the

cohomology class ½ fg� 2 H
1ðhti;Gð4mÞÞ is uniquely determined by the isomorphism

class of A:

Proof 7:6: Write A ¼ ðA ¼ C
n=L;H ¼ Rþ iQ; k; fUi;VjgÞ: By Lemma 7.2, there

exists Z 0 2 hn, there exists g0 2 Spð2n;ZÞ with g0 
 Z 0 ¼ tðZ 0Þ, and there exists

f0:Cn
! C

n such that f0 induces an isomorphism ðA;H; kÞ ffi ðAZ 0 ;HZ 0 ; kðg0;Z 0ÞÞ;

that is:

(a) f0
ðLZ 0 Þ ¼ L

(b) f0
�ðHZ 0 Þ ¼ H

(c) f0
�ðkðg

0;Z 0ÞÞ ¼ k.

The isomorphism f0 must be modified because it does not necessarily take the stan-

dard level N structure on ðAZ 0 ;HZ 0 Þ to the given level N structure on ðA;HÞ: Choose

a lift ui; vj
� �

(14 i; j4 n) of the level N structure on ðA;HÞ and let F:R2
� R2

! C
2

be the resulting mapping (6.1.1). Define

tg�1 ¼ F�1 � f0
� FZ 0 2 Spð2n;ZÞ ð7:6:1Þ

Z ¼ g 
 Z 0 ð7:6:2Þ

g ¼ tðgÞg0g�1 ¼ I�gI�g0g�1: ð7:6:3Þ

If g ¼ A B
C D

� �
define c:Cn

! C
n by cðMÞ ¼ tðCZþDÞM: We claim that g 2 GðN Þ;

that ~Z ¼ g 
 Z and that the mapping

f ¼ f0
� c:Cn

! C
n

induces an isomorphism AZ ffi A between principally polarized real Abelian varieties
with (compatible) level N structures.

The matrix g is defined so that the bottom square in the following diagram

commutes; by (6.3.1) the top square also commutes. The mapping f is the composition
down the right-hand column.

Rn
� Rn

�!
FZ

C
n

t
g# #c

Rn
� Rn

�!
FZ 0

C
n

t
g�1# #f0

Rn
� Rn

�!
F

C
n

ð7:6:4Þ

Clearly, ~Z ¼ g 
 Z;f�ðLZ Þ ¼ L and f�ðHZ Þ ¼ H: Now let us check that

f�ðkðg;Z ÞÞ ¼ k: ð7:6:5Þ
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By Section 7.6 (c) it suffices to check that ckðg;Z Þc�1
¼ kðg0;Z 0Þ: But this follows

from direct calculation using kðg;Z Þ ¼ FZtgtI�F�1Z ; kðg0;Z 0Þ ¼ FZ 0
tg0 tI�F �1

Z 0 ;

c ¼ FZ 0
tgF�1Z ; and (7.6.3).

By (7.6.4), F ¼ f � FZ: Therefore f preserves the level structures. Since the given
level structure on ðA;HÞ is compatible with k, equation (7.6.5) guarantees that the
standard level N structure on ðAZ;HZ Þ is compatible with kðg;Z Þ: It follows from
Proposition 6.5 that g 2 GðN Þ: In summary, we have shown that ðAZ;HZ; kðg;Z Þ;
fFZðei=N Þ;FZð fj=N ÞgÞ is a real principally polarized Abelian variety with (compati-

ble) level N structure, and that the isomorphism f preserves both the real structure
and the level structure.

Finally, an isomorphism f:A ! A0 (6.2.1) between real principally polarized

Abelian varieties with level N ¼ 4m structures determines a cohomological equiva-

lence between the corresponding 1-cocycles as follows. Choose Z;Z 0 2 hn and
g; g0 2 G ð4mÞ for A and A0 respectively, as above, and set

g ¼ tðF �1
Z � f � FZ 0 Þ:

Then g 2 Gð4mÞ by Section 6.2(d). Since fkf�1
¼ k0, diagrams 6.3.1 and 6.4.2 give

tgtgtI�tg�1 ¼ tg0I�

or g0 ¼ ~g�1gg: Hence ½ fg� ¼ ½ fg0 � in H
1ðhti;Gð4mÞÞ: &

7.7. PROOF OF THEOREM 6.6.

Let I denote the moduli space of isomorphism classes of real Abelian varieties with
principal polarization and level N structure. Let S ¼ h tGðN Þ

n denote the set of

GðN Þ-real points in hn and let GðN ÞnS denote its image in X ¼ GðN Þnhn: Let
F:S! I be the association

Z 7! ðAZ;HZ; kZ; fFZðei=N Þ;FZð fj=N ÞgÞ:

Here, kZ:C
n
! C

n is the real structure given by (6.4.2), that is, kðMÞ ¼ tðCZþDÞ �M

where g ¼ A B
C D

� �
2 GðN Þ is the unique element such that g 
 Z ¼ � �Z: Then Proposi-

tion 7.5 says that F is surjective. If Z;Z 0 2 S and if Z 0 ¼ g 
 Z for some g 2 GðN Þ
then by (6.3.1) the real Abelian variety ðAZ;HZ; kZ; fFZðei=N Þ;FZð fi=N ÞgÞ is
isomorphic to ðAZ 0 ;HZ 0 ; kZ 0 ; fFZ 0 ðei=N Þ;FZ 0 ð fi=N ÞgÞ: Therefore F passes to a

mapping GðN ÞnS! I :
On the other hand, if Z;O 2 S and if there is an isomorphism c:AO ! AZ then by

(6.3.1) there exists h 2 Spð2n;ZÞ such that O ¼ h 
 Z: Since the mapping c also pre-
serves the level structures, it follows also from (6.3.1) that h 2 GðN Þ: Hence the map-
ping GðN ÞnS! I is also injective. By Corollary 4.4, the quotient GðN ÞnS is precisely
the variety XR of real points in X. &

8. Baily–Borel Compactification

Let �hn denote the Satake partial compactification of hn which is obtained by attach-
ing all rational boundary components, with the Satake topology. The group
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Spð2n;QÞ acts on �hn, the involution t: hn ! hn extends to
�hn, and tðgxÞ ¼ tðgÞtðxÞ

for any g 2 Spð2n;QÞ and every x 2 �hn:Denote by p: �hn ! Gð4mÞn �hn ¼ V the projec-
tion to the Baily–Borel compactification of X. The involution t passes to complex
conjugation t:V! V, whose fixed points we denote by VR: Clearly XR � VR:

Define �XR to be the closure of XR in VR:

In [Sh2], Shimura shows that the GðN Þ-automorphic forms on hn are generated by
those automorphic forms with rational Fourier coefficients. It follows that:

THEOREM 8.1. There exists a natural rational structure on the Baily–Borel

compactification V of X which is compatible with the real structure defined by t.

The Baily–Borel compactification V is stratified by finitely many strata of the form

pðF Þ where F � �hn is a rational boundary component. Each such F is isomorphic to
some Siegel space hk, in which case we say the stratum pðF Þ is a boundary stratum of
rank k. Let Vr denote the union of all boundary strata of rank n� r. In Proposition 9.2

we will prove that

V 0R [ V1R � �XR � VR ð8:1:1Þ

where VrR ¼ Vr \ VR:

As in Section 3.3, if F is a rational boundary component of hn which is preserved
by the involution t, and if g 2 Gð4mÞ, we define the set of g-real points of F to be

F tg ¼ fx 2 F j tðxÞ ¼ gxg:

Then pðF tgÞ � VR: A Gð4mÞ-real boundary pair ðF; gÞ (of rank q) consists of a
rational boundary component F (of rank q) and an element g 2 Gð4mÞ such that
F tg 6¼ f: (Hence ~F ¼ gF:) We say two real boundary pairs ðF; gÞ and ðF1; g1Þ are
equivalent if the resulting locus of real points pðF tgÞ ¼ pðF tg1

1 Þ coincide. If ðF; gÞ
is a real boundary pair and if g 2 Gð4mÞ then ðgF; ~ggg�1Þ is an equivalent real
boundary pair.

8.2. STANDARD BOUNDARY COMPONENTS

Fix an integer q with 14 q < n: The Siegel upper halfspace hq is attached to hn as a
limit of matrices in Mn�nðCÞ by

Z 7! lim
Y!1

Z 0
0 iY

� �
:

See (3.2.2). Here, Y 2 Cn�q is a positive definite symmetric matrix of order n� q, and

the limit is taken as Y!1; meaning that all the eigenvalues of Y converge to 1.

Denote this mapping by f: hq ! �hn: Its image Fq ¼ fðhqÞ � �hn is called the standard
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boundary component of (maximal) rank q: The normalizer in Spð2n;ZÞ of Fq is the

parabolic subgroup

with unipotent radical

and Levi factor LðPqÞ ¼ GhG‘ with

ð8:2:1Þ

being the ‘Hermitian’ and ‘linear’ factors respectively, where A B
C D

� �
2 Spð2q;RÞ and

T 2 GLn�qðRÞ. The subgroup UðPqÞG‘ is normal in Pq and we denote by

n:Pq ! Gh ffi Spð2q;RÞ

the projection to the quotient. Then n commutes with the involution t:
The boundary component Fq is preserved by t. The set

F t
q ¼ fðiCqÞ ¼ ffðiY Þ jY > 0g

of I-real points in Fq is just the set of t-fixed points in Fq and it may be canonically
identified with the cone of positive definite matrices of order q: Denote by iIq its

canonical basepoint. The boundary component Fq is attached to hn so that this cone
fðiCqÞ is contained in the closure of the cone iCn:

PROPOSITION 8.3. Let ðF; gÞ be a Gð4mÞ-real boundary pair of rank q. Then there
exists a 2 Spð2n;ZÞ so that aðFqÞ ¼ F and

~a�1ga ¼
A B
0 tA�1

� �
2 kerðnÞ: ð8:3:1Þ
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Moreover, we may take B ¼ 0, that is, there exists g0 2 Gð4mÞ and g 2 Spð2n;ZÞ so

that F tg0 ¼ F tg, gðFqÞ ¼ F, and so that

~g�1g0g ¼
A 0
0 tA�1

� �
2 kerðnÞ: ð8:3:2Þ

Proof 8:4: Choose b 2 Spð2n;ZÞ so that bFq ¼ F: Then

w ¼ ~b�1gb ¼ ~b�1b 
 b�1gb 2 Gð2Þ:

Since it also preserves the standard boundary component Fq, we have: w 2 Pq.

The Hermitian part nðwÞ 2 Spð2n;ZÞ acts on the standard boundary component

Fq ffi hq: By Lemma 4.8, nð ~wÞnðwÞ 2 Gð4Þ which is torsion-free. By assumption, the
set of nðwÞ-real points F tnðwÞ

q is nonempty. Choose a point x 2 F tnðwÞ
q whose stabilizer

in Spð2q;ZÞ consists of �I: by Lemma 3.4 such points exist and are even dense in

F tnðwÞ
q : Then, by Proposition 4.10 there exists h 2 Spð2q;ZÞ such that ~hh�1 ¼ nðwÞ
and F tnðwÞ

q ¼ hðiCqÞ. Let us identify the element h with its image in Spð2n;ZÞ as in

(8.2.1) and set v ¼ ~h�1wh: Then nðvÞ ¼ 1. The following diagram may help to sort
out these various transformations.

Fq �!
~h

F �!
~b

F

v" "w "g

Fq �!
h

F �!
b

F

Then the element a ¼ bh 2 Spð2n;ZÞ has the desired properties, that is, a 
 Fq ¼ F

and nðvÞ ¼ 1 where v ¼ ~a�1ga 2 Gð2Þ.
Now let us prove the ‘moreover’ part of Proposition 8.3. By Lemma 4.8, both ~gg�1

and ~gg are in Gð8mÞ. Then ~gg ¼ ~a~vv ~a�1 2 Gð8mÞ, hence ~vv 2 Gð8mÞ. Calculating
~vv � I ðmod8mÞ gives

AB � BtA�1 ðmod 8mÞ and A2 � I ðmod 8mÞ: ð8:4:1Þ

Since v ¼ ~a�1aa�1ga 2 Gð2Þ the matrix A is integral and B is even, so

x ¼
I � 1

2A
�1B

0 I

� �

is integral. Since v 2 kerðnÞ we see that A ¼ � 0
� �

� �
and B ¼ 0 �

� �

� �
from which it follows

that x 2 UðPqÞ � kerðnÞ. Set g ¼ ax and set u0 ¼ ~x�1vx: Direct computation with the

matrices for x and v gives

u0 ¼
A B0

0 tA�1

� �
;
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where B0 ¼ 1
2B�

1
2A

�1BtA�1. Using (8.4.1) gives B0 � 0 ðmod 4mÞ. The following

diagram may help to explain these transformations.

Fq �!
~x

Fq �!
~a

F

u0" "v "g

Fq �!
x

Fq �!
a

F

Now decompose u0 ¼ uu2 where

u ¼
A 0
0 tA�1

� �
and u2 ¼

I A�1B0

0 I

� �
2 kerðnÞ:

Set g0 ¼ ~gug�1. We will verify that g and g0 satisfy the conclusions of Lemma 8.3.
First note that u2 2 Gð4mÞ since B0 � 0 ðmod 4mÞ. Then g0 2 Gð4mÞ because

g ¼ ~ava�1 ¼ ~gu0g�1 ¼ ð ~gug�1Þðgu2g
�1Þ ¼ g0ðgu2g�1Þ 2 Gð4mÞ:

We have already verified that gFq ¼ F and that u ¼ ~g�1g0g has the desired form.
Since u2 acts trivially on Fq we see that y 2 F

g0 iff

~y ¼ g0y ¼ ~gug�1y ¼ ~guu2g
�1y ¼ gy

iff y 2 F tg: Hence F tg0 ¼ F tg: &

8.5. SOME NEARBY BOUNDARY COMPONENTS

Fix r with q4 r4 n and set s ¼ n� r: Define

:

Then ~jr ¼ j
�1
r . Although jr =2Pq, its square j

2
r preserves Fq and in fact it acts as the

identity on Fq. Let Eq;r ¼ jrðFqÞ ¼ j
�1
r ðFqÞ and let Qq;r be its normalizing maximal

parabolic subgroup: it is jr-conjugate to Pq. (If r ¼ n then jr is the identity and

Eq;r ¼ Fq). The involution t preserves the boundary component Eq;r and the set of
t-fixed points

E t
q;r ¼ fx 2 Eq;r j ~x ¼ xg ¼ jr 
 F

t
q

is contained in the closure of h t
n ¼ iCn as follows. Although jr does not preserve the

cone iCn, it does preserve the sub-cone Sq;r � iCn of elements

iY1 0 0
0 iY2 0
0 0 iY3

0
@

1
A 2 hn;
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where Y1 2 Cq, Y2 2 Cr�q, and Y3 2 Cs. Moreover, F
t
q is contained in the closure of

Sq;r. Therefore

E t
q;r ¼ jrF

t
q � jrSq;r ¼ Sq;r � iCn: ð8:5:1Þ

PROPOSITION 8.6. Let ðF; gÞ be a Gð4mÞ-real boundary pair of rank q. Let
g 2 Spð2n;ZÞ. Suppose that gðFqÞ ¼ F and that u ¼ ~g�1gg 2 kerðnÞ. Suppose also that
there exists r with q4 r4 n so that

~j�1r ujr ¼ jrujr 2 Gð4mÞ:

Define o ¼ tðg jrÞðg jrÞ
�1. Then o 2 Gð4mÞ and

F tg ¼ F to � h to
n :

Consequently the resulting set pðF tgÞ of real points is contained in the closure �XR.

Proof 8:7: Calculate

o ¼ tðg jrÞðg jrÞ
�1
¼ g ðg jrÞð jrujrÞ

�1
ðg jrÞ

�1
� �

2 Gð4mÞ

(using the fact that ~jr ¼ j
�1
r ) which proves the first statement. Since u 2 Pq acts

trivially on Fq, the same is true of j
2
r u. Hence, x 2 F

to if and only if

~x ¼ ox ¼ tðg jrÞj�1r ðg�1xÞ ¼ tðg jrÞj�1r j
2
r uðg

�1xÞ ¼ tðg jrÞtðg jrÞ
�1gx ¼ gx

which holds if and only if x 2 F tg. The following diagram may help in placing these

elements,

Eq;r �!
~jr

Fq �!
~g

F

" u" "g

Eq;r �!
jr

Fq �!
g

F

:

We claim that F to ¼ g jrðE
t
q;rÞ. In fact, x 2 E

t
q;r if and only if ~x ¼ x which holds iff

tðg jrÞ ~x ¼ tðg jrÞx ¼ tðg jrÞðg jrÞ
�1
ðg jrÞx ¼ oðg jrÞx

which holds iff ðg jrÞx 2 F
to. Similarly, g jrðh

t
n Þ ¼ h to

n . Hence

F to ¼ g jrðE
t
q;rÞ � g jrh

t
n ¼ h to

n

using (8.5.1). &

9. Corank One Strata

9.1. In this section we specialize to the case q ¼ n� 1, that is, we consider only

the boundary strata of maximal rank. As in Section 8, Fn�1 denotes the standard
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boundary component of corank 1, Pn�1 denotes its normalizing parabolic sub-

group and Gh and G‘ refer to the Hermitian and linear factors (8.2.1) of the Levi

quotient LðPn�1Þ.

THEOREM 9.2. Let F be a proper rational boundary component of hn with ðmaximalÞ
rank n� 1, let g 2 Gð4mÞ, and suppose that F tg 6¼ f. Then F tg is contained in the

closure of the set h tGð4mÞ
n of Gð4mÞ-real points of hn.

Proof 9:3: By Proposition 8.3, there exists g0 2 Gð4mÞ and g 2 Spð2n;ZÞ so that

gFn�1 ¼ F, F
tg ¼ F tg0 and so that

u ¼ ~g�1g0g ¼
A 0
0 tA�1

� �
2 kerðnÞ:

This implies that A ¼ In�1 0
a �1

� �
. Note that ~uu ¼ g�1 ~ggg 2 Gð8mÞ by Lemma 4.8. Hence

a � 0 ðmod 4mÞ.

If the plus sign occurs then this says that u 2 Gð4mÞ. Let o ¼ ~gg�1. Then

Proposition 8.6 (with q ¼ n� 1 and r ¼ n) implies that F tg0 � h to
n .

If the minus sign occurs then

so we may apply Proposition 8.6 (with q ¼ r ¼ n� 1) to conclude that F tg0 � h to
n

where o ¼ tðg jn�1Þðg jn�1Þ
�1. &

10. The Principal Congruence Group Gð2kÞ

10.1. Throughout this section we let G ¼ Gð2kÞ � Spð2n;ZÞ be the principal

congruence subgroup of level 2k with k5 2. As in Section 8, let X ¼ XC ¼ Gnhn
and let V ¼ VC ¼ Gnhn be its Baily–Borel compactification with projection

p: hn ! V. Let XR be the closure of XR in V. In this section we will prove that

XR ¼ VR. The proof of the following lemma will appear in Section 10.7.

LEMMA 10.2. Let A 2 GLðn;ZÞ. Suppose that

A � I ðmod 2Þ and A2 � I ðmod 2kþ1Þ:

Then there exists p 2 GLðn;ZÞ so that

p�1Ap �

�1
�1


 
 


�1

0
BB@

1
CCAðmod 2kÞ: ð10:2:1Þ
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Moreover if the matrix of A with respect to the standard basis of Zn is Iq 0
� �

� �
then it is

possible to choose p to be of the form p ¼ Iq 0
� �

� �
.

LEMMA 10.3. Let ðF; gÞ be a real boundary pair of rank q. Then there exists r5 q,

there exists g0 2 Gð2kÞ and there exists g 2 Spð2n;ZÞ such that F tg ¼ F tg0 , gFq ¼ F,

~g�1g0g 2 kerðnÞ, and so that

ð10:3:1Þ

where s ¼ n� r.

Proof 10:4: By Proposition 8.3 there exists g0 2 Gð2kÞ and there exists

a 2 Spð2n;ZÞ so that F tg ¼ F tg0 , aFq ¼ F, and

u ¼ ~a�1g0a ¼
A 0
0 tA�1

� �
2 kerðnÞ:

Then ~g0g0 ¼ au2a�1 2 Gð2kþ1Þ by Lemma 4.8, hence A2 � I ðmod 2kþ1Þ. Moreover,
A 2 Gð2Þ and A ¼ Iq 0

� �

� �
. Let p 2 GLðn;ZÞ be the change of basis provided by

Lemma 10.2. Then p�1Ap ¼ Iq 0
� �

� �
and (after re-ordering the coordinates if

necessary), p�1Ap � Iq 0
0 �Is

 �
ðmod 2kÞ for some r5 q. Set h ¼


p 0
0 tp�1

�
2 kerðnÞ. Set

g ¼ ah.

Fq �!
~h

Fq �!
~a

F

" u" " g0

Fq �!
h

Fq �!
a

F

Then ~h�1uh ¼ ~g�1g0g 2 kerðnÞ and ~g�1g0g has the desired form (10.3.1). &

THEOREM 10.5. Let ðF; gÞ be a real boundary pair. Then there exists g1 2 Gð2kÞ so
that the set F tg ¼ F tg1 of g-real points is contained in the closure h tg1

n .

Proof 10:6: Set q ¼ rankðF Þ: By Lemma 10.3, there exists g1 2 Gð2kÞ and there
exists g 2 Spð2n;ZÞ so that F tg ¼ F tg1 , so that gðFn�1Þ ¼ F and so that u ¼ ~g�1g1g
lies in kerðnÞ and has the form (10.3.1), for some r5 q: Therefore jrujr � I ðmod 2

kÞ

so Proposition 8.6 may be applied. &

10.7. PROOF OF LEMMA 10.2.

The lemma is equivalent to the following statement. Suppose M is a free Z-module

of rank n. Let a:M!M be an automorphism such that ða� I ÞM � 2M and

ða2 � I ÞM � 2kþ1M; that is, a � I ðmod 2Þ and a2 � I ðmod 2kþ1Þ: Then there exists
a basis x1; x2; . . . ; xn of M so that aðxiÞ ¼ �xi 2 2

kM for i ¼ 1; 2; . . . ; n:
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This statement will be proven by induction on the rank ofM: The case of rank 1 is

obvious, so suppose that M has rank n: We will show that there exists a basis

fx1; x2; . . . ; xng of M so that aðx1Þ � �x1 ðmod 2
kÞ: If kerða� I Þ is not trivial or if

kerðaþ I Þ is not trivial then any primitive x within this kernel may be extended to
a basis. Therefore we may assume that both ða� I ÞM and ðaþ I ÞM have maximal

rank.

By elementary divisor theory there exists a basis x1; x2; . . . ; xn of M and integers

d1; d2; . . . ; dn so that d1jd2j . . . jdn and so that d1x1; d2x2; . . . ; dnxn is a basis of

ða� I ÞM: Similarly there exists another basis y1; y2; . . . ; yn of M and integers

e1je2j . . . jen so that e1y1; e2y2; . . . ; enyn is a basis for the submodule ðaþ I ÞM �M:

We claim that either aðx1Þ � �x1 ðmod 2
kÞ or aðy1Þ � y1 ðmod 2kÞ: First note that

ðaþ I Þd1x1 � 0 ðmod 2kþ1Þ since d1x1 2 ða� I ÞM: If d1 is odd this implies

ax1 þ x1 � 0 ðmod 2kþ1Þ. If d1=2 is odd, it implies that ax1 þ x1 � 0 ðmod 2kÞ: Simi-
larly, if e1 is odd or if e1=2 is odd then ay1 � y1 � 0 ðmod 2kÞ: However,
ða� I ÞMþ ðaþ I ÞM ¼ 2M so the highest power of 2 which divides gcdðd1; e1Þ is

21: Therefore one of these four cases must occur, which proves the claim.

By switching the x’s with the y’s if necessary, we arrive at a basis x1; x2; . . . ; xn of

M such that aðx1Þ � �x1 ðmod 2
kÞ. Write M ¼M1 �M2 where M1 ¼ Zx1

and M2 ¼
P
i52 Zxi: With respect to this decomposition, a has the matrix a

11
a12

a21 a22

 �
where a11 � �1 ðmod 2kÞ, and where a22:M2 !M2: We claim that a22 � I ðmod 2Þ
and a222 � I ðmod 2

kþ1Þ: Since a � I ðmod 2Þ we have

a
0
m2

� �
¼

a12m2
a22m2

� �
�

0
m2

� �
ðmod 2Þ

hence a12 � 0 ðmod 2Þ and a22 � I ðmod 2Þ: Also,

a
x1
0

� �
¼

a11x1
a21x1

� �
�

�x1
0

� �
ðmod 2kÞ

hence a21 � 0 ðmod 2kÞ: Similarly,

a2
0
m2

� �
¼

�

a21a12m2 þ a222m2

� �
�

0
m2

� �
ðmod 2kþ1Þ:

But a12 � 0 ðmod 2Þ and a21 � 0 ðmod2kÞ so the first term in this sum is congruent to
0 ðmod 2kþ1Þ; hence a222m2 � m2 ðmod 2

kþ1Þ as claimed.

Therefore we may apply induction to the pair ðM2; a22Þ to obtain a basis, which we
again denote by x2; x3; . . . ; xn such that a22ðxjÞ � �xj ðmod 2

kÞ for j5 2: Hence, for

j5 2; there are integers aj and a sign Ej ¼ �1 so that aðxjÞ � ajx1 þ Ejxj ðmod 2kÞ:
Each aj is even since a � I ðmod 2Þ: Define a new basis

x0j ¼
xj if Ej ¼ E1
Ejxj þ 1

2 ajx1 if Ej ¼ �E1:

�
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We claim this basis has the desired property: aðx0jÞ ¼ �x0j ðmod 2
kÞ: First suppose

Ej ¼ þE1: Then a2ðxjÞ ¼ 2ajEjx1 þ xj: Since a2 � I ðmod2kþ1Þ we see that

ak � 0 ðmod 2
kÞ: Hence aðx0jÞ � xj ðmod 2

kÞ as desired. If EjE1 ¼ �1 then

aðx0jÞ ¼ EjaðxjÞ þ
1

2
ajaðx1Þ

� Ejðajx1 þ EjxjÞ þ
1

2
ajE1x1 ðmod 2kÞ

� xj þ
1

2
Ejajx1 ðmod 2kÞ

¼ EjðEjxj þ
1

2
ajx1Þ ¼ Ejx0j:

This completes the construction of the desired basis.

To prove the ‘moreover’ part of the lemma, let M0 ¼
Pq
i¼1 Zei be the submodule

ofM generated by the first q standard basis vectors. Apply the lemma to the quotient

module a :M=M0 !M=M0: Choose any lift xqþ1; . . . ; xn of the resulting basis of

M=M0 to M and define x1 ¼ e1; x2 ¼ e2; . . . ; xq ¼ eq: With respect to this basis,

aðxjÞ ¼ Ejxj þ
Xq
j¼1

aijxj for i > q

where Ei ¼ �1 and aij is even. Set

x0i ¼
xi if Ei ¼ 1
�xi þ

Pq
j¼1

1
2 aijxj if Ei ¼ �1

�

Then aðx0iÞ � Eix0i ðmod 2
kÞ and the change of basis matrix has the desired form. &
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